Electronic Supplementary Information (ESI)

Ligand Properties of Boryl Ligands in bis-Boryl Rhodium(III) Complexes: A Case Study

Wiebke Drescher[†] and Christian Kleeberg^{†,*}

[†]Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Germany. * Author E-mail Address: ch.kleeberg@tu-braunschweig.de

Contents

1. Experimental and Spectroscopic Data	
a. Additional Experimental Data	
[Rh(PPh ₃) ₂ (Bcat)(Bpin)Cl]	S2
b. <i>In situ</i> NMR experiments:	
Reaction of [Rh(PMe ₃) ₃ Cl] with the diboranes(4) 1a-e	S3
[Rh(PMe ₃) ₃ (Bpin) ₂ Cl] (2b) + PMe ₃	S11
c. VT-NMR spectra of 2a–c, 3b :	
[Rh(PMe ₃) ₃ (Bcat) ₂ Cl] (2a)	S12
[Rh(PMe ₃) ₃ (Bpin) ₂ Cl] (2b)	S13
[Rh(PMe ₃) ₂ (Bpin) ₂ Cl] (3b)	S14
[Rh(PMe ₃) ₃ (Bpin) ₂ Cl]·[Rh(PMe ₃) ₂ (Bpin) ₂ Cl] (2b·3b)	S15
[Rh(PMe₃)₃(Bcat)(Bpin)Cl] (2c)	S17
d. VT-NMR spectra of 4a–c , 5c , 6c :	
[Rh(PMe ₃) ₄ (Bcat) ₂][BArF] (4a)	S18
[Rh(PMe ₃) ₄ (Bpin) ₂][BArF] (4b)	S19
[Rh(PMe ₃) ₄ (Bcat)(Bpin)] [BArF] (4c)	S20
[[Rh(PMe ₃) ₃ (NCMe)(Bcat)(Bpin)] [BArF] (5c)	S21
[Rh(PMe ₃) ₃ (CNMe)(Bcat)(Bpin)] [BArF] (6c)	S22
2. Crystallographic Data	
a. Crystallographic Data Collection Parameters	S23
b. [(Me ₃ P) ₄ RhH(Cl)][B(1,2-O ₂ C ₆ H ₄) ₂](THF)	S27
c. [(Me ₃ P) ₂ Rh(Bpin) ₂ (Cl)] (3b) and 2b·3b	S28
d. [Rh(PPh ₃) ₂ (Bcat)(Bpin)(Cl)](CH ₂ Cl ₂) _{3.5} (C ₅ H ₁₂) _{0.6}	S30
e. [Rh(PMe ₃) ₃ (Bcat)(Bpin)(L)][BArF] (L = MeCN (5c), MeNC (6c))	S31
3. References	S32

1. Experimental and Spectroscopic Data

1.a. Additional Experimental Data

[Rh(PPh₃)₂(Bcat)(Bpin)(Cl)]

[Rh(PPh₃)₃Cl] (30 mg, 32 µmol, 1 eq.) and pinB-Bcat (**1c**) (8 mg, 32 mmol, 1 eq.) were dissolved in DCM/*n*-pentane (17 mL, 1:1). After 16 at rt all volatiles were removed *in vacuo* and the residue dissolved in DCM (0.5 mL) and layered with *n*-pentane (2 mL). After several days a few single crystals suitable for x-ray analysis of the approximate composition [Rh(PPh₃)₂(Bcat)(Bpin)(Cl)] (CH₂Cl₂)_{3.5}(C₅H₁₂)_{0.5} had separated.

1.b. In situ NMR experiments: Reaction of [Rh(PMe₃)₃Cl] with the diboranes(4) 1a-e

General Procedure: To a solution of $[Rh(PMe_3)_3CI]$ (15 mg, 41 µmol, 1.0 eq.) in C₆D₆ or THF-d₈ (0.7 mL) an equimolar amount of the diborane(4) derivative (41 µmol, 1.0 equiv.) was added and the solution transferred to a screw-cap NMR Tube. The NMR spectra were recorded in the given intervals.

[Rh(PMe₃)₃Cl] with 1a

Figure S1b.1: In situ ¹H NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1a** and spectra of **1a** and [Rh(PMe₃)₃Cl] for comparison (300.3 MHz, C₆D₆, rt).

Figure S1b.2: In situ ¹¹B{¹H} NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1a** and a spectrum of **1a** for comparison (96.3 MHz, C₆D₆, rt).

Figure S1b.3: In situ ³¹P{¹H} NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1a** and a spectrum of [Rh(PMe₃)₃Cl] for comparison (121.5 MHz, C₆D₆, rt).

