Supporting Information

Two POM-based compounds containing Zn-capped Keggin anions as decent heterogeneous catalysts for sulfur oxidation and cycloaddition of CO₂ reactions

Yin-Hua Zhu ‡, Jian-Bo Yang ‡, Xiao-Mei Liu, Ji-Lei Wang, Qing-Dong Ping,

Ze-Yu Du, Jia-Nian Li, Ting-Ting Zang, Hua Mei*, Yan Xu *

College of Chemical Engineering, State Key Laboratory of Materials-

Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009,

P. R. China

Corresponding authors: Yan Xu and Hua Mei

E-mails: yanxu@njtech.edu.cn and meihua@njtech.edu.cn

Content

Section 1. Experiment
Synthesis3
Crystal Structure4
Section 2. Characterizations8
PXRD8
IR9
TGA10
XPS11
Section 3. Sulfur Oxidation12
Catalytic Procedures12
Chemical Stability13
Recyclability Test14
Hot Filtration Test of catalyst 120
Section 4. Cycloaddition of CO_2 to Epoxides21
Catalytic Procedures21
Recyclability Test of catalyst 222
Section 5. Tables

Section 1. Experiment

Synthesis

Synthesis of bbbm (bbbm=1,1-(1,4-butanediyl) bis-1H-benzimidazole)¹.

A mixture of 8 mL NaOH (25%) aqueous solution, benzimidazole (1.18 g, 10 mmol) and CH₃CN (30 ml) was added into a round-bottomed flask and stirred with magnetic force for 4 h under N₂. Then, one portion of dibromo alkane (4 mmol) was dripped slowly into the reaction system and refluxed for 24 h at room temperature. After completion of the reaction, adding water to the reaction solution to make the product precipitate. Finally, white solid was obtained after washing the above precipitate with CH₃CN.

Scheme S1. Synthetic Strategy of the bbbm ligand.

Crystal Structure

Fig. S1 The crystal images of compounds 1 (a) and 2 (b) under optical microscope.

Fig. S2 2D (a) and 3D (b) supramolecular architecture of 1.

Fig. S3 2D (a) and 3D (b) supramolecular architecture of 2.

Fig. S4 (a), (b) Ball-and-stick of the two different ligands connected to Zn in **2**. (c) Polyhedral view of coordination environment of Zn1 and Zn2. Hydrogen atoms and guest molecules have been omitted for clarity.

Section 2. Characterizations

PXRD.

Fig. S5 The simulated (red) and experimental (black) power X-ray diffraction patterns of compounds **1** (a) and **2** (b).

Fig. S6 FT-IR spectra of compounds 1 (a) and 2 (b).

Fig. S7 The TG curve of compound 1, 2.

Fig. S8 X-ray photoelectron spectrum of Mo in 1 and 2.

Section 3. Sulfur Oxidation

Catalytic Procedures

The substrate (1 mmol), tert-Butyl hydroperoxide (TBHP) as oxidant, catalyst (0.01 mmol) and dichloromethane (5 mL) were added into 50 mL three-necked flask equipped with a magnetic stirring rotor and reflux condenser. The mixture was then reacted for 30 min in a water bath at 55 °C under stirring with dodecane as internal standard. After each cycle, the catalyst was collected by centrifugation, and washed by dichloromethane as solvent for five times and then placed in a vacuum drying oven at 80 °C to dry. After the treatment, the next reaction was carried out. In addition, we provided the GC spectrum of five cycles, from which we could calculate that the conversion rate of methyl phenyl sulfide remained at a very high level (99%) after five cycles of reaction. The value of conversion was calculated by gas chromatography analysis.

$$\text{Conversion} = \frac{n^2}{n^1} \times 100\%$$

Note: n1 = amount of substrate added, n2 = amount of product formed.

Chemical Stability

Fig. S9 X-ray diffraction patterns of compounds 1, 2 in different solution.

Fig. S10 The PXRD patterns (a) and (b), FT-IR spectra (c) and (d) before reaction and after 5 th cycle with catalyst **1**, **2** for sulfur oxidation.

Fig. S11 GC of sulfur oxidation reaction with catalyst **2**, TBHP as oxidant, dodecane as the internal standard and dibenzothiophene for increasing reaction time: (a) 1 h, (b) 2 h, (c) 3 h, (d) 4 h.

Fig. S12 GC of sulfur oxidation reaction for the catalytic product of the dipropyl sulfide for 30 min, **2** as catalyst, TBHP as oxidant and dodecane as the internal standard.

Fig. S13 GC of sulfur oxidation reaction for the catalytic product of the dibutyl sulfide for 30 min, **2** as catalyst, TBHP as oxidant and dodecane as the internal standard.

Fig. S14 GC of sulfur oxidation reaction for the catalytic product of the 2-chloroethyl phenyl sulfide for 1h, **2** as catalyst, TBHP as oxidant and dodecane as the internal standard.

Fig. S15 GC of the sulfur oxidation reaction for the catalytic product of the diphenyl sulfide for 30 min, **2** as catalyst, TBHP as oxidant and dodecane as the internal standard.

Fig. S16 GC of the sulfur oxidation reaction for the catalytic product of the 4,6dimethyldibenzothiophene for 4 h, **2** as catalyst, TBHP as oxidant and dodecane as the internal standard.

Fig. S17 GC of the sulfur oxidation reaction for the catalytic product of the benzothiophene for 7 h, **2** as catalyst, TBHP as oxidant and dodecane as the internal standard.

Fig. S18 PXRD pattern of oxidation products of DBT dissolved in CDCl_3 at room temperature.

Fig. S19 $^{\rm 13}{\rm C}$ NMR spectra of oxidation products of DBT dissolved in CDCl3 at room temperature.

Hot Filtration Test of catalyst 1

Fig. S20 (a) Catalytic dynamic (black) and hot filtration (red) studies for the oxidation of diphenyl sulfide by **1** at 60 °C. (b) Recycling experiments based on compound **1** for the oxidation of methyl phenyl sulfide.

