Supporting Information

Sawhorse-type ruthenium complexes with triazolopyrimidine ligands - what do they represent in terms of cytotoxic and CORM compounds?

Marzena Fandzloch,*^a Tomasz Jędrzejewski, ^b Joanna Wiśniewska, ^c Jerzy Sitkowski, ^{d,e} Liliana Dobrzańska, ^c Anna A. Brożyna ^f and Sylwia Wrotek ^b

- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
- ^b Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
- ^c Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
- ^d National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- ^f Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland

*Corresponding author e-mail:

m.fandzloch@intibs.pl

Table of Contents

Fig. S1	4
Fig. S2	4
Fig. S3	5
Fig. S4	6
Fig. S5	6
Fig. S6	7
Fig. S7	7
Fig. S8	8
Fig. S9	8
Fig. S10	9
Fig. S11	9
Fig. S12	10
Fig. S13	10
Fig. S14	11
Fig. S15	11
Fig. S16	12
Fig. S17	13
Fig. S18	13
Fig. S19	14
Fig. S20	14
Fig. S21	15
Fig. S22	15
Fig. S23	16
Fig. S24	16
Fig. S25	17
Fig. S26	17
Fig. S27	18
Fig. S28	18
Fig. S29	19
Fig. S30	19
Fig. S31	20

Fig. S32	20
Fig. S33	21
Fig. S34	21
Fig. S35	22
Fig. S36	22
Fig. S37	23
Fig. S38	23

Fig. S1 FT-IR spectrum of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(tp)₂] (1).

Fig. S2 FT-IR spectrum of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2).

Fig. S3 FT-IR spectrum of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dptp)₂] (3).

Fig. S5 1 H- 13 C HMBC spectrum of [Ru₂(CO)₄(μ -OOCCH₃)₂(tp)₂] (1) in CDCl₃.

Fig. S6 Selected range of ¹H-¹³C HMBC spectrum of [Ru₂(CO)₄(µ-OOCCH₃)₂(tp)₂] (1) in CDCl₃.

Fig. S7 1 H- 13 C HMBC spectrum of [Ru₂(CO)₄(μ -OOCCH₃)₂(tp)₂] (1) in CDCl₃.

Fig. S8 ¹H NMR spectrum of [Ru₂(CO)₄(µ-OOCCH₃)₂(dbtp)₂] (2) in CDCl₃.

Fig. S9 ¹³C NMR spectrum of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) in CDCl₃.

Fig. S10 1 H- 13 C HSQC spectrum of [Ru₂(CO)₄(μ -OOCCH₃)₂(dbtp)₂] (2) in CDCl₃.

Fig. S11 1 H⁻¹³C HMBC spectrum of [Ru₂(CO)₄(μ -OOCCH₃)₂(dbtp)₂] (2) in CDCl₃.

Fig. S12 1 H $^{-13}$ C HMQC spectrum of [Ru₂(CO)₄(μ -OOCCH₃)₂(dbtp)₂] (2) in CDCl₃.

Fig. S13 ¹H⁻¹³C HMQC spectrum of [Ru₂(CO)₄(µ-OOCCH₃)₂(dbtp)₂] (2) in CDCl₃.

Fig. S14 ¹H NMR spectrum of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dptp)₂] (3) in CDCl₃.

Fig. S15 1 H⁻¹³C HSQC spectrum of [Ru₂(CO)₄(μ -OOCCH₃)₂(dptp)₂] (3) in CDCl₃.

Fig. S16 ¹H⁻¹³C HMBC spectrum of [Ru₂(CO)₄(µ-OOCCH₃)₂(dptp)₂] (3) in CDCl₃.

Fig. S17 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(tp)₂] (1) not irradiated with UV light. Experimental conditions: chloroform, $[Ru^I] = 50 \mu mol L^{-1}$, t = 0 min and after t = 120 min in dark.

Fig. S18 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(tp)₂] (1) irradiated with UV light. Experimental conditions: LED lamp, $\lambda_{irr} = 254$ nm, chloroform, $[Ru^I] = 50 \mu mol L^{-1}$, $\Delta t = 5 \min$, $t = 0 - 5 \min$ irradiation, $t = 5 - 65 \min$ without irradiation.

Fig. S19 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) irradiated with UV light. Experimental conditions: LED lamp, $\lambda_{irr} = 254$ nm, chloroform, $[Ru^I] = 50 \mu mol L^{-1}$, $\Delta t = 5 min$, $t_{total} = 65 min$.

Fig. S20 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) irradiated with UV light. Experimental conditions: LED lamp, $\lambda_{irr} = 254$ nm, DMF, $[Ru^I] = 50 \mu mol L^{-1}$, $\Delta t = 5 \min$, $t_{total} = 65 \min$.

Fig. S21 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) irradiated with near UV light. Experimental conditions: LED lamp, $\lambda_{irr} = 365$ nm, chloroform, $[Ru^I] = 50 \mu mol L^{-1}$, $\Delta t = 30$ min, $t_{total} = 150$ min.

Fig. S22 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) irradiated with near UV light. Experimental conditions: LED lamp, λ_{irr} = 365 nm, DMF, $[Ru^I]$ = 50 μ mol L⁻¹, Δt = 30 min, t_{total} = 150 min.