[Rh(PMe₃)₃Cl] with 1b

Figure S1b.4: In situ ¹H NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1b** and spectra of **1b** and [Rh(PMe₃)₃Cl] for comparison (300.3 MHz, C₆D₆, rt).

Figure S1b.5: In situ ¹¹B{¹H} NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1b** and a spectrum of **1b** for comparison (96.3MHz, C₆D₆, rt).

Figure S1b.6: In situ ³¹P{¹H} NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1b** and a spectrum of [Rh(PMe₃)₃Cl] for comparison (121.5 MHz, C₆D₆, rt).

[Rh(PMe₃)₃Cl] with 1c

Figure S1b.7: In situ ¹H NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with 1c (300.3 MHz, THF-d₈, rt).

Figure S1b.8: In situ ${}^{11}B{}^{1H}$ NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with 1c (96.3 MHz, THF-d₈, rt).

Figure S1b.9: In situ $^{31}P\{^{1}H\}$ NMR spectra of the reaction of $[Rh(PMe_{3})_{3}CI]$ with 1c (121.5 MHz, THF-d_8, rt).

[Rh(PMe₃)₃Cl] with 1d

Figure S1b.10: In situ ¹H NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1d** and spectra of **1d** and [Rh(PMe₃)₃Cl] for comparison (300.3 MHz, C₆D₆, rt).

Figure S1b.11: In situ ¹¹B{¹H} NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1d** and a spectrum of **1d** for comparison (96.3 MHz, C₆D₆, rt).

Figure S1b.12: In situ ³¹P{¹H} NMR spectra of the reaction of $[Rh(PMe_3)_3CI]$ with 1d and a spectrum of $[Rh(PMe_3)_3CI]$ for comparison (121.5 MHz, C₆D₆, rt).

Figure S1b.13: In situ ¹H NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1e** and spectra of **1e** and [Rh(PMe₃)₃Cl] for comparison (300.3 MHz, C₆D₆, rt).

Figure S1b.14: In situ ¹¹B{¹H} NMR spectra of the reaction of [Rh(PMe₃)₃Cl] with **1e** and a spectrum of **1e** for comparison (96.3 MHz, C₆D₆, rt).

Figure S1b.15: In situ ³¹P{¹H} NMR spectra of the reaction of $[Rh(PMe_3)_3CI]$ with 1e and a spectrum of $[Rh(PMe_3)_3CI]$ for comparison (121.5 MHz, C₆D₆, rt).

[Rh(PMe₃)₃(Bpin)₂Cl] (2b) + PMe₃

The observed chemical shifts of 53.5 ppm with 2 equiv. PMe₃ and 58.8 ppm with 6 equiv. PMe₃ added are well described by the weighted averaged chemical shifts of the *trans*-B PMe₃ ligand in **2b**, $(\delta_{2b} = -37.9 \text{ ppm in } C_6D_6)$ and the chemical shift of free PMe₃ ($\delta_{PMe3} = -62 \text{ ppm}$):

 $\delta_{av} = \frac{\delta_{2\mathbf{b}} + \delta_{\mathrm{PMe}_3}}{n_{2\mathbf{b}} + n_{\mathrm{PMe}_3}}$

Resulting in: $\delta_{av} = 54.0 \text{ ppm for } 2 \text{ equiv. PMe}_3$ $\delta_{av} = 58.6 \text{ ppm for } 6 \text{ equiv. PMe}_3$

1.c. VT-NMR spectra of 2a-c, 3b

[Rh(PMe₃)₃(Bcat)₂Cl] (2a)

Figure S1c.2: VT-³¹P{¹H} NMR spectra of **2a** (inset: ×10) (162.1 MHz, THF-d₈).

Figure S1c.3: VT-¹H NMR spectra of 2b (400.4 MHz, THF-d₈).

Figure S1c.4: VT-³¹P{¹H} NMR spectra of **2b** (inset: ×14) (162.1 MHz, THF-d₈).

Figure S1c.5: VT-¹H NMR spectra of 3b (400.4 MHz, THF-d₈).

Figure S1c.6: VT-³¹P{¹H} NMR spectra of **3b** (162.1 MHz, THF-d₈).

Figure S1c.7: VT-¹H NMR spectra of 2b·3b (400.4 MHz, THF-d₈).

Figure S1c.8: VT-³¹P{¹H} NMR spectra of **2b**·**3b** (left inset: ×10, right inset: ×32) (162.1 MHz, THF-d₈).

Figure S1c.9: ${}^{31}P{}^{1}H$ NMR NMR spectra of 2b·3b, 2b and 3b at rt (162.1 MHz, THF-d₈).