Section 4. Cycloaddition of CO₂ to Epoxides

Catalytic Procedures

Before catalytic measurements, freshly-prepared samples were soaked in CH_2Cl_2 for solvent exchanging, with CH_2Cl_2 refreshed every 4 h to remove guest molecules in the framework. The catalytic reactions were carried out in 25 mL stainless-steel highpressure reactor. The activated catalyst 0.03 mmol, together with the epoxide (40 mmol) and cocatalyst of tetra-*n*-tertbutyl ammonium bromide (*n*-Bu₄NBr, 322.4 mg, 1 mmol) were transferred to the reactor immediately. The reactor was pressurized with CO_2 up to 0.5 MPa and stirred at 60 °C for 7 h. When the reaction was completed, the reactor was quickly cooled in ice water. For the catalyst recycling test, the catalyst was isolated by filtration and washed several times with EtOH and CH_2Cl_2 to fully remove the substrates, then dried under vacuum and reused in another catalytic experiment. The yield of product was determined by GC, ¹H NMR spectroscopy.

Recyclability Test of catalyst 2

Fig. S21 The PXRD patterns, after the 1 st and the 5th cycle with catalyst 2 for cycloaddition of CO₂ reactions.

Section 5. Tables

		Catalyst 1, TBH			°_≈=0	
Entry	Oxidant	Oxidant mmol	T °C	t min	Solvent	Conv. ^b %
1	ТВНР	5	55	30	CH_2CI_2	92
2	ТВНР	5	60	30	CH_2CI_2	99
3	ТВНР	5	60	20	CH_2CI_2	97
4	ТВНР	4	60	30	CH_2CI_2	99
5	ТВНР	4	60	30	methanol	65
6	TBHP	4	60	30	ethanol	81

Table S1. Sul oxidation reactions of various sulfides with 1 at different conditions ^{*a*}.

^{*a*}Reaction conditions: substrate, 1 mmol; catalyst **1**, 0.01 mmol; solvent, 5 mL, ^{*b*}conversions were determined by GC-FID using dodecane as internal standard.

Entry	Substrate	t h	Conv. ^b %
1	~~^s~~~	0.5	99
2	s s s s s s s s s s s s s s s s s s s	0.5	99
3	ſ, s∽	0.5	99
4	S CI	0.5 1	76.3 99
5	C ^s C	1 3	77 99
6	(J ^s)	1 7	12 73
7	L'IS L	1 7	8 41
8	ſŢ,s	1 12	3 35

Table S2. Sul oxidation reactions of various sulfides with 1 at different conditions ^a.

^{*a*}Reaction conditions: catalyst **1**, 0.01 mmol; substrate, 1 mmol; oxidant, 4 mmol; CH_2Cl_2 , 5 mL, and temperature (60 °C). ^{*b*}Conversions were determined by GC-FID using dodecane as an internal standard.

Catalyst	Substrate	Temperature (°C)/ Time (h)	Conv. ^{<i>b</i>} (%)	Ref.
1		60/12	35	This work
2	₩ S S S S S S S S S S S S S S S S S S S	55/7	85	This work
[Zn _{1.5} (LOH)₃] ·(PMo ₁₂ O ₄₀) · CH₃OH·2H₂O		50/12	33	2

Table S3. Catalytic comparison of 1 and 2 with related POM-based catalysts.

[Co ₂ L' _{0.5} V ₄ O ₁₂] ·3DMF·5H ₂ O		50/12	75	3
[Ag ₃ L ₂] [PMo ₁₂ O ₄₀] ·CH ₃ CN·4H ₂ O		50/12	13.5	4
[Ag₄(PMo ₁₂ O ₄₀) (L)₂] ∙OH		40/12	4	5
1		60/7	73	This work
2		55/4	99	This work
[Zn _{1.5} (LOH) ₃] (PMo ₁₂) O ₄₀) CH ₃ OH·2H ₂ O (2)		50/12	80	2
[Co ₂ L' _{0.5} V ₄ O ₁₂] ·3DMF·5H ₂ O	() S	50/12	93	3
$[Ag_3L_2] [PMo_{12}O_{40}] \cdot CH_3CN \cdot 4H_2O$		50/12	78.5	4
(en)[Cu ₃ (ptz)4(H ₂ O) ₄][Co ₂ Mo ₁₀ H ₄ O ₃₈] ·24H ₂ O		50/12	80	6
[Ag ₄ (PMo ₁₂ O ₄₀) (L) ₂] ·OH		40/12	87	5
1		60/1	77	This work
2		55/0.5	99	This work
[Zn _{1.5} (LOH) ₃] (PMo ₁₂) O ₄₀) CH ₃ OH·2H ₂ O (2)	S C	50/6	99	2
(en)[Cu ₃ (ptz)4(H ₂ O) ₄] [Co ₂ Mo ₁₀ H ₄ O ₃₈] \cdot 24H ₂ O		40/8	60.5	6
[Ag ₃ L ₂] [PMo ₁₂ O ₄₀] ·CH ₃ CN·4H ₂ O		50/4	73.9	4

Catalyst	Substrate	P (MPa)/T (°C)/ t (h)	Conv. (%)	Ref.
2		0.5/60/7	99	This work
CPM-200-In/Mg		1.2/80/6	90.3	7
Zn-C ₃ N ₄ (25)		2/130/5	88	8
[DBUH][PFPhO]/β-CD		3/130/10	98.8	9
[Cd ₃ (HECTV)(bdc) ₃] ·DMF·6H ₂ O		0.1/80/2	68	10
2		0.5/60/7	99	This work
CPM-200-In/Mg	0	1.2/80/6	87.3	7
Zn-C ₃ N ₄ (25)		2/130/5	99	8
[DBUH][PFPhO]/β-CD		3/130/10	98.7	9
2		0.5/60/12	81	This work
CPM-200-In/Mg		1.2/80/6	71.9	7
Zn-C ₃ N ₄ (25)		2/130/5	45	8
[DBUH][PFPhO]/β-CD		3/130/10	95.6	9
[Zn ₃ (HECTV)(OHbdc) ₃] ·3DMF·4H ₂ O		0.1/80/4	65	10

