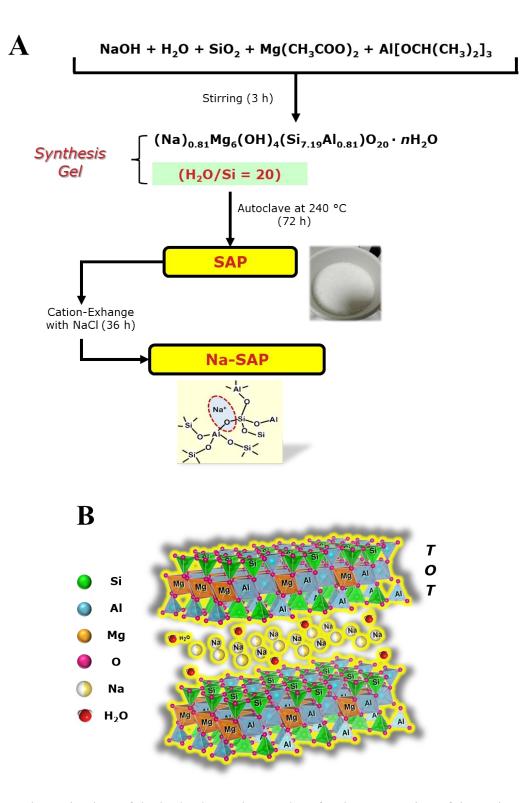
ELECTRONIC SUPPLEMENTARY

INFORMATION

Application of NMR relaxometry for the real-time monitoring of the removal of metal ions from water by synthetic clays

Stefano Marchesi, †^a Simone Nascimbene, †^a Matteo Guidotti, ^b Chiara Bisio*^{a,b} and Fabio Carniato*^a


^a Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121-Alessandria (Italy)

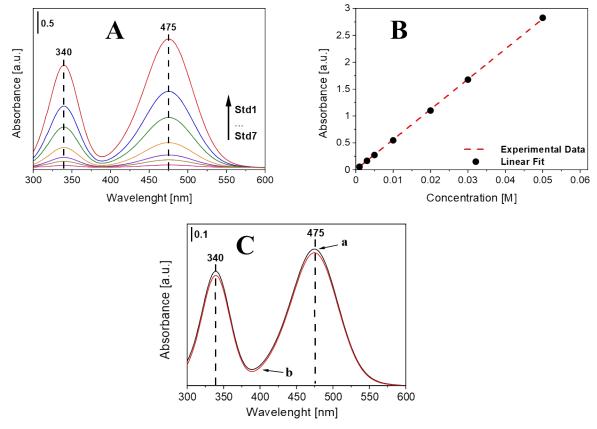
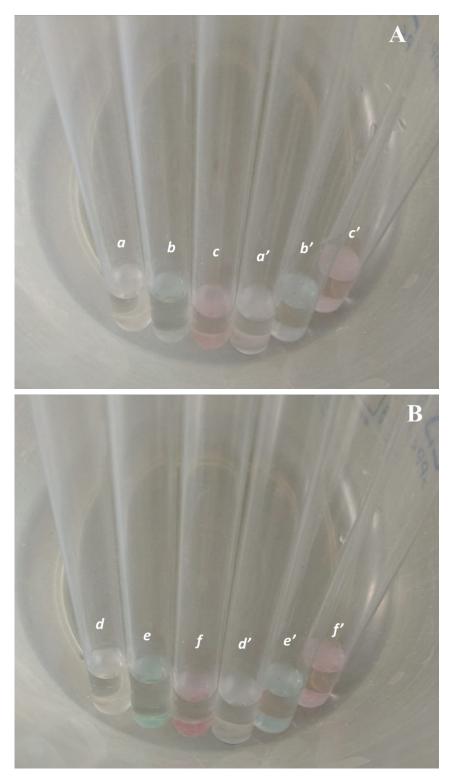
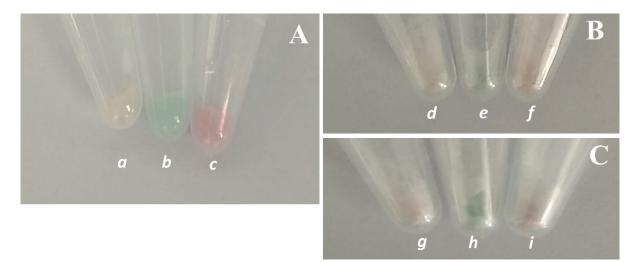
^b CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "G. Natta", Via C. Golgi 19, 20133-Milano (Italy)

