Supporting information for

Field-induced mononuclear cobalt(II) single-molecule magnet (SMM) based on a benzothiadiazole-ortho-vanillin ligand

Nataliya Plyuta, ${ }^{\text {a }}$ Svitlana Petrusenko, ${ }^{\text {b }}$ Vladimir N. Kokozay, ${ }^{\text {b }}$ Thomas Cauchy, ${ }^{\text {a }}$ Francesc Lloret, ${ }^{\text {c Miguel Julve, }}{ }^{\text {c Joan Cano*c }}$ and Narcis Avarvari*a
a Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France. E-mail: narcis.avarvari@univ-angers.fr
b Department of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, Kyiv 01601, Ukraine
c Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna (Valencia) (Spain). E-mail: Joan.Cano@uv.es

Experimental section

General comments. All the reactions were carried out under ambient conditions with HPLC-grade solvents. Nuclear magnetic resonance spectra were recorded on a Bruker Avance DRX 300 spectrometer operating at 300 and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively. Chemical shifts are expressed in parts per million (ppm) downfield from external TMS. The following abbreviations (δ) are used: s, singlet; d, doublet; t, triplet; m, massif. MALDI-TOF MS spectra were done on a Bruker Biflex-IIITM apparatus, equipped with a $337 \mathrm{~nm} \mathrm{~N}_{2}$ laser. Elemental analysis were recorded using a Flash 2000 Fisher Scientific Thermo Electron analyzer. The IR spectra were performed on an ATR Bruker Vertex 70 spectrophotometer in the range $4000-400 \mathrm{~cm}^{-1}$. Signal intensities (height) are denoted by the following abbreviations: vs-very strong, s-strong, m-medium and w-weak.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2009

X-Ray structure determinations

Details about data collection and solution refinement are given in Table S1. Single crystals of the compounds were mounted on glass fibre loops using a viscous hydrocarbon oil to coat the crystal and then transferred directly to a cold nitrogen stream for data collection. Data collection were mostly performed at 150 K on an Agilent Supernova with Cu K $\alpha(\lambda=1.54184 \AA$). The structures were solved by direct methods with the SIR92 program and refined against all F^{2} values with the SHELXL-97 program ${ }^{1}$ using the WinGX graphical user interface. ${ }^{2}$ All non-H atoms were refined anisotropically. The hydrogen atoms were introduced at calculated positions (riding model) and included in the structure factor calculations but not refined.

Crystallographic data for the two structures have been deposited with the Cambridge Crystallographic Data Centre, deposition numbers CCDC $2128849(\mathrm{HL})$ and $2128850\left(\left[\mathrm{CoL}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. These data can be obtained free of charge from CCDC, 12 Union road, Cambridge CB2 1EZ, UK (e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2009

Table S1 Crystal Data and Structure Refinement for HL and $\left[\mathrm{CoL}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Compound	HL	$\left[\mathrm{CoL}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{CoN}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$
Molecular weight	285.32	712.47
T (K)	150.00(10)	149.3(4)
Wavelength (Å)	1.54184	1.54184
Crystal system	Monoclinic	Triclinic
Space group	$P 2_{1} / \mathrm{c}$	P-1
a (Å)	12.5784(4)	11.0894(7)
b (Å)	5.23110(10)	12.3519(8)
c (Å)	19.7962(7)	13.0378(8)
α (deg)	90	90.231(5)
8 (deg)	105.161(3)	111.019(6)
γ (deg)	90	114.765(6)
$V\left(\AA^{3}\right)$	1257.23(7)	1488.43(18)
Z	4	2
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.507	1.590
Abs. coeff. (mm^{-1})	2.343	7.887
Crystal size (mm^{3})	$0.15 \times 0.09 \times 0.07$	$0.10 \times 0.05 \times 0.04$
$\theta(\min / \mathrm{max})$	3.641/72.176	3.694/73.777
Transmission (min/max)	0.80686/1.00000	0.63379/1.00000
Data collected/unique	4305/2405	10877/5673
Data/restraints/parameters	2405/0/183	5673/0/399
R (int)	0.0240	0.0800
GOF on F^{2}	1.051	1.028
final R indices ${ }^{\text {a }}[1>2 \sigma()]$	0.0293/0.0736	0.0734/0.1852
R indices (all data)	0.0342/0.0767	0.0964/0.2075
Largest maximum/minimum peak in final difference (e A^{-3})	0.263/-0.271	1.669/-1.822
CCDC number	2128849	2128850

${ }^{\mathrm{a}} R\left(F_{o}\right)=\Sigma| | F_{o}\left|-\left|F_{c}\right| / \Sigma\right| F_{o} \mid ; R_{w}\left(F_{o}^{2}\right)=\left[\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{o}^{2}\right)^{2}\right]\right]^{1 / 2}$.