Compound	1	2
Formula	$C_{55} H_{58} Mo_{12} N_{12} O_{40.50} P Zn_2$	C ₅₉ H ₉₉ Mo ₁₂ N ₈ O ₄₀ P Zn ₄
Formula Weight	2848.10	3004.19
Т(К)	296.15	296.15
Crystal System	monoclinic	tetragonal
Space group	<i>C</i> 2/c	/41cd
a(Å)	23.936(2)	32.635(2)
b(Å)	18.220(2)	32.635(2)
c(Å)	19.260(2)	34.282(3)
α (°)	90	90
β (°)	106.755(2)	90
γ (°)	90	90
V (Å ³)	8043.0(16)	36512(6)
Z	4	16
$D_c (mg m^{-3})$	2.352	2.186
μ (mm⁻¹)	2.504	2.719
F (000)	5500	23488
θ range (°)	1.428 -25.005	1.2-25.0
Crystal size (mm ³)	0.12×0.12×0.13	0.12×0.12×0.12
Limiting indices	-28≤h≤ 26 -21≤k≤ 21 -22≤l≤ 22	-38≤h≤ 38 -35≤k≤38 -40≤l≤40
Reflections collected	28661	128461
R(int)	0.0462	0.0514
Data/restraints/parameters	7073/12/564	16094/153/1124
GOF	1.011	1.064
$R_1^{a} w R_2^{b} [I > 2\sigma(I)]$	R1 ^a = 0.0301 WR ₂ = 0.0612	R1 ^a = 0.0428 WR ₂ = 0.0791
R_1 , w R_2 (all data)	R ₁ =0.0253 WR ₂ =0.0595	R ₁ = 0.0339 WR ₂ =0.0751

Table S5. Crystallographic data and structural refinements for 1-2.

^a R1 = $\Sigma ||F_o| - |F_c||/\Sigma |F_o|$. ^b wR₂ = $\Sigma [w (F_o^2 - F_c^2)^2]/\Sigma [w (F_o^2)^2]^{1/2}$.

Table S6. Selected bond lengths (Å) for compound 1.

Mo(1)-O(3)	1.687(2)	Mo(4)-O(14)	1.677(2)
Mo(1)-O(1)	1.857(2)	Mo(4)-O(13)	1.930(2)
Mo(1)-O(5)	1.874(2)	Mo(4)-O(10)	1.935(2)
Mo(1)-O(2)	1.979(2)	Mo(4)-O(15)	1.935(2)
Mo(1)-O(4)	1.990(2)	Mo(4)-O(19)#1	1.961(2)
Mo(1)-O(6)	2.450(2)	Mo(4)-O(11)	2.470(2)
Mo(2)-O(9)	1.687(2)	Mo(5)-O(16)	1.680(2)
Mo(2)-O(8)	1.869(2)	Mo(5)-O(12)	1.873(2)
Mo(2)-O(10)	1.877(2)	Mo(5)-O(13)	1.877(2)
Mo(2)-O(4)	1.934(2)	Mo(5)-O(17)	1.989(2)
Mo(2)-O(20)#1	2.016(2)	Mo(5)-O(2)#1	2.002(2)
Mo(2)-O(11)	2.434(2)	Mo(5)-O(6)#1	2.441(2)
Mo(3)-O(7)	1.675(2)	Mo(6)-O(18)	1.690(2)
Mo(3)-O(8)	1.914(2)	Mo(6)-O(15)	1.853(2)
Mo(3)-O(5)	1.920(2)	Mo(6)-O(19)	1.868(2)
Mo(3)-O(12)	1.935(2)	Mo(6)-O(17)	1.966(2)
Mo(3)-O(1)#1	1.971(2)	Mo(6)-O(20)	2.016(2)
Mo(3)-O(6)#1	2.458(2)	Mo(6)-O(11)#1	2.455(2)
Zn(1)-N(2)	2.046(3)	P(1)-O(6)#1	1.536(2)
Zn(1)-N(1)	2.073(3)	P(1)-O(6)	1.536(2)
Zn(1)-O(17)	2.089(2)	P(1)-O(11)#1	1.536(2)
Zn(1)-O(2)#1	2.206(2)	P(1)-O(11)	1.536(2)
Zn(1)-O(4)#1	2.218(2)	Zn(1)-O(20)	2.318(2)

Table S7. Selected bond angles (°) for compound 1.

	2 · · · ·		
O(3)-Mo(1)-O(1)	102.76(11)	O(7)-Mo(3)-O(8)	102.01(11)
O(3)-Mo(1)-O(5)	101.83(11)	O(7)-Mo(3)-O(5)	102.36(11)
O(1)-Mo(1)-O(5)	93.75(10)	O(8)-Mo(3)-O(5)	85.52(9)
O(3)-Mo(1)-O(2)	100.87(10)	O(7)-Mo(3)-O(12)	103.18(11)
O(1)-Mo(1)-O(2)	91.38(10)	O(8)-Mo(3)-O(12)	91.15(9)
O(5)-Mo(1)-O(2)	154.98(9)	O(5)-Mo(3)-O(12)	154.38(9)
O(3)-Mo(1)-O(4)	101.52(10)	O(7)-Mo(3)-O(1)#1	101.82(11)
O(1)-Mo(1)-O(4)	155.33(9)	O(8)-Mo(3)-O(1)#1	156.16(9)
O(5)-Mo(1)-O(4)	85.52(9)	O(5)-Mo(3)-O(1)#1	88.94(9)
O(2)-Mo(1)-O(4)	79.76(9)	O(12)-Mo(3)-O(1)#1	83.91(9)
O(3)-Mo(1)-O(6)	173.52(10)	O(7)-Mo(3)-O(6)#1	173.01(9)
O(1)-Mo(1)-O(6)	74.65(8)	O(8)-Mo(3)-O(6)#1	83.59(8)
O(5)-Mo(1)-O(6)	84.35(8)	O(5)-Mo(3)-O(6)#1	82.10(8)
O(2)-Mo(1)-O(6)	73.45(8)	O(12)-Mo(3)-O(6)#1	72.29(8)
O(4)-Mo(1)-O(6)	80.75(8)	O(1)#1-Mo(3)-O(6)#1	72.68(8)
O(9)-Mo(2)-O(8)	103.35(10)	O(14)-Mo(4)-O(13)	103.16(11)
O(9)-Mo(2)-O(10)	100.94(10)	O(14)-Mo(4)-O(10)	102.60(11)
O(8)-Mo(2)-O(10)	92.43(10)	O(13)-Mo(4)-O(10)	90.93(9)
O(9)-Mo(2)-O(4)	103.08(10)	O(14)-Mo(4)-O(15)	102.87(11)
O(8)-Mo(2)-O(4)	87.63(9)	O(13)-Mo(4)-O(15)	84.49(9)
O(10)-Mo(2)-O(4)	155.30(9)	O(10)-Mo(4)-O(15)	154.50(9)
O(9)-Mo(2)-O(20)#1	97.66(10)	O(14)-Mo(4)-O(19)#1	101.67(11)
O(8)-Mo(2)-O(20)#1	158.39(9)	O(13)-Mo(4)-O(19)#1	155.13(9)
O(10)-Mo(2)-O(20)#1	88.47(9)	O(10)-Mo(4)-O(19)#1	84.85(9)
O(4)-Mo(2)-O(20)#1	82.71(9)	O(15)-Mo(4)-O(19)#1	88.84(9)