Figure S1c.10: $^{31}P\{^{1}H\}$ NMR NMR spectra of 2b·3b, 2b and 3b at –90 °C (162.1 MHz, THF-d_8).

[Rh(PMe₃)₃(Bcat)(Bpin)Cl] (2c)

Figure S1c.11: VT-1H NMR spectra of 2c (400.4 MHz, THF-d₈).

Figure S1c.12: VT-³¹P{¹H} NMR spectra of **2c** (inset: ×10) (162.1 MHz, THF-d₈).

1.d. VT-NMR spectra of 4a-c, 5c, 6c

[Rh(PMe₃)₄(Bcat)₂][BArF] (4a)

Figure S1d.2: VT-³¹P{¹H} NMR spectra of 4a (inset: ×5) (162.1 MHz, THF-d₈).

Figure S1d.3: VT-1H NMR spectra of 4b (400.4 MHz, THF-d₈).

Figure S1d.4: VT-³¹P{¹H} NMR spectra of 4b (inset: ×5) (162.1 MHz, THF-d₈).

[Rh(PMe₃)₄(Bcat)(Bpin)][BArF] (4c)

Figure S1d.5: VT-¹H NMR spectra of 4c (400.4 MHz, THF-d₈).

Figure S1d.6: VT-³¹P{¹H} NMR spectra of 4c (162.1 MHz, THF-d₈).

[Rh(PMe₃)₃(NCMe)(Bcat)(Bpin)][BArF] (5c)

[Rh(PMe₃)₃(CNMe)(Bcat)(Bpin)][BArF] (6c)

2. Crystallographic Data

2.a. Crystallographic Data Collection Parameters

Table S1	Crystallographic	data	collection	parameters	for	[(Me ₃ P) ₄ RhH(Cl)][B(1,2-O ₂ C ₆ Br ₄) ₂](THF), 2	2a	and
	2b (PhMe).							

	$[(Me_3P)_4RhH(CI)]$	2a	2b (PhMe)
Chemical Formula	$[C_{12}H_{36}CIP_4Rh][C_{12}H_8BO_4].$	C21H35B2CIO4P3Rh	C21H51B2CIO4P3Rh, C7H8
	C_4H_8O		
Formula mass (g mol ⁻¹)	741.74	604.38	712.64
Crystal shape	fragment	plate	cuboid
Crystal color	clear pale vellow	clear colourless	clear colourless
Crystal size (mm ³)	0.088 × 0.061 × 0.038	0.246 × 0.141 × 0.017	0.205 × 0.173 × 0.078
Temp., Radiation	100 K. CuKα	100 Κ. ΜοΚα	100 Κ. ΜοΚα
Abs. coefficient (corr.)	6.638 mm ⁻¹ (gaussian)	0.936 mm ⁻¹ (multi-scan)	0.718 mm ⁻¹ (multi-scan)
Crystal system	orthorhombic	monoclinic	monoclinic
Space group type (no.)	<i>Pca</i> 2 ₁ (29)	P2 ₁ /n (14)	C2/c (15)
Z, Z'	8, 2	4, 1	8, 1
a (Å)	33.9797(7)	8.9802(1)	32.6373(2)
b (Å)	15.7885(4)	32.0928(6)	9.7784(1)
c (Å)	13.0676(3)	9.3574(2)	22.3405(2)
$\alpha(^{\circ})$	90°	90°	90°
$\beta(^{\circ})$	90°	92.003(2)°	90.123(1)°
$\gamma(^{\circ})$	90°	90°	90°
Volume (Å ³)	7010.6(3)	2695,15(8)	7129.7(1)
Refl. collected	166289	217706	1237740
unique	14341	11930	19482
observed $[1>2\sigma(h)]$	12946	10966	17697
Data collection ranges	3.09° < θ < 78.52°	2.60° < θ < 35.08°	2.80° < θ < 38.36°
<u> </u>	-43 ≤ h ≤ 43	_14 ≤ h ≤ 14	$-56 \le h \le 56$
	$-19 \le k \le 17$	–51 ≤ k ≤ 51	$-16 \le k \le 16$
	–16 ≤ I ≤ 16	–15 ≤ ≤ 15	–38 ≤ ≤ 39
Completeness (to θ)	97.7% (67.7°)	100.0% (35.1°)	99.8% (38.4°)
Data / restr. / param.	14341 / 1 / 746	11930 / 0 / 298	19482 / 0 / 370
Rint	0.1110	0.0556	0.0702
$R_1[l > 2\sigma(l)]$	0.0680	0.0289	0.0186
wR_2 (all data)	0.1987	0.0745	0.0456
GoF on F ²	1.055	1.172	1.042
Largest peak/hole (Å ⁻³)	2.028 / -1.202	1.441 / -1.771	0.609 / -0.473
Abs. struct. par. (Friedel cov.)	0.482(2) (86.8%)	n/a	n/a
CCDC no.	2129858	2129861	2129871