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009

Compound HL

Fig. S1 Molecular structure of HL in the solid state highlighting the dimer formation upon the $01 \cdots{ }^{\prime}{ }^{\prime}-\mathrm{C}^{\prime}$ type interaction. [Symmetry code: (${ }^{\prime}$) = 1-x, 1-y, 1-z].

Fig. S2 Packing diagram of HL in the crystallographic ac plane.

Fig. S3 View of the packing of HL.

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009
Table S2 Hydrogen bonds and O \cdots H-C type interaction parameters ($\mathrm{A},{ }^{\circ}$) of compound HL

	A \cdots - D	d(A $\cdots \mathrm{H}), \mathrm{A}$	d(A \cdots D) , \AA	$\angle(D-H \cdots A),{ }^{\circ}$
HL	$N(1) \cdots \mathrm{H}(4)-\mathrm{C}(7)$	2.242	2.929	130.12
	$\mathrm{N}(3) \cdots \mathrm{H}(8)-\mathrm{O}(1)$	1.871	2.597	146.91
	$\mathrm{O}^{\prime}(1) \cdots \mathrm{H}(2)-\mathrm{C}(4)^{*}$	2.578	3.245	129.03

[^0]Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009

DFT calculations on compound HL

A

A

B

B

Fig. S4 The two equilibrium geometries \mathbf{A} and \mathbf{B} of HL in the E configuration.

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009
Table S3 Converged Cartesian coordinates of calculated A-HL and B-HL

A-HL				B-HL			
S	4.0618	-1.9887	0	C	-2.8237	2.0102	-0.8391
N	2.5431	-1.3821	0.0001	C	-1.9431	1.0409	-0.3256
C	2.6565	-0.0574	0	C	-2.4424	-0.1864	0.1516
C	4.0321	0.3932	-0.0001	C	-3.8368	-0.4179	0.1128
N	4.9156	-0.601	0	C	-4.6781	0.5561	-0.3931
C	4.3517	1.772	-0.0001	C	-4.1737	1.7722	-0.8697
C	3.3156	2.6571	-0.0001	C	-0.53	1.3113	-0.2993
C	1.9659	2.2295	-0.0001	N	0.3228	0.47	0.1635
C	1.5883	0.9062	0	C	1.6687	0.7917	0.2503
N	0.2288	0.6369	0	C	2.6308	-0.2291	-0.0279
C	-0.2773	-0.5519	0.0001	C	4.0406	0.0527	0.0807
C	-1.7024	-0.7564	0.0001	C	4.4883	1.3353	0.4822
C	-2.5914	0.3367	0.0001	C	3.5429	2.2781	0.7579
C	-3.983	0.0908	0	C	2.1521	2.0137	0.6493
C	-4.4467	-1.2119	-0.0002	N	4.8107	-0.9909	-0.2184
C	-3.559	-2.295	-0.0001	S	3.7989	-2.2142	-0.6023
C	-2.2063	-2.0705	0	N	2.3583	-1.4709	-0.4089
0	-2.169	1.5935	0.0004	0	-1.6602	-1.1408	0.634
0	-4.7617	1.1944	0	0	-4.2327	-1.6162	0.5902
C	-6.1563	1.0097	-0.0002	C	-5.6097	-1.9058	0.5729
H	5.388	2.0837	-0.0002	H	5.5487	1.534	0.5688
H	3.5168	3.7223	-0.0002	H	3.8512	3.2659	1.0821
H	1.1763	2.972	-0.0001	H	1.4499	2.7921	0.9266
H	0.3528	-1.4414	0.0001	H	-0.2031	2.2733	-0.7126
H	-1.5052	-2.8982	0	H	-2.4165	2.9466	-1.2061
H	-3.9514	-3.3047	-0.0003	H	-4.8573	2.5152	-1.262
H	-5.5121	-1.4037	-0.0003	H	-5.7459	0.3807	-0.4241
H	-6.4929	0.4706	0.8931	H	-6.0102	-1.9035	-0.4474
H	-6.4927	0.4707	-0.8935	H	-6.1795	-1.1974	1.1853
H	-6.592	2.0072	0.0001	H	-5.7117	-2.9043	0.9941
H	-1.1691	1.5489	0.0006	H	-0.7214	-0.8159	0.5671