$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
O(12)-Mo(5)-O(17)155.15(9) $O(15)-Mo(6)-O(11)#1$ 85.60(9) $O(13)-Mo(5)-O(17)$ 86.16(9) $O(19)-Mo(6)-O(11)#1$ 73.68(8) $O(16)-Mo(5)-O(2)#1$ 99.27(11) $O(17)-Mo(6)-O(11)#1$ 81.09(8) $O(12)-Mo(5)-O(2)#1$ 90.16(10) $O(20)-Mo(6)-O(11)#1$ 73.04(8) $O(13)-Mo(5)-O(2)#1$ 90.16(10) $O(20)-Mo(6)-O(11)#1$ 73.04(8) $O(13)-Mo(5)-O(2)#1$ 156.01(9) $N(2)-Zn(1)-N(1)$ 92.67(12) $O(17)-Mo(5)-O(2)#1$ 80.54(9) $N(2)-Zn(1)-O(17)$ 166.80(11) $O(16)-Mo(5)-O(6)#1$ 171.07(10) $N(1)-Zn(1)-O(17)$ 92.73(10) $O(12)-Mo(5)-O(6)#1$ 73.65(8) $N(2)-Zn(1)-O(2)#1$ 116.74(11) $O(13)-Mo(5)-O(6)#1$ 85.12(8) $N(1)-Zn(1)-O(2)#1$ 101.94(11) $O(17)-Mo(5)-O(6)#1$ 81.59(8) $O(17)-Zn(1)-O(2)#1$ 73.78(8) $O(2)#1-Mo(5)-O(6)#1$ 73.30(8) $N(2)-Zn(1)-O(4)#1$ 85.36(10) $P(1)-O(6)-Mo(5)#1$ 126.23(12) $N(1)-Zn(1)-O(4)#1$ 169.74(10) $P(1)-O(6)-Mo(1)$ 125.52(12) $O(17)-Zn(1)-O(4)#1$ 91.36(8) $P(1)-O(6)-Mo(3)#1$ 127.07(11) $O(2)#1-Zn(1)-O(4)#1$ 70.23(8) $P(1)-O(11)-Mo(2)$ 125.19(12) $N(2)-Zn(1)-O(2)$ 95.75(11)
O(13)-Mo(5)-O(17)86.16(9) $O(19)-Mo(6)-O(11)#1$ 73.68(8) $O(16)-Mo(5)-O(2)#1$ 99.27(11) $O(17)-Mo(6)-O(11)#1$ 81.09(8) $O(12)-Mo(5)-O(2)#1$ 90.16(10) $O(20)-Mo(6)-O(11)#1$ 73.04(8) $O(13)-Mo(5)-O(2)#1$ 156.01(9) $N(2)-Zn(1)-N(1)$ 92.67(12) $O(17)-Mo(5)-O(2)#1$ 80.54(9) $N(2)-Zn(1)-O(17)$ 166.80(11) $O(16)-Mo(5)-O(6)#1$ 171.07(10) $N(1)-Zn(1)-O(17)$ 92.73(10) $O(12)-Mo(5)-O(6)#1$ 73.65(8) $N(2)-Zn(1)-O(2)#1$ 116.74(11) $O(13)-Mo(5)-O(6)#1$ 85.12(8) $N(1)-Zn(1)-O(2)#1$ 101.94(11) $O(17)-Mo(5)-O(6)#1$ 85.12(8) $N(1)-Zn(1)-O(2)#1$ 73.78(8) $O(2)#1-Mo(5)-O(6)#1$ 73.30(8) $N(2)-Zn(1)-O(4)#1$ 85.36(10) $P(1)-O(6)-Mo(5)#1$ 126.23(12) $N(1)-Zn(1)-O(4)#1$ 169.74(10) $P(1)-O(6)-Mo(3)#1$ 127.07(11) $O(2)#1-Zn(1)-O(4)#1$ 91.36(8) $P(1)-O(6)-Mo(3)#1$ 127.07(11) $O(2)#1-Zn(1)-O(4)#1$ 70.23(8) $P(1)-O(11)-Mo(2)$ 125.19(12) $N(2)-Zn(1)-O(20)$ 95.75(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
O(13)-Mo(5)-O(2)#1 $156.01(9)$ $N(2)-Zn(1)-N(1)$ $92.67(12)$ $O(17)-Mo(5)-O(2)#1$ $80.54(9)$ $N(2)-Zn(1)-O(17)$ $166.80(11)$ $O(16)-Mo(5)-O(6)#1$ $171.07(10)$ $N(1)-Zn(1)-O(17)$ $92.73(10)$ $O(12)-Mo(5)-O(6)#1$ $73.65(8)$ $N(2)-Zn(1)-O(2)#1$ $116.74(11)$ $O(13)-Mo(5)-O(6)#1$ $85.12(8)$ $N(1)-Zn(1)-O(2)#1$ $101.94(11)$ $O(17)-Mo(5)-O(6)#1$ $81.59(8)$ $O(17)-Zn(1)-O(2)#1$ $73.78(8)$ $O(2)#1-Mo(5)-O(6)#1$ $73.30(8)$ $N(2)-Zn(1)-O(4)#1$ $85.36(10)$ $P(1)-O(6)-Mo(5)#1$ $126.23(12)$ $N(1)-Zn(1)-O(4)#1$ $169.74(10)$ $P(1)-O(6)-Mo(1)$ $125.52(12)$ $O(17)-Zn(1)-O(4)#1$ $91.36(8)$ $P(1)-O(6)-Mo(3)#1$ $127.07(11)$ $O(2)#1-Zn(1)-O(4)#1$ $70.23(8)$ $P(1)-O(11)-Mo(2)$ $125.19(12)$ $N(2)-Zn(1)-O(20)$ $95.75(11)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
