Supporting information

A₂P₂S₆ (A=Ba, Pb): A Good Platform to Study Polymorph Effect and Lone Pairs Effect to Form Acentric Structure

Bingheng Ji^a, Arka Sarkar^b, Kui Wu^c, Andrew Swindle^d, Jian Wang^{a,*},

^a Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260,

United States

^b Department of Chemistry, Iowa State University, Ames, Iowa, 50011, United States

° College of Chemistry and Environmental Science, Hebei University, Key Laboratory of

Analytical Science and Technology of Hebei Province, Baoding 071002, China

^d Department of Geology, Wichita State University, Wichita, Kansas 67260, United States

1. Table S1. Refined crystallographic parameters of α -Ba₂P₂S₆, β -Ba₂P₂S₆, and Pb₂P₂S₆.

2. Table S2. Atomic coordinate parameters for α -Ba₂P₂S₆, β -Ba₂P₂S₆, and Pb₂P₂S₆.

3. Table S3. Selected interatomic distances for α -Ba₂P₂S₆, β -Ba₂P₂S₆, and Pb₂P₂S₆.

4. Table S4. Results of EDX analysis of selected crystals of α -Ba₂P₂S₆, β -Ba₂P₂S₆, and Pb₂P₂S₆.

5. Figure S1. Powder X-ray diffraction results of theoretical, as-synthesized, after DSC measurement, acid treated, and 1223 K quenched $Pb_2P_2S_6$.

6. Figure S2. Powder X-ray diffraction results of theoretical, as-synthesized, after DSC measurement, and 1223 K quenched α -Ba₂P₂S₆.

7. Figure S3. Powder X-ray diffraction results of theoretical, as-synthesized, and 1223 K quenched β -Ba₂P₂S₆.

8. Figure S4. Kubelka-Munk Diffuse reflectance solid-state UV–Vis spectra of α -Ba₂P₂S_{6.}

9. Figure S5. Kubelka-Munk Diffuse reflectance solid-state UV–Vis spectra of β -Ba₂P₂S_{6.}

10. Figure S6. Kubelka-Munk Diffuse reflectance solid-state UV–Vis spectra of $Pb_2P_2S_6$.

11. Figure S7. Tauc plots for allowed direct and indirect transitions of α -Ba₂P₂S_{6.}

12. Figure S8. Tauc plots for allowed direct and indirect transitions of β -Ba₂P₂S_{6.}

13. Figure S9. Tauc plots for allowed direct and indirect transitions of $Pb_2P_2S_6$.

Compound	α -Ba ₂ P ₂ S ₆	β -Ba ₂ P ₂ S ₆	$Pb_2P_2S_6$			
Formula weight (g mol-1)	528.98	264.49	668.68			
Crystal color	Pink/light orange	white	yellow orange			
Temperature	298(2) K					
Radiation, wavelength	Mo-Kα, 0.71073 Å					
Crystal system		Monoclinic				
Space group	<i>Pn</i> (no.7)	$P2_{l}/n$ (no. 14)	<i>Pn</i> (no.7)			
a(Å)	6.7411(2)	6.7459(6)	6.5961(6)			
b(Å)	7.5818(2)	7.5871(6)	7.4542(7)			
c(Å)	9.9870(3)	9.9983(9)	9.3854(10)			
β (°)	91.2005(12)	91.204(3)	91.515(6)			
V (Å ³)	510.32(3)	511.62(8)	461.31(8)			
Z	2	4	2			
D _c (g cm-1)	3.443	3.434	4.814			
μ (mm-1)	9.136	9.113	38.071			
F(000)	476	476	580			
R1, wR2 ($I > 2\sigma(I)$)	0.0162, 0.0405	0.0276, 0.0881	0.0402, 0.0588			
R1, wR2 (all data)	0.0212, 0.0906	0.0384, 0.0939	0.0772, 0.0764			

1. Table S1. Refined crystallographic parameters of α -Ba₂P₂S₆, β -Ba₂P₂S₆, and Pb₂P₂S₆.

 $R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; \ wR_{2} = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \right]^{1/2}, \text{ and } w = 1 / [\sigma^{2}F_{o}^{2} + (A \cdot P)^{2} + B \cdot P], P = (F_{o}^{2} + 2F_{c}^{2}) / 3; A \text{ and } B \text{ are weight coefficients.}$

Atoms	Wyckoff	x	у	Z	Occupancy	$U_{ m eq}$ (Å ²)
			α -Ba ₂ P ₂ S ₆			
Ba1	2a	0.26582(18	0.3419(4)	0.97379(10)	1	0.0137(6)
Ba2	2a	0.68861(19	-0.1578(4)	0.97524(13)	1	0.0144(8)
P1	2a	0.184(3)	0.863(2)	0.7846(16)	1	0.009(3)
P2	2a	-0.225(2)	0.366(2)	1.1624(16)	1	0.012(3)
S 1	2a	-0.211(2)	0.2753(19)	0.9756(17)	1	0.014(3)
S2	2a	0.164(2)	0.777(2)	0.9776(17)	1	0.018(3)
S 3	2a	0.053(2)	0.457(2)	0.6824(13)	1	0.015(3)
S4	2a	0.032(2)	0.452(2)	1.2462(14)	1	0.013(3)
S5	2a	0.403(2)	0.044(2)	0.7580(14)	1	0.016(3)