a Due to crystal decomposition during the measurement a completeness of only 97% was obtained. The crystal was refined as a two-component inversion twin. Large unaccounted residual electron density is located at both rhodium atoms, possibly an effect of imperfect absorption correction using soft Cu radiation. However, no significant residual electron density was found in a position an expected hydrido ligand would occupy, but the presence of this additional hydrido ligand is proposed on the basis of analogy to the reported structure of [(Me₃P)₄RhH(Cl)][B(1,2-O₂C₆Br₄)₂].^{S1}

	2c(THF)½ ^a	2b-3b	4a(PhMe)
Chemical Formula	C ₂₁ H ₄₃ B ₂ ClO ₄ P ₃ Rh, (C ₄ H ₈ O) _{1/2}	$C_{19.5}H_{46.5}B_2CIO_4P_{2.5}Rh$	$[C_{24}H_{44}B_2O_4P_4Rh]$
	648.40	F00 47	[C ₃₂ H ₁₂ BF ₂₄](C ₇ H ₈)
Formula mass (g mol ⁻¹)	648.49	582.47	
Crystal shape	cuboid	DIOCK	rnombonedron
Crystal color	clear colourless	clear colourless	clear colourless
Crystal size (mm ³)	$0.243 \times 0.177 \times 0.067$	$0.391 \times 0.276 \times 0.174$	$0.252 \times 0.116 \times 0035$
Temp., Radiation	100 Κ, ΜοΚα	100 Κ, ΜοΚα	100 Κ, ΜοΚα
Abs. coefficient (corr.)	0.814 mm ⁻¹ (numerical)	0.857 mm ⁻¹ (multi-scan)	0.449 mm ⁻¹ (gaussian)
Crystal system	orthorhombic	triclinic	triclinic
Space group type (no.)	Pbcn (60)	P1 (2)	<i>P</i> 1 (2)
Z, Z'	8, 1	8, 4	2, 1
a (Å)	34.795(1)	17.6266(2)	13.0318(3)
b (Å)	13.2910(4)	19.1196(2)	13.3464(3)
c (Å)	13.5036(4)	19.3690(2)	20.4288(5)
$\alpha(^{\circ})$	90°	60.968(1)°	79.347(2)°
$\beta(^{\circ})$	90°	85.334(1)°	86.005(2)°
$\gamma(^{\circ})$	90°	85.987(1)°	83.375(2)°
Volume (Å ³)	6245.0(3)	5685.0(1)	3464.3(1)
Refl. collected	183646	559571	270981
unique	8329	59685	17205
observed $[I > 2\sigma(I)]$	6243	50366	15308
Data collection ranges	2.23° < θ < 29.36°	2.63° < θ < 38.29°	2.62° < θ < 28.28°
	–46 ≤ h ≤ 47	–30 ≤ h ≤ 29	–17 ≤ h ≤ 17
	–18 ≤ k ≤ 18	–33 ≤ k ≤ 32	–17 ≤ k ≤ 17
	–18 ≤ l ≤ 18	–33 ≤ I ≤ 33	–27 ≤ l ≤ 27
Completeness (to θ)	99.9% (29.4°)	99.8% (25.2°)	99.9% (28.3°)
Data / restr. / param.	8329 / 96 / 339	59685 / 0 / 1143	17205 / 0 / 905
Rint	0.1009	0.0477	0.0573
$B_1[I > 2\sigma(\Lambda)]$	0.0383	0.0254	0.0526
wR_2 (all data)	0.0913	0.0593	0 1392
$G_0 E_{00} E_1^2$	1 037	1 057	1 051
Largest peak/hole ($Å^{-3}$)	0.958 / -0.944	0.964 / -0.680	2 016 / _1 119
Abs struct par (Friedel cov) n/a	n/a	n/a
CCDC no.	2129860	2129866	2129863

Table S1 cont'd.	Crystallographic data collection	parameters for 2c (T	HF) ¹ / ₂ , 2b-3b and 4a(PhMe).
			<i>j,_, , , , , , , , , , </i>

a DSR was used to model a disordered THF molecule.^{S2} Additionally restraints (SADI, SIMU, RIGU, ISOR) were employed.