O(16)-Mo(5)-O(6)#1 $171.07(10)$ $N(1)-Zn(1)-O(17)$ $92.73(10)$ $O(12)-Mo(5)-O(6)#1$ $73.65(8)$ $N(2)-Zn(1)-O(2)#1$ $116.74(11)$ $O(13)-Mo(5)-O(6)#1$ $85.12(8)$ $N(1)-Zn(1)-O(2)#1$ $101.94(11)$ $O(17)-Mo(5)-O(6)#1$ $81.59(8)$ $O(17)-Zn(1)-O(2)#1$ $73.78(8)$ $O(2)#1-Mo(5)-O(6)#1$ $73.30(8)$ $N(2)-Zn(1)-O(4)#1$ $85.36(10)$ $P(1)-O(6)-Mo(5)#1$ $126.23(12)$ $N(1)-Zn(1)-O(4)#1$ $169.74(10)$ $P(1)-O(6)-Mo(1)$ $125.52(12)$ $O(17)-Zn(1)-O(4)#1$ $91.36(8)$ $P(1)-O(6)-Mo(3)#1$ $127.07(11)$ $O(2)#1-Zn(1)-O(4)#1$ $70.23(8)$ $P(1)-O(11)-Mo(2)$ $125.19(12)$ $N(2)-Zn(1)-O(20)$ $95.75(11)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
O(17)-Mo(5)-O(6)#181.59(8)O(17)-Zn(1)-O(2)#173.78(8)O(2)#1-Mo(5)-O(6)#173.30(8)N(2)-Zn(1)-O(4)#185.36(10)P(1)-O(6)-Mo(5)#1126.23(12)N(1)-Zn(1)-O(4)#1169.74(10)P(1)-O(6)-Mo(1)125.52(12)O(17)-Zn(1)-O(4)#191.36(8)P(1)-O(6)-Mo(3)#1127.07(11)O(2)#1-Zn(1)-O(4)#170.23(8)P(1)-O(11)-Mo(2)125.19(12)N(2)-Zn(1)-O(20)95.75(11)
O(2)#1-Mo(5)-O(6)#173.30(8)N(2)-Zn(1)-O(4)#185.36(10)P(1)-O(6)-Mo(5)#1126.23(12)N(1)-Zn(1)-O(4)#1169.74(10)P(1)-O(6)-Mo(1)125.52(12)O(17)-Zn(1)-O(4)#191.36(8)P(1)-O(6)-Mo(3)#1127.07(11)O(2)#1-Zn(1)-O(4)#170.23(8)P(1)-O(11)-Mo(2)125.19(12)N(2)-Zn(1)-O(20)95.75(11)P(1) O(11)-Mo(2)125.25(20)N(2)-Zn(1)-O(20)95.75(11)
P(1)-O(6)-Mo(5)#1126.23(12)N(1)-Zn(1)-O(4)#1169.74(10)P(1)-O(6)-Mo(1)125.52(12)O(17)-Zn(1)-O(4)#191.36(8)P(1)-O(6)-Mo(3)#1127.07(11)O(2)#1-Zn(1)-O(4)#170.23(8)P(1)-O(11)-Mo(2)125.19(12)N(2)-Zn(1)-O(20)95.75(11)P(1)-O(11)-Mo(2)125.25(20)N(2)-Zn(1)-O(20)95.75(11)
P(1)-O(6)-Mo(1)125.52(12)O(17)-Zn(1)-O(4)#191.36(8)P(1)-O(6)-Mo(3)#1127.07(11)O(2)#1-Zn(1)-O(4)#170.23(8)P(1)-O(11)-Mo(2)125.19(12)N(2)-Zn(1)-O(20)95.75(11)P(1)-O(11)-Mo(2)125.25(22)N(2)-Zn(1)-O(20)95.75(11)
P(1)-O(6)-Mo(3)#1127.07(11)O(2)#1-Zn(1)-O(4)#170.23(8)P(1)-O(11)-Mo(2)125.19(12)N(2)-Zn(1)-O(20)95.75(11)P(1)-O(11)-Mo(2)125.25(20)N(2)-Zn(1)-O(20)95.75(11)
P(1)-O(11)-Mo(2) 125.19(12) N(2)-Zn(1)-O(20) 95.75(11)
P(A) = P(A) +
P(1)-U(11)-Mo(6)#1 125.35(12) N(1)-Zn(1)-U(20) 120.01(10)
Mo(2)-O(11)-Mo(6)#1 91.69(7) O(17)-Zn(1)-O(20) 71.14(8)
P(1)-O(11)-Mo(4) 126.96(11) O(2)#1-Zn(1)-O(20) 125.42(8)
O(13)-Mo(4)-O(11) 83.49(8) O(4)#1-Zn(1)-O(20) 70.23(8)
O(10)-Mo(4)-O(11) 71.84(8) O(6)#1-P(1)-O(6) 109.20(17)
O(15)-Mo(4)-O(11) 82.71(8) O(6)#1-P(1)-O(11)#1 110.78(11)
O(19)#1-Mo(4)-O(11) 71.90(8) O(6)-P(1)-O(11)#1 108.59(11)
O(18)-Mo(6)-O(15) 102.94(11) O(6)#1-P(1)-O(11) 108.59(11)
O(18)-Mo(6)-O(19) 102.12(11) O(6)-P(1)-O(11) 110.78(11)
O(15)-Mo(6)-O(19) 94.33(10) O(11)#1-P(1)-O(11) 108.91(17)

