Supporting Information

Metal-Organic Frameworks Derived Nitrogen-doped Carbon-Confined CoSe₂ Anchored on Multiwall Carbon Nanotube Networks as Anode for High-rate Sodium-ion Batteries

Lei Chen¹, Xuefan Wang¹, Yijiao Ding¹, Yuke Li^{1,2}, Shi-Bin Ren^{*1}, Mao Shen¹, Yu-Xiang Chen¹, Wei Li¹, and De-Man Han^{**1}

¹ School of Pharmaceutical Chemical and Materials Engineering, Taizhou University, Taizhou, 318000, P. R. China

² Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R.

China

*Corresponding author.

E-mail address: renshibin@tzc.edu.cn; hdm@tzc.edu.cn.

Figure S1. EDS spectrum of CoSe₂@NC/MWCNTs (the inset table is atomic and weight ratios of Co, Se, N and C in CoSe₂@NC/MWCNTs composite).

Figure S2. The nitrogen adsorption-desorption isotherms (a) and pore size distributions (b) of CoSe₂@NC and CoSe₂@NC/MWCNTs composites.

Figure S3. CV curves of the $CoSe_2@NC$ electrode at scan rate of 0.2 mV s⁻¹ for the initial fifth

(b) (a) 3.0 0.1 st cycle cycle 0.0 2. Voltage (V vs. Na/Na⁺) 1.5 1.5 cycle 20th cycle -0.* Current (mA) 50th cycle -0.2 100th cycle -0.3 -0.4 1st cycle -0.5 0.5 2nd cycle -0.6 0.0 0.0 100 200 300 Specific Capacity (mA h g⁻¹) 0.5 1.0 1.5 2.0 Potential (V vs. Na/Na*) 2.5 3.0 0 300 400 (c) (d) 500 Charge capacity
 Discharge care — ©— Charge capacity — Oischarge capacity Discharge capacity Specific capacity (mA h g¹) 0 00 00 00 00 2.0, 5.0, 10, 20 A g -100 30 40 50 60 Cycle number (N) 40 60 Cycle number (N) 70 20 0 80 100 80 0 10 20 90

cycles.

Figure S4. Electrochemical performance of Co@NC electrodes in the voltage window 0.05-3.0 V (V vs. Na/Na⁺): (a) CV curves at scan rate of 0.1 mV s⁻¹ for the initial three cycles; (b) Galvanostatic discharge/charge profiles of 1st, 2nd, 5th, 20th, 50th and 100th cycles at a current density of 0.1A g⁻¹; (c) Cycling performance at 0.1A g⁻¹ over 100 cycles; (d) Rate capability at different current densities of 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10 and 20 A g⁻¹.

Figure S5. Electrochemical performance of MWCNTs electrodes in the voltage window 0.05-3.0 V (V vs. Na/Na⁺): (a) CV curves at scan rate of 0.1 mV s⁻¹ for the initial three cycles; (b) Galvanostatic discharge/charge profiles of 1st, 2nd, 5th, 20th, 50th and 100th cycles at a current density of 0.1A g⁻¹; (c) Cycling performance at 0.1A g⁻¹ over 100 cycles; (d) Rate capability at different current densities of 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10 and 20 A g⁻¹.

Figure S6. Galvanostatic discharge/charge profiles of the 1st, 2nd, 5th, 20th, 50th and 100th cycles for CoSe₂@NC electrode at a current density of 0.2 A g⁻¹.

Figure S7. The charge/discharge profiles of CoSe₂@NC at the various current densities.

Figure S8. The long-cycling performance of CoSe₂@NC electrode at 1.0A g⁻¹ over 1000 cycles.

Figure S9. CV curves of CoSe₂@NC electrode at various scan rates from 0.1 to 1.2 mV s⁻¹.

Figure S10. Ex-situ XRD analysis of the CoSe₂@NC/MWCNTs electrode at different chargedischarge states.

Element	Peak (eV)	Height	FWHM (eV)	Atomic (%)
C1s	284.8	58711.08	0.82	94.36
Co2p	781.23	3084.39	3.09	0.54
Se3d	55.99	445.16	1.33	1.04
N1s	399.09	2177.8	1.2	4.04

Table S1. Elemental composition of CoSe₂@NC/MWCNTs determined from XPS result.

Table S2. Comparison of the electrochemical performance of $CoSe_2@NC/MWCNTs$ compositewith previously reported $CoSe_2$ -based anode for SIBs.

Samples	Initial Capacity	Long-cycling Rate property		Ref.
	(mA h g ⁻¹)	performance	(mA h g ⁻¹)	
CoSe ₂ @N-CA	496 (0.2 A g ⁻¹)	373 at 3.0 A g ⁻¹	337 (10 A g ⁻¹)	S1
		(2000 cycles)		
CoSe ₂ @NC/MX	462 (0.5 A g ⁻¹)	317 at 0.5 A g ⁻¹	343 (7 A g ⁻¹)	S2
		(200 cycles)		
N-CoSe ₂ yss	602.3 (0.2 A g ⁻¹)	500 at 10 A g ⁻¹	431 (50 A g ⁻¹)	S3
		(1000 cycles)		
CoSe ₂ -CNS	535 (0.2 A g ⁻¹)	250 at 10 A g ⁻¹	352 (10 A g ⁻¹)	S4
		(2000 cycles)		
CoSe ₂ @C∩NC	389 (0.1 A g ⁻¹)	234 at 5 A g ⁻¹	146 (25 A g ⁻¹)	S5
		(2000 cycles)		
CoSe ₂ @NC	356 (0.2 A g ⁻¹)	384.3 at 2 A g ⁻¹	276.4 (5 A g ⁻¹)	S6
		(1800 cycles)		
CoSe ₂ /N-CNF	371.8 (0.2 A g ⁻¹)	308 at 2 A g ⁻¹	295.1 (2 A g ⁻¹)	S7
		(1000 cycles)		
CoSe ₂ /NC	541 (0.1 A g ⁻¹)	390.5 at 5 A g ⁻¹	376.5 (10 A g ⁻¹)	S8
		(4000 cycles)		
N-	531 (0.5 A g ⁻¹)	264 at 10 A g ⁻¹	151 (20 A g ⁻¹)	S9
CNT/rGO/CoSe ₂		(10000 cycles)		
NF				
CoSe ₂ @NC-	699 (0.2 A g ⁻¹)	555 at 0.2 A g ⁻¹	517 (5 A g ⁻¹)	S10
NR/CNT		(100 cycles)		
CNT-	461.7 (0.2 A g ⁻¹)	404 at 0.2 A g ⁻¹	363 (5 A g ⁻¹)	S11
CoSe ₂ @NC		(120 cycles)		
CNT/CoSe ₂ /C	531 (0.1 A g ⁻¹)	$39\overline{6}$ at 0.5 A g ⁻¹	223.6 (2.4 A g ⁻¹)	S12
		(300 cycles)		
CoSe ₂ @C/CNTs	470 (0.2 A g ⁻¹)	390 at 1 A g ⁻¹	373 (10 A g ⁻¹)	S13