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009
Complex $\left[\mathrm{CoL}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a)

(b)

Fig. S5 Molecular structure of $\left[\mathrm{CoL}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the solid state (a) and highlight on the coordination sphere of cobalt(II) (b).

Fig. S6 A view of the packing diagram of $\left[\mathrm{CoL}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showing the $\pi-\pi$ type interactions (dashed lines).

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2009

Fig. $\mathbf{S 7}$ Perspective view of the supramolecular assembly in $\left[\mathrm{CoL}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}: \pi \cdots \pi$ phenolate-BTD rings $3.55 \AA$ (pink), $\pi \cdots \pi$ phenolate-BTD rings $3.52 \AA$ (blue), $\pi \cdots \pi$ TD-TD rings $3.67 \AA$ (violet) and C-H \cdots Cl type (light blue) interactions in the crystal packing.

Table S4 Selected bond distances (A) and angles (${ }^{\circ}$) for $\left[\mathrm{CoL}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

N1-Co1	$2.221(4)$	O3-Co1	$2.004(3)$	O1-Co1	$1.997(3)$
N4-Co1	$2.248(4)$	N6-Co1	$2.088(4)$	N3-Co1	$2.103(4)$
O1-Co1-O3	$96.04(14)$	N6-Co1-N1	$86.75(16)$	N6-Co1-N3	$159.13(15)$
O1-Co1-N6	$105.46(14)$	N3-Co1-N1	$78.02(16)$	O1-Co1-N1	$167.22(15)$
O3-Co1-N6	$89.91(14)$	O1-Co1-N4	$88.04(14)$	O3-Co1-N1	$87.59(15)$
N6-Co1-N4	$77.64(15)$	O3-Co1-N4	$167.54(14)$	O1-Co1-N3	$89.21(14)$
N3-Co1-N4	$88.33(15)$	N1-Co1-N4	$90.98(16)$	O3-Co1-N3	$103.46(14)$

Table S5 Parameters of the O-H"Cl type interaction ($\mathrm{A}^{\circ}{ }^{\circ}$) for $\left[\mathrm{CoL}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

D-H...A	$d(D \ldots A)$	$d(H \ldots A)$	angle (D-H....A)
$C(10)-H(10) \ldots \mathrm{Cl}^{\prime}(1)$	$3.8280(56)$	$3.0331(26)$	$144.400(296)$

Table S6 $\pi-\pi$ stacking interactions involving Cg1(C15C16C17C18C19C20), Cg2 (C22C23C24C25C26C27), Cg3 (C1C2C3C4C5C6), Cg4 (C8C9C10C11C12C13), Cg5 (S2N5C16C15N4), Cg6 (S2N5C16C15N4)

$\pi-\pi^{\mathrm{a}}$	$\mathrm{d}(\mathrm{Cg}-\mathrm{Cg})^{\mathrm{b}}$	α^{c}	Cg-plane $^{\mathrm{d}}$	$\operatorname{Slip}(\AA)^{\mathrm{e}}$	Symmetry $^{\mathrm{f}}$	Colour $^{\mathrm{g}}$
Cg1-Cg2	3.55	8.12	$3.38 / 3.45$	$1.08 / 0.84$	$-x, 1-y, 1-z$	pink
Cg3-Cg4	3.52	8.76	$3.33 / 3.34$	$1.13 / 1.10$	$-x,-y,-z$	blue
Cg5-Cg6	3.67	0.000	3.53	1.00	$1-x, 1-y, 1-z$	violet

${ }^{\text {a }}$ Distance between the centroids of the I and Y rings in \AA; ${ }^{b}$ Dihedral angle between the I and Y planes in degrees; ${ }^{\text {c }}$ Perpendicular distance in \AA of the centroid $\mathrm{Cg}(I)$ on the mean plane of the Y ring ${ }^{\mathrm{d}}$ Distance in \AA between the centroid $\mathrm{Cg}(I)$ and perpendicular projection of the centroid $\mathrm{Cg}(Y)$ on the I ring; ${ }^{\text {f }}$ Symmetry applied on the plane $\mathrm{Cg}(\mathrm{I})$ to obtain $\mathrm{Cg}(\mathrm{Y}) ;{ }^{\circ}$ Colour used to distinguish intermolecular interactions (dotted lines) in Figure S 7.