Table S8. Selected bond lengths (Å) for compound 2.

Mo(1)-O(7)	1.682(9)	Mo(4)-O(18)	1.668(10)
Mo(1)-O(9)	1.807(8)	Mo(4)-O(39)	1.951(9)
Mo(1)-O(8)	1.808(8)	Mo(4)-O(16)	1.955(9)
Mo(1)-O(35)	1.987(8)	Mo(4)-O(17)	2.014(10)
Mo(1)-O(6)	2.009(9)	Mo(4)-O(19)	2.077(9)
Mo(2)-O(3)	1.690(9)	Mo(5)-O(21)	1.678(9)
Mo(2)-O(15)	1.827(8)	Mo(5)-O(17)	1.829(9)
Mo(2)-O(2)	1.832(8)	Mo(5)-O(22)	1.833(9)
Mo(2)-O(35)	2.005(8)	Mo(5)-O(24)	2.011(9)
Mo(2)-O(6)	2.012(9)	Mo(5)-O(23)	2.022(9)
Mo(3)-O(14)	1.681(9)	Mo(6)-O(37)	1.684(10)
Mo(3)-O(13)	1.948(9)	Mo(6)-O(33)	1.824(9)
Mo(3)-O(39)	1.970(9)	Mo(6)-O(27)	1.828(9)
Mo(3)-O(16)	1.978(9)	Mo(6)-O(24)	1.973(9)
Mo(3)-O(15)	2.013(9)	Mo(6)-O(23)	1.992(9)

Mo(7)-O(4)	1.661(9)	Mo(10)-O(30)	1.666(9)
Mo(7)-O(5)	1.952(9)	Mo(10)-O(29)	1.943(8)
Mo(7)-O(12)	1.954(9)	Mo(10)-O(28)	1.955(9)
Mo(7)-O(33)	2.018(9)	Mo(10)-O(10)	1.969(8)
Mo(7)-O(11)	2.095(9)	Mo(10)-O(8)	2.040(9)
Mo(7)-O(32)	2.508(8)	Mo(10)-O(36)	2.491(8)
Mo(7)-Mo(8)	2.6262(15)	Mo(11)-O(20)	1.673(9)
Mo(8)-O(1)	1.653(9)	Mo(11)-O(25)	1.964(9)
Mo(8)-O(13)	1.957(8)	Mo(11)-O(40)	1.978(8)
Mo(8)-O(12)	1.975(9)	Mo(11)-O(22)	2.007(9)
Mo(8)-O(5)	1.983(8)	Mo(11)-O(19)	2.097(8)
Mo(8)-O(2)	2.016(8)	Mo(11)-O(38)	2.516(8)
Mo(8)-O(34)	2.517(8)	Mo(12)-O(29)	1.941(8)
Mo(9)-O(31)	1.659(10)	Mo(12)-O(25)	1.979(9)
Mo(9)-O(10)	1.948(9)	Mo(12)-O(40)	1.980(8)
Mo(9)-O(28)	1.956(9)	Mo(12)-O(9)	2.031(9)
Mo(9)-O(27)	2.004(9)	P(1)-O(36)	1.539(9)
Mo(9)-O(11)	2.100(9)	P(1)-O(34)	1.547(8)
Zn(1)-N(1)	1.936(11)	P(1)-O(38)	1.554(9)
Zn(1)-O(35)	1.967(8)	P(1)-O(32)	1.562(9)
Zn(1)-O(40)	1.968(8)	Zn(3)-N(5)	1.980(10)
Zn(1)-O(39)	1.981(9)	Zn(3)-O(28)	1.986(10)
Zn(2)-O(12)	1.957(9)	Zn(4)-O(6)	1.946(9)
Zn(2)-O(16)	1.973(9)	Zn(4)-N(2)#1	1.962(10)
Zn(2)-N(3)	1.987(10)	Zn(4)-O(5)	1.969(9)
Zn(2)-O(24)	1.995(8)	Zn(4)-O(10)	2.007(9)
Zn(3)-O(25)	1.942(9)	Zn(3)-O(23)	1.965(8)
Mo(12)-O(26)	1.683(9)		

 Table S9.
 Selected bond angles (°) for compound 2.

	0 ()		
O(7)-Mo(1)-O(9)	103.6(5)	O(3)-Mo(2)-O(15)	104.0(4)
O(7)-Mo(1)-O(8)	104.1(4)	O(3)-Mo(2)-O(2)	104.2(4)
O(9)-Mo(1)-O(8)	97.3(4)	O(15)-Mo(2)-O(2)	97.1(4)
O(7)-Mo(1)-O(35)	103.8(4)	O(3)-Mo(2)-O(35)	103.3(4)
O(9)-Mo(1)-O(35)	88.6(4)	O(15)-Mo(2)-O(35)	88.5(4)
O(8)-Mo(1)-O(35)	149.2(4)	O(2)-Mo(2)-O(35)	149.6(4)
O(7)-Mo(1)-O(6)	103.6(4)	O(3)-Mo(2)-O(6)	103.5(4)
O(9)-Mo(1)-O(6)	150.4(4)	O(15)-Mo(2)-O(6)	149.9(4)
O(8)-Mo(1)-O(6)	87.2(4)	O(2)-Mo(2)-O(6)	87.9(4)
O(35)-Mo(1)-O(6)	73.7(3)	O(35)-Mo(2)-O(6)	73.3(3)
O(7)-Mo(1)-Mo(2)	100.4(3)	O(3)-Mo(2)-Mo(1)	100.0(3)
O(9)-Mo(1)-Mo(2)	124.8(3)	O(15)-Mo(2)-Mo(1)	124.3(3)
O(8)-Mo(1)-Mo(2)	123.7(3)	O(2)-Mo(2)-Mo(1)	124.4(3)
O(35)-Mo(1)-Mo(2)	37.2(2)	O(35)-Mo(2)-Mo(1)	36.8(2)
O(6)-Mo(1)-Mo(2)	37.6(2)	O(6)-Mo(2)-Mo(1)	37.5(3)
O(14)-Mo(3)-O(13)	100.2(4)	O(18)-Mo(4)-O(39)	107.6(5)
O(14)-Mo(3)-O(39)	106.0(4)	O(18)-Mo(4)-O(16)	106.0(4)
O(13)-Mo(3)-O(39)	152.6(3)	O(39)-Mo(4)-O(16)	93.8(4)
O(14)-Mo(3)-O(16)	106.2(4)	O(18)-Mo(4)-O(17)	100.7(5)
O(13)-Mo(3)-O(16)	87.6(4)	O(39)-Mo(4)-O(17)	151.0(4)