		(1000 cycles)		
CoSe ₂ @NC/MW	479.6 (0.2 A g ⁻¹)	131.5 at 5 A g ⁻¹	227.3 mA h g ⁻¹	This
CNTs		(5000 cycles)	at 20 A g ⁻¹	work

Table S3. The calculated values of the equivalent circuit components for both samples.

		_			_
Samples	$R_{e}\left(\Omega ight)$	$R_{SEI}\left(\Omega ight)$	$CPE_1(F)$	$R_{ct}\left(\Omega ight)$	$CPE_2(F)$
CoSe ₂ @NC	9.59	418.9	9.74×10 ⁻⁶	27.6	1.55×10-5
CoSe ₂ @NC/MWCNTs	21.13	19.05	3.29×10 ⁻³	39.8	2.59×10-5

Table S4. Values of the equivalent circuit components for CoSe₂@NC/MWCNTs at different states.

Status	$R_{e}\left(\Omega ight)$	$R_{s}(\Omega)$	$CPE_1(F)$	$R_{ct}(\Omega)$	$CPE_2(F)$
OCV	13.23	291.9	5.04×10 ⁻⁶	7.9	2.44×10 ⁻⁵
D to 1.1 V	9.494	433.5	4.26×10-6	157.6	3.06×10-5
D to 0.8 V	7.395	487.1	3.36×10 ⁻⁶	141.9	8.21×10 ⁻⁵
D to 0.05 V	9.32	276.4	5.83×10 ⁻⁶	144.1	2.09×10 ⁻⁵
C to 1.8 V	13.79	148.9	6.50×10 ⁻⁶	19.19	6.97×10 ⁻⁶
C to 2.1 V	10.47	143.2	7.52×10 ⁻⁶	13.92	2.93×10 ⁻⁶
C to 3.0 V	12.19	105.6	5.40×10 ⁻⁴	20.99	4.74×10 ⁻⁶

References

- (S1) Y. Pan, X. Cheng, M. Gao, Y. Fu, J. Feng, L. Gong, H. Ahmed, H. Zhang, V. S. Battaglia, ACS Appl. Mater. Interfaces, 2020, 12, 33621-33630.
- (S2) H. G. Oh, S. H. Yang, Y. C. Kang, S.-K. Park, Int J Energy Res., 2021, 45, 17738-17748.
- (S3) J. Geng, S. Zhang, E. H. Ang, J. Guo, Z. Jin, X. Li, Y. Cheng, H. Dong, H. Geng, Mater. Chem. Front., 2021, 5, 6873-6882.
- (84) B. Wang, X. Miao, H. Dong, X. Ma, J. Wu, Y. Cheng, H. Geng, C. C. Li, J. Mater. Chem. A, 2021, 9, 14582.
- (S5) B. Li, Y. Liu, X. Jin, S. Jiao, G. Wang, B. Peng, S. Zeng, L. Shi, J. Li and G.

Zhang, Small, 2019, 15, 1902881.

- (86) T. Liu, Y. Li, S. Hou, C. Yang, Y. Guo, S. Tian and L. Zhao, Chem.-Eur. J., 2020, 26, 13716-13724.
- (S7) C. Cui, Z. Wei, G. Zhou, W. Wei, J. Ma, L. Chen and C. Li, J. Mater. Chem. A, 2018, 6, 7088-7098.
- (S8) H. Ge, S. Fan, J. Liu, G. Li, Energy Technol. 2021, 9, 2001074.
- (89) M. S. Jo, J. S. Lee, S. Y. Jeong, J. K. Kim, Y. C. Kang, D. W. Kang, S. M. Jeong,
 J. S. Cho, Small, 2020, 16, 2003391
- (S10) S.-K. Park, Y. C. Kang, ACS Appl. Mater. Interfaces, 2018, 10, 17203-17213.
- (S11) S. H. Yang, S.-K. Park, Y. C. Kang, Chem. Eng. J., 2019, 370, 1008-1018.
- (S12) M. Yousaf, Y. Chen, H. Tabassum, Z. Wang, Y. Wang, A. Y. Abid, A. Mahmood, N. Mahmood, S. Guo, R. P. S. Han, P. Gao, Adv.Sci., 2020, 7, 1902907.
- (S13) Y. Tang, Z. Zhao, X. Hao, Y. Wang, Y. Liu, Y. Hou, Q. Yang, X. Wang, J. Qiu, J. Mater. Chem. A, 2017, 5, 13591.