Ab initio calculations on the zfs tensor

Fig. S8 Splitting of d orbitals and electronic configuration for the quartet ground state obtained from a CASSCF/NEVPT2 calculation on the experimental geometries of 1. Molecular orbitals are displayed considering a cut-off equal to $0.01 \mathrm{e}^{\mathrm{b}} \mathrm{bohr}^{-3}$. Hydrogen atoms are omitted for clarity.

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009

Fig. S9 Relative orientation of the experimental coordination sphere geometry of $\mathbf{1}$ and the calculated D tensor ($x=$ cyan, $y=$ green, $z=$ magenta). Colour code: dark blue, cobalt; light blue, nitrogen; red, oxygen; grey, carbon; yellow, sulphur. Hydrogen atoms are omitted for clarity.

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009
Table $\mathbf{S 7}$ Energy of the calculated quartet $\left(Q_{i}\right)$ and triplet $\left(D_{i}\right)$ excited states and their contributions to the D and E values for 1 obtained from CASSCF/NEVPT2 calculations. Dss is the spin-spin contribution to axial zfs parameter, and D_{Q} and D_{D} are the sum of spin-orbit contributions coming from quartet and doublet excited states

		Co1				Co2			
State	Energy $^{\mathrm{a}}$	S	D^{a}	E^{a}	State	Energy $^{\mathrm{a}}$	S	D^{a}	E^{a}
D_{SS}		4	+0.786	+0.238	D_{5}	19433.5	2	+2.693	+0.108
D_{Q}		4	-57.332	-14.859	D_{6}	19840.1	2	-0.176	+0.327
D_{D}		2	+4.943	+0.137	D_{7}	19933.0	2	-0.497	+0.580
Q_{1}	746.4	4	-77.962	-0.997	D_{8}	20476.7	2	-0.095	+0.173
Q_{2}	1970.6	4	+12.191	-15.096	D_{9}	22901.4	2	-1.413	-1.409
Q_{3}	8697.9	4	+2.953	-4.386	D_{10}	23505.8	2	+0.346	+0.102
Q_{4}	9100.6	4	+0.471	+0.581	D_{11}	23667.6	2	-0.095	+0.085
Q_{5}	10015.0	4	+5.064	+5.106	D_{12}	26142.5	2	-0.072	+0.061
Q_{6}	18075.2	4	+0.013	-0.015	D_{13}	28030.6	2	+0.412	-0.032
Q_{7}	21912.5	4	+0.014	-0.045	D_{14}	28815.4	2	-0.112	-0.145
Q_{8}	23113.1	4	-0.005	+0.002	D_{15}	29693.2	2	-0.414	+0.503
Q_{9}	23559.5	4	-0.071	-0.009	D_{16}	29726.4	2	-0.023	-0.017
D_{1}	11027.0	2	+4.767	+1.041	D_{17}	30130.7	2	-0.010	+0.005
D_{2}	12267.0	2	-1.093	-1.217	D_{18}	30577.6	2	+0.079	+0.198
D_{3}	18700.4	2	-0.001	+0.001	D_{19}	32313.5	2	-0.365	-0.349
D_{4}	18856.1	2	+0.034	-0.002	D_{20}	32430.2	2	+0.978	+0.124

${ }^{\text {a }}$ Values in cm^{-1}.

Magnetic measurements

Fig. S10 Frequency dependence of the in-phase (left) and out-of-phase (right) components of the magnetic susceptibility of 1 under a static magnetic field $H_{d c}=2500 \mathrm{G}$ with an oscillating field $\pm 0.5 \mathrm{G}$ and at the indicated frequencies

Fig. $\mathbf{S 1 1}$ Arrhenius plots in the form of $\ln (\tau)$ as a function of $1 / T$ for $\mathbf{1}$ under static magnetic field of 1000 (left) and 2500 (right): (o) experimental data; (-) fit by eq. (3).