$\begin{array}{llllllllllllllllllllllllllllllllllll$
0(14)-Mo(3)-O(15) 99.4(4) 0(18)-Mo(4)-O(19) 98.2(4) 0(13)-Mo(3)-O(15) 84.6(4) 0(39)-Mo(4)-O(19) 83.9(4) 0(39)-Mo(3)-O(15) 83.6(3) 0(16)-Mo(4)-O(19) 85.8(4) 0(14)-Mo(3)-Mo(4) 100.7(3) 0(18)-Mo(4)-Mo(3) 155.2(4) 0(14)-Mo(3)-Mo(4) 100.7(3) 0(18)-Mo(4)-Mo(3) 48.4(3) 0(13)-Mo(3)-Mo(4) 47.6(3) 0(16)-Mo(4)-Mo(3) 48.4(3) 0(16)-Mo(3)-Mo(4) 47.7(3) 0(17)-Mo(4)-Mo(3) 131.8(3) 0(15)-Mo(3)-Mo(4) 47.7(3) 0(17)-Mo(6)-0(23) 104.0(4) 0(21)-Mo(5)-0(17) 103.3(5) 0(37)-Mo(6)-0(27) 97.6(4) 0(21)-Mo(5)-0(22) 98.8(4) 0(33)-Mo(6)-0(24) 101.9(5) 0(17)-Mo(5)-0(24) 102.3(5) 0(37)-Mo(6)-0(24) 151.7(4) 0(21)-Mo(5)-0(24) 102.1(4) 0(27)-Mo(6)-0(24) 151.7(4) 0(21)-Mo(5)-0(24) 151.1(4) 0(27)-Mo(6)-0(23) 150.7(4) 0(21)-Mo(5)-0(23) 150.7(4) 0(33)-Mo(6)-0(23) 150.7(4) 0(21)-Mo(5)-0(23) 150.7(4) 0
O(13)-Mo(3)-O(15) 84.6(4) O(39)-Mo(4)-O(19) 83.9(4) O(39)-Mo(3)-O(15) 83.6(3) O(16)-Mo(4)-O(19) 85.52.(4) O(16)-Mo(3)-O(15) 154.2(3) O(17)-Mo(4)-O(19) 85.8(4) O(14)-Mo(3)-Mo(4) 100.7(3) O(18)-Mo(4)-Mo(3) 48.2(3) O(13)-Mo(3)-Mo(4) 134.4(3) O(39)-Mo(4)-Mo(3) 48.2(3) O(16)-Mo(3)-Mo(4) 47.6(3) O(16)-Mo(4)-Mo(3) 131.8(3) O(15)-Mo(3)-Mo(4) 47.6(3) O(17)-Mo(6)-O(27) 103.7(5) O(17)-Mo(5)-O(12) 98.8(4) O(33)-Mo(6)-O(27) 97.6(4) O(21)-Mo(5)-O(24) 102.3(5) O(37)-Mo(6)-O(24) 101.9(5) O(17)-Mo(5)-O(24) 102.3(5) O(37)-Mo(6)-O(24) 151.7(4) O(21)-Mo(5)-O(24) 102.3(5) O(37)-Mo(6)-O(24) 151.7(4) O(21)-Mo(5)-O(24) 151.1(4) O(27)-Mo(6)-O(24) 151.7(4) O(21)-Mo(5)-O(23) 150.7(4) O(33)-Mo(6)-O(23) 150.7(4) O(21)-Mo(5)-O(23) 75.0(3) O(24)-Mo(6)-O(23) 75.0(3) O(21)-Mo(5)-O(23) 75.0(3)
0(39)-Mo(3)-O(15) 83.6(3) 0(16)-Mo(4)-O(19) 155.2(4) 0(16)-Mo(3)-O(15) 154.2(3) 0(17)-Mo(4)-O(19) 85.8(4) 0(14)-Mo(3)-Mo(4) 100.7(3) 0(18)-Mo(4)-Mo(3) 48.2(3) 0(39)-Mo(3)-Mo(4) 134.4(3) 0(39)-Mo(4)-Mo(3) 48.4(3) 0(16)-Mo(3)-Mo(4) 47.6(3) 0(16)-Mo(4)-Mo(3) 131.7(3) 0(15)-Mo(3)-Mo(4) 130.6(2) 0(19)-Mo(4)-Mo(3) 131.7(3) 0(15)-Mo(3)-Mo(4) 130.6(2) 0(19)-Mo(6)-O(27) 103.7(5) 0(17)-Mo(5)-O(22) 103.3(5) 0(37)-Mo(6)-O(24) 101.9(5) 0(17)-Mo(5)-O(22) 98.8(4) 0(33)-Mo(6)-O(24) 101.9(5) 0(17)-Mo(5)-O(24) 151.7(4) 0(27)-Mo(6)-O(24) 151.7(4) 0(21)-Mo(5)-O(23) 150.7(4) 0(33)-Mo(6)-O(23) 150.7(4) 0(21)-Mo(5)-O(23) 150.7(4) 0(33)-Mo(6)-O(23) 150.7(4) 0(21)-Mo(5)-O(23) 73.5(3) 0(24)-Mo(6)-O(23) 87.9(4) 0(21)-Mo(5)-O(23) 73.5(3) 0(24)-Mo(6)-Mo(5) 98.8(4) 0(17)-Mo(5)-Mo(6) 36.9(2) <td< td=""></td<>
$\begin{array}{llllllllllllllllllllllllllllllllllll$