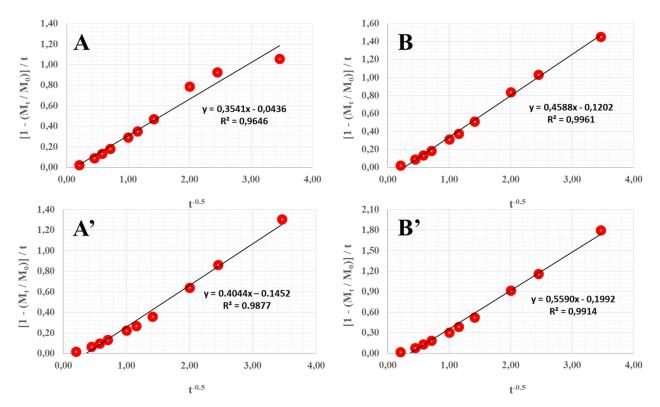
*E-mail: chiara.bisio@uniupo.it; fabio.carniato@uniupo.it

*Fax: +39 0131360250; Tel: +39 0131360217, +39 0131360216

1) FIGURES

Scheme S1. Schematic view of the hydrothermal procedure for the preparation of the Na⁺-exchanged synthetic saponite clay (Na-SAP) (A) and the related structure (B).


Fig. S1. A) UV-Vis spectra of $[Co(NH_3)_6]^{3+}$ standard aqueous solutions at room temperature, in the concentration range of 0.05-0.005 M, used for the calibration curve. B) Calibration curve obtained by UV-Vis spectra of the standards solutions ($\lambda_{abs} = 475$ nm). C) UV-Vis spectra of the supernatants of Na-SAP (a) and acid-treated Na-SAP (b) samples, obtained after treatment of the solids in 0.02 M $[Co(NH_3)_6]^{3+}$ aqueous solution at room temperature for 60 h.

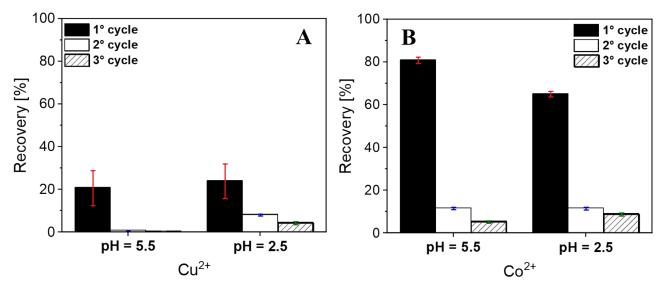

Fig. S2. (A) 10mM paramagnetic aqueous solutions after few seconds of contact with Na-SAP in the NMR tubes: $Gd^{3+}(a)$, $Cu^{2+}(b)$ and $Co^{2+}(c)$ at pH = 5.5, $Gd^{3+}(a')$, $Cu^{2+}(b')$ and $Co^{2+}(c')$ at pH = 3.0. (B) The same solutions after 24 h of contact with the solid: $Gd^{3+}(d)$, $Cu^{2+}(e)$ and $Co^{2+}(f)$ at pH = 5.5, $Gd^{3+}(d')$, $Cu^{2+}(e')$ and $Co^{2+}(f')$ at pH = 3.0.