	4b	4c(THF)	3b
Chemical Formula	[C ₂₄ H ₆₀ B ₂ O ₄ P ₄ Rh] [C ₂₂ H ₄₂ BE ₂₄]	$[C_{24}H_{52}B_2O_4P_4Rh]$	$C_{18}H_{42}B_2CIO_4P_2Rh$
Formula mass (a mol ⁻¹)	1524 35	1588 39	544 43
Crystal shape	fragment of plate	octabedral	needle
Crystal color	clear colourless	clear colourless	clear colourless
Crystal size (mm^3)	$0.260 \times 0.163 \times 0.040$	$0.190 \times 0.113 \times 0.105$	$0.441 \times 0.023 \times 0.019$
Temp Radiation	100 K MoKa	100 K MoKa	100 K CuKa
Abs coefficient (corr.)	0.463 mm^{-1} (multi-scan)	0.446 mm^{-1} (daussian)	7.222 mm^{-1} (gaussian)
Crystal system	monoclinic	monoclinic	trigonal
Space group type (no.)	$P_{2_1/n}(14)$	P_{21}/n (14)	$R_{3c}(161)$
7 7'	4 1	4 1	18 1
_, _ a (Å)	21 7869(7)	14 8031(4)	34 921(2)
$b(\dot{A})$	13.4146(3)	26.6122(8)	34.921(2)
$c(\dot{A})$	24.8701(8)	17.8342(4)	11.6219(8)
$\alpha(^{\circ})$	90°	90°	90°
$\beta(\circ)$	113.690(4)°	95.991(2)°	90°
$\gamma(\circ)$	90°	90°	120°
Volume (Å ³)	6656 1(4)	6987 3(3)	12274 1(15)
Refl collected	260578	84638	23803
unique	20196	18834	4133
observed [l>2 of A]	16699	15872	3799
Data collection ranges	$2.54^{\circ} < \theta < 30.49^{\circ}$	$1.89^{\circ} < \theta < 31.28^{\circ}$	$2.53^{\circ} < \theta < 66.60^{\circ}$
	$-31 \le h \le 30$	$-19 \le h \le 19$	$-41 \le h \le 41$
	$-19 \le k \le 17$	$-36 \le k \le 36$	$-40 \le k \le 41$
	$-35 \le 1 \le 35$	-25≤1≤25	$-13 \le 1 \le 10$
Completeness (to θ)	99.5% (30.5°)	99.7% (27.0°)	100.0% (66.6°)
Data / restr. / param.	20196 / 0 / 877	18834 / 0 / 900	4133 / 1 / 267
Rint	0.0893	0.0385	0.1133
$R_1[I > 2\sigma(I)]$	0.0580	0.0383	0.0654
wR_2 (all data)	0.1323	0.0916	0.1767
GoF on F ²	1.129	1.014	1.053
Largest peak/hole (Å ⁻³)	1.103 / -1.599	1.090/-0.892	2.059/-0.757
Abs. struct. par. (Friedel co	ov.) n/a	n/a	-0.02(2)
CCDC no.	2129865	2129864	2129859

Table S1 cont'd. Crystallographic data collection parameters for 4b, 4c(THF) and 3b.