Fig. S12 Frequency dependence of $\chi_{M^{\prime}}$ (left) and $\chi_{M^{\prime \prime}}$ (middle), Cole-Cole plots (right) of $\mathbf{1}$ under applied dc static fields of 1.0 (a), 2.5 (b), and 5.0 kOe (c) with $\pm 0.005 \mathrm{kOe}$ oscillating field in the temperature range $2.0-6.0 \mathrm{~K}$ (blue to red gradient). Solid lines are the best-fit curves simulated by using the generalized Debye model (see text).

Fig. $\mathbf{S 1 3}$ Arrhenius (left) and $\ln (\tau)$ vs $\ln (T)$ (right) plots for the calculated magnetic relaxation times (τ) of $\mathbf{1}$ under $d c$ static fields of 1.0 (blue), 2.5 (red), and 5.0 kOe (green) for the two competing relaxation processes, one of them predominating at low temperatures (a) and other at higher ones (b). Standard deviations appear as vertical error bars. Solid lines are the best-fit curves simulated by combinations of quantum-tunnelling, Orbach and Raman mechanisms. More details are given in the main text.

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009
Table S8 Selected fits of ac-magnetic data at different applied dc fields of $\mathbf{1}$ obtained from the Arrhenius plots

$H_{d c}{ }^{\text {a }}$	Process ${ }^{\text {b }}$	$\tau_{0, Q T} \times 10^{4 c}$	$\tau_{1} \times 10^{11 \mathrm{c}}$	$U_{\text {eff } 1}{ }^{\text {d }}$	$\tau_{2} \times 10^{6} \mathrm{c}$	$U_{\text {eff } 2}{ }^{\text {d }}$
1000	HT	3.1 ± 0.3	7 ± 3	37.5 ± 1.4		
	LT				10.0 ± 2.2	2.5 ± 0.4
2500	HT	2.67 ± 0.07	18 ± 4	35.0 ± 0.6		
	LT				12.3 ± 0.8	2.00 ± 0.12
5000	HT		42 ± 11	33.4 ± 1.0	17.1 ± 2.3	1.84 ± 0.24
	LT					

${ }^{a}$ Values in kOe; ${ }^{\text {b }}$ Ocurring at high (HT) or low (LT) temperatures; ${ }^{\text {c,d } V \text { Values in }} \mathrm{cm}^{-1}$.

Table S9 Selected fits of ac-magnetic data at different applied dc fields of $\mathbf{1}$ obtained from the $\ln (\tau)$ vs $\ln (T)$ plots

$H_{d c}{ }^{\text {a }}$	Process ${ }^{\text {b }}$	$\tau_{0, \text { QT }} \times 10^{4 \mathrm{c}}$	$C_{1} \times 10^{4 c}$	n_{1}	$C_{2} \times 10^{-3 \mathrm{c}}$	n_{2}
1000	HT	3.4 ± 0.3	22 ± 14	11.5 ± 0.4		
	LT				4.1 ± 1.0	1.85 ± 0.23
2500	HT	2.82 ± 0.11	20 ± 8	11.6 ± 0.3		
	LT				9.2 ± 0.5	1.09 ± 0.05
5000	HT		600 ± 40	9.2 ± 0.4	10.2 ± 2.1	0.71 ± 0.21
	LT					

[^1]Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009

NMR spectra

Fig. S14 ${ }^{1} \mathrm{H}$ NMR spectrum of compound HL in CDCl_{3}.

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009

Fig. S15 ${ }^{13} \mathrm{C}$ NMR spectrum of compound HL in CDCl_{3}.

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2009

1 G. M. Sheldrick, Programs for the Refinement of Crystal Structures, ed. 1996.
2 L. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.

[^0]: *Symmetry code: ${ }^{a}=1-x, 1-y, 1-z$.

[^1]: ${ }^{\text {a }}$ In kOe; ${ }^{\text {b }}$ Ocurring at high (HT) or low (LT) temperatures; ${ }^{\mathrm{C}} \mathrm{In} \mathrm{s}^{-1} \mathrm{~K}^{-n}$.