Fig. S3. (A) Na-SAP solids after 24 h of contact with 10 mM solutions of Gd^{3+} (a), Cu^{2+} (b) and Co^{2+} (c) at pH = 5.5. (B) Saponite samples after regeneration tests in saturated NaCl solutions at pH = 5.5, for Gd^{3+} (d), Cu^{2+} (e) and Co^{2+} (f). (C) Solids after regeneration at pH 2.5 for Gd^{3+} (g), Cu^{2+} (h) and Co^{2+} (i).

Fig. S4. Fitting of the data obtained by ¹H-NMR relaxometric analysis with a parabolic diffusion kinetic model¹ for the sorption on Na-SAP of Cu^{2+} at pH = 5.5 (A) and 3.0 (A'), and of Co^{2+} at pH = 5.5 (B) and 3.0 (B').

Fig. S5. Cu^{2+} (A) and Co^{2+} (B) release (%) from paramagnetic Na-SAP. The regeneration test was repeated for 3 cycles in saturated NaCl solutions at pH = 5.5 and 2.5.

2) TABLES

рН	Metal Ion	NMR Relaxometry			ICP-OES		
		Uptake [%]	Uptake [mM]	Uptake [mg/g]	Uptake [%]	Uptake [mM]	Uptake [mg/g]
5.5	Gd ^{³⁺}	43.55 ± 2.05	4.19 ± 0.20	32.28 ± 1.52	42.33 ± 2.02	4.11 ± 0.20	31.63 ± 1.50
	Cu ²⁺	51.38 ± 2.49	4.64 ± 0.23	14.57 ± 0.71	55.91 ± 3.01	4.91 ± 0.28	15.42 ± 0.87
	Co ²⁺	51.93 ± 1.61	5.33 ± 0.17	15.41 ± 0.48	58.39 ± 2.98	5.91 ± 0.27	17.07 ± 0.83
3.0	Gd ^{³+}	35.18 ± 2.03	3.44 ± 0.20	26.48 ± 1.53	40.04 ± 3.51	3.90 ± 0.34	30.06 ± 2.60
	Cu ²⁺	41.37 ± 3.62	3.88 ± 0.34	12.01 ± 1.05	41.06 ± 3.73	3.82 ± 0.35	11.84 ± 1.09
	Co ²⁺	41.61 ± 1.80	4.27 ± 0.19	12.34 ± 0.53	44.13 ± 4.82	4.52 ± 0.46	13.07 ± 1.40

Tab. S1. Uptake values after 24 h of Gd³⁺, Cu²⁺ and Co²⁺ ions obtained from NMR relaxometric and ICP-OES elemental analyses, expressed as % (respect to the starting concentration of each metal solution), mM and mg/g.

Metal lon	Ionic Radius (Å)	
Gd ^{³⁺}	1.05	
Cu ²⁺	0.73	
Co ²⁺	0.65	

Tab. S2. Ionic radii values of Gd^{3+} , Cu^{2+} and Co^{2+} ions.²

	Metal Ion	Total Recovery [%]
Regeneration tests in	Gd³+	50.6 ± 8.5
saturated NaCl	Cu ²⁺	22.1 ± 9.8
solution at pH = 5.5	Co ²⁺	97.9 ± 1.4
Regeneration tests	Gd³+	60.2 ± 7.7
in saturated NaCl	Cu ²⁺	36.7 ± 9.0
solution at pH = 2.5	Co ²⁺	85.6 ± 0.9

Tab. S3. Recovery (%) values for Gd^{3+} , Cu^{2+} and Co^{2+} at pH 5.5 and 2.5, calculated by ¹H NMR relaxometry analyses carried out at 10 MHz and 298 K. The regeneration tests were performed in saturated NaCl solutions at pH = 5.5 and 2.5.

3) REFERENCES

- 1. H. Zhang, D. Pan, X. Duan, J. Phys. Chem. C, 2009, 113, 12140-12148.
- 2. A) R. D. Shannon, *Acta Cryst.*, 1976, A32, 751-767; B) Shriver and P. Atkins, *Inorganic Chemistry* (5th Ed.), Oxford University Press, New York, 2010.