	[Rh(PPh ₃) ₂ (Bcat)(Bpin)(Cl)] •(dcm) _{3.5} (C ₅ H ₁₂) _{0.6} ^a	5c	6c(THF) _{0.53} (C ₅ H ₁₂) _{0.47}
Chemical Formula	[C ₄₈ H ₄₅ B ₂ ClO ₄ P ₂ Rh]	[C ₂₃ H ₄₆ B ₂ NO ₄ P ₃ Rh]	[C ₂₃ H ₄₆ B ₂ NO ₄ P ₃ Rh]
	(CH ₂ Cl ₂) _{3.5} .(C ₅ H ₁₂) _{0.6}	[C ₃₂ H ₁₂ BF ₂₄]	[C ₃₂ H ₁₂ BF ₂₄]
Formula mass (g mol ⁻¹)	1248.41	1481.27	1553.39
Crystal shape	block	cuboid	block
Crystal color	clear orange	clear colourless	clear colourless
Crystal size (mm ³)	0.697 × 0.455 × 0.411	0.214 × 0.109 × 0.088	0.210 × 0.167 × 0.090
Temp., Radiation	102 Κ, ΜοΚα	100 Κ, ΜοΚα	100 Κ, ΜοΚα
Abs. coefficient (corr.)	0.767 mm⁻¹ (multi-scan)	0.452 mm⁻¹ (multi-scan)	0.444 mm ⁻¹ (multi-scan)
Crystal system	monoclinic	monoclinic	monoclinic
Space group type (no.)	<i>P</i> 2 ₁ / <i>n</i> (14)	<i>P</i> 2 ₁ / <i>c</i> (14)	<i>P</i> 2 ₁ / <i>c</i> (14)
Z, Z'	4, 1	4, 1	4, 1
a (Å)	11.2915(2)	18.0677(3)	20.9665(3)
b (Å)	21.8994(4)	13.9610(2)	13.5826(1)
c (Å)	23.4243(5)	25.9822(4)	26.9822(4)
$\alpha(^{\circ})$	90°	90°	90°
$\beta(^{\circ})$	95.632(2)°	99.739(2)°	112.321(2)°
$\gamma(^{\circ})$	90°	90°	90°
Volume (Å ³)	5764.3(2)	6459.4(2)	6948.0(1)
Refl. collected	356179	281801	656079
unique	20671	24676	27493
observed [$1>2\sigma(\Lambda)$]	17785	19168	22605
Data collection ranges	2.29° < θ < 32.98°	2.56° < θ < 34.23°	1.60° < θ < 34.23°
<u> </u>	$-16 \le h \le 16$	$-26 \le h \le 28$	$-33 \le h \le 28$
	$-32 \le k \le 33$	$-20 \le k \le 21$	$-20 \le k \le 21$
	-35 ≤ ≤ 35	$-40 \le \le 39$	$-41 \le 1 \le 40$
Completeness (to θ)	99.9% (30.0°)	99.9% (25.2°)	99.9% (25.2°)
Data / restr. / param.	20671 / 327 / 751	24676 (0 / 834	0371 / 64 / 993
Rint	0.0443	0.0334	0.0556
$R_1[l > 2\sigma(l)]$	0.0375	0.0428	0.0371
wR_2 (all data)	0.0839	0.1128	0.0948
$GoF on F^2$	1.083	1.035	1.035
Largest peak/hole (Å-3)	0.876 / -0.683	1.729/ -1.093	0.950 / -0.387
Abs. struct. par. (Friedel cov.)	n/a	n/a	n/a
CCDC no.	2129862	2129867	2129870

Table S1 cont'd.Crystallographic data collection parameters for
 $[Rh(PPh_3)_2(Bcat)(Bpin)(Cl)] \cdot (dcm)_{3.5}(C_5H_{12})_{0.5}$, 5c and 6c(THF)_{0.53}(C_5H_{12})_{0.47}.

a The crystal was handled below –40 °C throughout the mounting process using an X-temp 2 apparatus. The crystal was mounted on top of a glass fibre in perfluoroether oil and placed in a cold nitrogen gas stream on the diffractometer at – 171 °C.^{S3}

Three (disordered) CH₂Cl₂ moieties were refined applying split atom models, applying geometrical restraints on C–Cl distances (DFIX); certain atom pairs were refined with a common ADP (EADP).

An initial refinement of residual electron density suggested the presence of disordered CH_2Cl_2/C_5H_{12} in an approximate 1:1.2 ratio. No appropriate model could be established for these disordered CH_2Cl_2/n -pentane molecules; the data were processed using the BYPASS algorithm as implemented in OLEX2.^{S4,5}

2.b. [(Me₃P)₄RhH(Cl)][B(1,2-O₂C₆H₄)₂](THF)

Figure S2b.1 Asymmetric unit of [(Me₃P)₄RhH(Cl)][B(1,2-O₂C₆H₄)₂](THF). Selected distances (Å) and angles (°): Rh1–Cl1 2.487(2), Rh1–P1 2.342(2), Rh1–P2 2.328(2), Rh1–P3 2.334(2), Rh1–P4 2.328(2), P1–Rh1–P3 165.26(9), P2–Rh1–P4 158.01(9); Rh2–Cl2 2.490(2), Rh2–P5 2.312(3), Rh2–P6 2.346(3), Rh2–P7 2.342(3), Rh2–P8 2.314(3), P5–Rh2–P7 165.8(1), P6–Rh2–P8 158.8(1).

The solid-state structure of the cation $[(Me_3P)_4RhH(CI)]^+$ in $[(Me_3P)_4RhH(CI)][B(1,2-O_2C_6H_4)_2]$ resemble that of the ion in $[(Me_3P)_4RhH(CI)][B(1,2-O_2C_6Br_4)_2]$ $(Rh1-Cl1 2.51(1) Å, Rh1-P1 2.357(2) Å, Rh1-P2 2.345(2) Å, Rh1-P3 2.343(2) Å, Rh1-P4 2.322(2) Å, P1-Rh1-P3 166.27(9)^\circ$, P2-Rh1-P4 159.16(9)°).^{S1} The geometrical similarity suggests that the both structures contain the same cation $[(Me_3P)_4RhH(CI)]^+$ despite that the hydrido ligand was not identified in the X-ray structure determination of $[(Me_3P)_4RhH(CI)][B(1,2-O_2C_6H_4)_2](THF)$.