2. Table S2. Atomic coordinate parameters for α -Ba₂P₂S₆, β -Ba₂P₂S₆, and Pb₂P₂S₆.

S 6	2a	0.424(2)	0.0481(19) B-Ba₂P₂S ₆	1.2039(15)	1	0.014(3)
Ba1	<i>4e</i>	0.03858(5)	0.59197(5)	0.74938(3)	1	0.01486(15
P1	4 <i>e</i>	-0.0453(2)	0.11437(18	0.56081(15)	1	0.0112(3)
S 1	4e	0.1966(2)	0.2980(2)	0.97893(14)	1	0.0144(3)
S2	4e	0.1748(2)	0.29313(19	0.53803(15)	1	0.0150(3)
S4	4e	-0.0620(2)	1.0265(2)	0.75068(14)	1	0.0169(3)
			$Pb_2P_2S_6$			
Pb1	2a	0.09293(10)	0.1326(4)	0.54137(9)	1	0.0221(7)
Pb2	2a	0.67133(10	-0.3670(4)	0.54250(9)	1	0.0228(7)
P1	2a	0.1932(17)	-0.3610(17)	0.7258(12)	1	0.009(2)
P2	2a	0.0703(16)	-0.1416(18)	0.8575(14)	1	0.013(2)
S 1	2a	-0.1875(17)	-0.0556(19)	0.7555(15)	1	0.017(3)
S2	2a	-0.469(2)	0.2435(18)	0.5533(15)	1	0.016(3)
S3	2a	0.232(2)	-0.2546(18)	0.5299(14)	1	0.016(3)
S4	2a	0.9513(16)	-0.5551(17)	0.3261(12)	1	0.011(2)
S5	2a	-0.0255(18)	0.4463(17)	0.7370(14)	1	0.015(2)
S6	2a	0.2851(17)	0.0521(17)	0.8488(15)	1	0.014(2)

3. Table S3. Selected interatomic distances for α -Ba₂P₂S₆, β -Ba₂P₂S₆, and Pb₂P₂S₆.

		Distances			Distances			
Atom Pairs		(Å)	Atom Pairs		(Å)			
α -Ba ₂ P ₂ S ₆								
Ba1	S 1	3.254(17)	Ba2	S 1	3.353(15)			
	S 1	3.562(14)		S2	3.568(17)			
	S2	3.373(16)		S2	3.244(17)			
	S 3	3.200(16)		S3	3.218(16)			
	S 3	3.334(15)		S4	3.360(14)			
	S4	3.283(14)		S5	3.253(17)			
	S4	3.313(15)		S5	3.261(16)			
	S5	3.267(16)		S6	3.277(15)			
	S6	3.359(15)		S6	3.316(15)			
P1	S2	2.04(2)	P2	S 1	1.99(2)			
	S5	2.04(2)		S3	2.02(2)			
	S6	2.03(2)		S4	2.02(3)			
P1	P2	2.216(5)						
β -Ba ₂ P ₂ S ₆								
Ba1	S 1	3.2825(15)	P1	S 1	2.021(2)			

	S 1	3.3190(15)		S2	2.028(2)
	S 1	3.3581(16)		S4	2.017(2)
	S2	3.2268(15)	P1	P1	2.213(3)
	S2	3.2453(16)			
	S2	3.3040(15)			
	S4	3.2530(16)			
	S4	3.3662(18)			
	S4	3.5658(16)			
		Pb ₂	P_2S_6		
Pb1	S 1	3.102(14)	Pb2	S 1	3.192(12)
	S 1	3.142(13)		S2	3.050(13)
	S2	3.004(13)		S3	3.014(13)
	S3	3.032(14)		S4	3.114(12)
	S4	3.214(13)		S4	3.120(12)
	S5	3.086(14)		S5	3.013(12)
	S 6	3.015(12)		S5	3.165(12)
	S 6	3.184(13)		S6	3.068(13)
P1	S3	2.025(18)	P2	S 1	2.033(16)
	S4	2.023(15)		S2	2.011(19)
	S5	2.040(18)		S6	2.026(17)
P1	P2	2.216(6)			

4. Table S4. Results of EDX analysis of selected crystals of α -Ba₂P₂S₆, β -Ba₂P₂S₆, and Pb₂P₂S₆.

5. Figure S1. Powder X-ray diffraction results of theoretical, as-synthesized (stored in air for around 240 days), after DSC measurement, acid treated, and 1223 K quenched Pb₂P₂S₆.

6. Figure S2. Powder X-ray diffraction results of theoretical, as-synthesized, after DSC measurement, and 1223 K quenched α-Ba₂P₂S₆.

7. Figure S3. Powder X-ray diffraction results of theoretical, as-synthesized, and 1223 K quenched β -Ba₂P₂S₆.

8. Figure S4. Kubelka-Munk Diffuse reflectance solid-state UV–Vis spectra of α -Ba₂P₂S_{6.}

9. Figure S5. Kubelka-Munk Diffuse reflectance solid-state UV–Vis spectra of β -Ba₂P₂S_{6.}

10. Figure S6. Kubelka-Munk Diffuse reflectance solid-state UV–Vis spectra of $Pb_2P_2S_{6.}$

11. Figure S7. Tauc plots for allowed direct and indirect transitions of α -Ba₂P₂S₆.

12. Figure S8. Tauc plots for allowed direct and indirect transitions of β -Ba₂P₂S₆.

13. Figure S9. Tauc plots for allowed direct and indirect transitions of $Pb_2P_2S_6$.