Fig. S23 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dptp)₂] (**3**) irradiated with UV light. Experimental conditions: LED lamp, $\lambda_{irr} = 254$ nm, chloroform, $[Ru^I] = 25 \mu mol L^{-1}$, $\Delta t = 5 min$, $t_{total} = 65 min$.

Fig. S24 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dptp)₂] (**3**) irradiated with UV light. Experimental conditions: LED lamp, $\lambda_{irr} = 254$ nm, DMF, $[Ru^I] = 25 \mu mol L^{-1}$, $\Delta t = 5 \min$, $t_{total} = 65 \min$.

Fig. S25 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dptp)₂] (**3**) irradiated with near UV light. Experimental conditions: LED lamp, $\lambda_{irr} = 365$ nm, chloroform, $[Ru^I] = 25 \mu mol L^{-1}$, $\Delta t = 30$ min, $t_{total} = 150$ min.

Fig. S26 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dptp)₂] (**3**) irradiated with near UV light. Experimental conditions: LED lamp, λ_{irr} = 365 nm, DMF, $[Ru^I] = 25 \mu mol L^{-1}$, $\Delta t = 30 \min$, $t_{total} = 150 \min$.

Fig. S27 FT-IR (v(CO) region) of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) in chloroform and the changes that occur during photolysis. Experimental conditions: LED lamp, $\lambda_{irr} = 365$ nm, $[Ru^I] = 0.038$ mol L⁻¹.

Fig. S28 The UV–Vis spectra of freshly reduced myoglobin in DMF/phosphate buffer solution pH 7.4 (1:9), after adding the $[Ru_2(CO)_4(\mu$ -OOCCH₃)_2(tp)_2] (1) irradiated with UV light. Experimental conditions: LED lamp, λ_{irr} = 365 nm, [Mb] = 20 µmol L⁻¹, $[Ru^I]$ = 50 µmol L⁻¹, Δt = 2.5 min, t_{total} = 30 min.

Fig. S29 The UV–Vis spectra of freshly reduced myoglobin in DMF/phosphate buffer solution pH 7.4 (1:9), after adding the $[Ru_2(CO)_4(\mu$ -OOCCH₃)_2(dptp)_2] (**3**) irradiated with UV light. Experimental conditions: LED lamp, $\lambda_{irr} = 365$ nm, $[Mb] = 20 \ \mu mol \ L^{-1}$, $[Ru^I] = 50 \ \mu mol \ L^{-1}$, $\Delta t = 2.5 \ min$, $t_{total} = 30 \ min$.

Fig. S30 The UV-Vis spectra of $[Ru_2(CO)_4(\mu\text{-OOCCH}_3)_2(tp)_2]$ (1) without UV light irradiation. Experimental conditions: $\lambda_{obs} = 280$ nm, DMF : buffer, $[Ru^I] = 50 \mu \text{mol } L^{-1}$, $\Delta t = 2.5 \text{ min}$, $t_{total} = 60 \text{ min}$, 25 cycles. Inset: the kinetic trace at 278 nm.

Fig. S31 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) without UV light irradiation. Experimental conditions: $\lambda_{obs} = 298$ nm, DMF : buffer, $[Ru^I] = 30 \mu mol L^{-1}$, $\Delta t = 2.5 min$, $t_{total} = 60 min$, 25 cycles. Inset: the kinetic trace at 278 nm.

Fig. S32 The UV-Vis spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dptp)₂] (3) without UV light irradiation. Experimental conditions: $\lambda_{obs} = 320$ nm, DMF : buffer, $[Ru^I] = 20 \mu mol L^{-1}$, $\Delta t = 2.5$ min, $t_{total} = 60$ min, 25 cycles. Inset: the kinetic trace at 320 nm.

Fig. S33 Selected range of ¹H NMR spectra of $[Ru_2(CO)_4(\mu-OOCCH_3)_2(dbtp)_2]$ (2) in dmf-d₇ before and after 10 min, 30 min, and 70 min UV irradiation at 365 nm.

Fig. S34 Selected range of ¹H NMR spectra of $[Ru_2(CO)_4(\mu-OOCCH_3)_2(dbtp)_2]$ (2) in dmf-d₇ before and after 15 min, 30 min, 45 min, 60 min, and 90 min UV irradiation at 254 nm.

Fig. S35 Selected range of ¹H NMR spectra of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) in dmf-d₇ before and after 15 min, 30 min, 45 min, 60 min, and 90 min UV irradiation at 254 nm.

Fig. S36 Part of the NOESY spectrum of $[Ru_2(CO)_4(\mu$ -OOCCH₃)_2(dbtp)_2] (2) in dmf-d₇ after 90 min UV irradiation at 254 nm.

Fig. S37 Part of the NOESY spectrum of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) in dmf-d₇ after 90 min UV irradiation at 254 nm.

Fig. S38 Part of the DOSY spectrum of $[Ru_2(CO)_4(\mu$ -OOCCH₃)₂(dbtp)₂] (2) in dmf-d₇ after 90 min UV irradiation at 254 nm.