2.c. [(Me₃P)₂Rh(Bpin)₂(Cl)] (3b) and 2b-3b

The oxidative addition of **1b** to $[Rh(PMe_3)_3Cl]$ did not only furnished **2b** but also the five coordinate rhodium(III) complex $[Rh(PMe_3)_2(Bpin)_2Cl]$ (**3b**). Two different solid state structures of **3b** were obtained, one in the trigonal space group type *R*3*c* comprising one molecule in the asymmetric unit (*Z* = 18, *Z'* = 1) of only mediocre quality and one of better quality co-crystallised with **2b** as **2b-3b** (Figure S2c.1).

Figure S2c.1 Left: Molecular structures of **3b** from **3b** in *R*3*c*. Selected distances (Å) and angles (°): Rh1– Cl1 2.448(3), Rh1–P1 2.302(3), Rh1–P2 2.320(3), Rh1–B1 2.01(1), Rh1–B2 1.99(2), B1···B2 2.45(2), P1–Rh1–P2 176.1(1), B1–Rh1–Cl1 152.7(4), B2–Rh1–Cl1 131.4(4), B1–Rh1–B2 75.9(5), *r*B1 38(2), *r*B1 72(2).

Right: Asymmetric unit of the solid state structure of **2b-3b**. Selected geometrical data of **3b** [Å / °]: molecule A: Rh1–Cl1 2.4425(2), Rh1–P1 2.3075(2), Rh1–P2 2.3070(2), Rh1–B1 1.9767(9), Rh1–B2 2.0108(9), B1····B2 2.457(2), P1–Rh1–P2 176.025(9), B1–Rh1–Cl1 129.33(3), B2–Rh1–Cl1 154.58(3), B1–Rh1–B2 76.07(4), τ_{B1} 72.12(9), τ_{B2} 30.3(2); molecule B: Rh2–Cl2 2.4341(2), Rh2–P3 2.3030(2), Rh2–P4 2.3076(2), Rh2–B3 1.9884(9), Rh2–B4 1.9961(9), B3····B4 2.468(2), P3–Rh2–P4 176.344(9), B3–Rh2–Cl2 132.71(3), B4–Rh2–Cl2 150.74(3), B3–Rh2–B4 76.55(4), τ_{B2} 74.1(1), τ_{B4} 34.0(2).

The latter one, **2b-3b**, will exclusively be discussed, however, the geometrical data of **3b** do not differ significantly between both structures, as well as for the two independent molecules of **3b** within **2b-3b**. Whilst **3b** exhibits a different coordination geometry at the rhodium atom as **2b** and **4b**, a comparison with these complexes has to be done with due caution. The molecular geometry of **3b** may be deduced from the geometry of **2b** by removal of one PMe₃ ligand and subsequent reorganisation in the equatorial plane. Both the Rh–Cl and Rh–P distances decrease from **2b** to **3b**, the Rh–Cl distance by about 0.1 Å, as no directly *trans* standing ligand is now present and the *trans*-P P–Rh distances, just significantly, by about 0.01-0.02 Å. More informative are the changes within the equatorial plane. The

approximately linear angle B2–Rh1–Cl1 in **2b** is reduced by approx. 25° to 150–155°, whilst the B1– Rh1–Cl1 angle of 106.02(2)° in **2b**(PhMe) increases by the same amount to 129–133° in **3b**. The B– Rh–B angle does, consequently, not change significantly. The B····B distance however is in **3b** even smaller (by 0.1 Å) than in **2b**, as the B–Rh distances in **3b** is also reduced by about 0.1 Å. The fact that the B····B distance decreases upon reducing the coordination number under reorganisation of, essentially, only the equatorial plane implies that steric reasons are not essential for the small B····B distances in the six coordinated complexes **2b** and **4b**.

A comparison of the geometry of **3b** with other five coordinate rhodium(II) *bis*-boryl complexes, [Rh(PEt₃)₂(Cl)(Bcat)₂], [Rh(PPh₃)₂(Cl)(Bcat)₂], reported by Marder and co-workers and the complex [Rh(PPh₃)₂(Cl)(Bcat)(Bpin)] (only crystallographically characterised, see sections 1.a and 2.d) showed that the geometries are over all comparable. The acute B–Rh–B angle below 80° and a short B····B distance in the 2.5 Å range are found as common charcteristics.^{S6}

In other words, for all *bis*-Bpin complexes short B···B distances (<2.6 Å) are observed, independently of the anionic (**2b**) or neutral auxiliary ligands (**4b**) or the coordination number (**3b**). Whereas for the *bis*-Bcat and BcatBpin complexes significantly longer B···B distances (>2.75 Å) are found in six coordinate complexes, whereas five-coordinate complexes show similarly short B···B distances.

2.d. [Rh(PPh₃)₂(Bcat)(Bpin)(Cl)](CH₂Cl₂)_{3.5}(C₅H₁₂)_{0.6}

Figure S2d.1 Molecular structure of [Rh(PPh₃)₂(Bcat)(Bpin)(Cl)]. Selected distances (Å) and angles (°): Rh1–Cl1 2.4464(4), Rh1–P1 2.3190(4), Rh1–P2 2.3248(4), Rh1–B1 1.997(2), Rh1–B2 1.996(2), B1-···B2 2.491(3), P1–Rh1–P2 167.30(2), B1–Rh1–Cl1 163.21(6), B2–Rh1–Cl1 119.59(5), B1–Rh1–B2 77.19(8), π_{B1} 0.7(2), π_{B1} 82.7(1).

2.e. [Rh(PMe₃)₃(Bcat)(Bpin)(L)][BArF] (L = MeCN (5c), MeNC (6c))

To elucidate the influence of different ligands *trans* to a boryl ligand we synthesised the complexes **5c** and **6c** (*vide supra*). The complexes crystallise in a monoclinic space group $P_{21/c}$ as **5c** and as the solvate **6c**(THF)_{0.53}(C₅H₁₂)_{0.47} with one formula unit in the asymmetric unit.

Figure S2e.1 Molecular structures of the cations in **5c** and **6c** from X-ray diffraction studies on **5c** and **6c**(THF)_{0.53}(C₅H₁₂)_{0.47}. Selected geometrical data [Å / °]:

5c: Rh1–N1 2.209(2), Rh1–P1 2.3351(4), Rh1–P2 2.4115(4), Rh1–P3 2.3396(4), Rh1–B1 2.054(2), Rh1–B2 2.027(2), B1···B2 2.734(3), P1–Rh1–P2 166.57(2), B1–Rh1–P2 179.22(6), B2–Rh1–N1 175.49(7), B1–Rh1–B2 84.14(8), *π*_{B1} 0.68(8), *π*_{B2} 80.1(1).

6c: Rh1–C22 2.063(1), Rh1–P1 2.3369(4), Rh1–P2 2.3969(3), Rh1–P3 2.3367(3), Rh1–B1 2.056(1), Rh1–B2 2.080(1), B1···B2 2.755(2), P1–Rh1–P2 166.85(1), B1–Rh1–P2 177.74(5), B2–Rh1–C22 173.49(5), B1–Rh1–B2 83.51(6), *τ*_{B1} 5.99(6), *τ*_{B2} 82.22(6).

The structure of both complexes may be deduced from the structure of the chlorido complex **2c** by replacing the chlorido ligand with the neutral ligands acetonitrile or methylisonitrile, respectively (Figure 6).⁸ Structurally both complexes fit in the series **2c**, **5c**, **6c**, **4c**. While the general structure does not change significantly, the Rh1–B2 distances show the effect of the different *trans* ligand strengths being by about 0.05 Å shorter for the weak MeCN (**5c**) than for the stronger MeNC (**6c**) ligand. This increase is comparable to the change of 0.07 Å observed going from a chlorido ligand in **2c** to a phosphine ligand in **4c**.

3. References

- S1 N. C. Norman, A. G. Orpen, M. J. Quayle and E. G. Robins, Acta Cryst., 2000, C56, 50–52.
- S2 D. Kratzert, J.J. Holstein and I. Krossing, J. Appl. Cryst., 2015, 48, 933–938.
- S3 D. Stalke, *Chem. Soc. Rev.*, 1998, **27**, 171–178.
- S4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and, H. Puschmann, *J. Appl Crystallogr.*, 2009, **42**, 339–34.
- S5 A. L. Spek, Acta Cryst., 1990, A46, 194-201.
- W. Clegg, F. J. Lawlor, T. B. Marder, P. Nguyen, N. C. Norman, A. G. Orpen, M. J. Quayle, C. R. Rice, E. G. Robins, A. J. Scott, F. E. S. Souza, G. Stringer and G. R. Whittell, *J. Chem. Soc., Dalton Trans.* 1998, 301–310.