O(15)-Mo(3)-Mo(4) 130.6(2) O(19)-Mo(4)-Mo(3) 131.7(3) O(21)-Mo(5)-O(17) 103.3(5) O(37)-Mo(6)-O(33) 104.0(4) O(21)-Mo(5)-O(22) 103.3(5) O(37)-Mo(6)-O(23) 104.0(4) O(21)-Mo(5)-O(22) 98.8(4) O(33)-Mo(6)-O(24) 103.7(5) O(17)-Mo(5)-O(24) 102.3(5) O(37)-Mo(6)-O(24) 101.9(5) O(17)-Mo(5)-O(24) 88.2(4) O(33)-Mo(6)-O(24) 87.5(4) O(22)-Mo(5)-O(24) 151.1(4) O(27)-Mo(6)-O(23) 102.5(4) O(17)-Mo(5)-O(23) 150.7(4) O(33)-Mo(6)-O(23) 150.7(4) O(21)-Mo(5)-O(23) 150.7(4) O(33)-Mo(6)-O(23) 150.7(4) O(17)-Mo(5)-O(23) 73.5(3) O(24)-Mo(6)-O(23) 75.0(3) O(17)-Mo(5)-O(23) 73.5(3) O(24)-Mo(6)-O(23) 75.0(3) O(24)-Mo(5)-Mo(6) 124.2(3) O(33)-Mo(6)-Mo(5) 124.2(3) O(17)-Mo(5)-Mo(6) 124.2(3) O(27)-Mo(6)-Mo(5) 124.2(3) O(24)-Mo(5)-Mo(6) 37.6(2) O(23)-Mo(6)-Mo(5) 38.3(2) O(24)-Mo(7)-O(12) 106.2(5) <
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O(21)-Mo(5)-Mo(6) 99.3(4) O(37)-Mo(6)-Mo(5) 98.8(4) O(17)-Mo(5)-Mo(6) 124.2(3) O(33)-Mo(6)-Mo(5) 124.2(3) O(22)-Mo(5)-Mo(6) 124.2(3) O(23)-Mo(6)-Mo(5) 125.2(3) O(22)-Mo(5)-Mo(6) 36.9(2) O(24)-Mo(6)-Mo(5) 37.8(2) O(23)-Mo(5)-Mo(6) 37.6(2) O(23)-Mo(6)-Mo(5) 38.3(2) O(4)-Mo(7)-O(5) 106.2(5) O(1)-Mo(8)-O(13) 101.0(4) O(4)-Mo(7)-O(12) 106.0(4) O(1)-Mo(8)-O(12) 88.0(4) O(4)-Mo(7)-O(12) 94.3(4) O(13)-Mo(8)-O(12) 88.0(4) O(4)-Mo(7)-O(12) 94.3(4) O(13)-Mo(8)-O(5) 104.9(4) O(5)-Mo(7)-O(12) 94.3(4) O(13)-Mo(8)-O(5) 153.0(3) O(12)-Mo(7)-O(33) 153.0(4) O(12)-Mo(8)-O(5) 125.2(3) O(12)-Mo(7)-O(11) 96.4(4) O(1)-Mo(8)-O(2) 85.0(3) O(12)-Mo(7)-O(11) 86.3(3) O(12)-Mo(8)-O(2) 85.0(3) O(12)-Mo(7)-O(11) 86.0(4) O(5)-Mo(8)-O(2) 82.9(4) O(4)-Mo(7)-O(2) 169.1(4) O(1)-Mo(8)-O(2) 82.9(4) O(12)-Mo(7)-O(32) 169.1(4) O
0(17)-Mo(5)-Mo(6) 124.2(3) 0(33)-Mo(6)-Mo(5) 124.2(3) 0(22)-Mo(5)-Mo(6) 124.5(3) 0(27)-Mo(6)-Mo(5) 125.2(3) 0(24)-Mo(5)-Mo(6) 36.9(2) 0(24)-Mo(6)-Mo(5) 37.8(2) 0(23)-Mo(5)-Mo(6) 37.6(2) 0(23)-Mo(6)-Mo(5) 38.3(2) 0(4)-Mo(7)-O(5) 106.2(5) 0(1)-Mo(8)-O(13) 101.0(4) 0(4)-Mo(7)-O(12) 106.0(4) 0(1)-Mo(8)-O(12) 104.9(4) 0(5)-Mo(7)-O(12) 94.3(4) 0(13)-Mo(8)-O(12) 88.0(4) 0(4)-Mo(7)-O(12) 94.3(4) 0(13)-Mo(8)-O(12) 88.0(4) 0(4)-Mo(7)-O(12) 94.3(4) 0(13)-Mo(8)-O(5) 153.0(3) 0(12)-Mo(7)-O(33) 153.0(4) 0(13)-Mo(8)-O(5) 92.7(4) 0(4)-Mo(7)-O(11) 96.4(4) 0(1)-Mo(8)-O(2) 85.0(3) 0(12)-Mo(7)-O(11) 86.0(4) 0(13)-Mo(8)-O(2) 85.0(3) 0(12)-Mo(7)-O(11) 86.0(4) 0(13)-Mo(8)-O(2) 85.0(3) 0(12)-Mo(7)-O(11) 86.0(4) 0(5)-Mo(8)-O(2) 82.9(4) 0(4)-Mo(7)-O(32) 80.0(3) 0(13)-Mo(8)-O(34) 74.1(3) 0(12)-Mo(7)-O(32) 80.0(3) 0(
$\begin{array}{llllllllllllllllllllllllllllllllllll$
O(24)-Mo(5)-Mo(6) 36.9(2) O(24)-Mo(6)-Mo(5) 37.8(2) O(23)-Mo(5)-Mo(6) 37.6(2) O(23)-Mo(6)-Mo(5) 38.3(2) O(4)-Mo(7)-O(5) 106.2(5) O(1)-Mo(8)-O(13) 101.0(4) O(4)-Mo(7)-O(12) 106.0(4) O(1)-Mo(8)-O(12) 104.9(4) O(5)-Mo(7)-O(12) 94.3(4) O(13)-Mo(8)-O(12) 88.0(4) O(4)-Mo(7)-O(33) 100.0(5) O(1)-Mo(8)-O(5) 104.9(4) O(5)-Mo(7)-O(33) 153.0(4) O(13)-Mo(8)-O(5) 104.9(4) O(5)-Mo(7)-O(33) 84.3(4) O(12)-Mo(8)-O(5) 92.7(4) O(4)-Mo(7)-O(33) 84.3(4) O(12)-Mo(8)-O(2) 100.4(4) O(5)-Mo(7)-O(11) 96.4(4) O(1)-Mo(8)-O(2) 100.4(4) O(5)-Mo(7)-O(11) 86.0(4) O(13)-Mo(8)-O(2) 85.0(3) O(12)-Mo(7)-O(11) 86.0(4) O(5)-Mo(8)-O(2) 82.9(4) O(4)-Mo(7)-O(32) 169.1(4) O(1)-Mo(8)-O(34) 73.2(4) O(12)-Mo(7)-O(32) 80.0(3) O(13)-Mo(8)-O(34) 74.1(3) O(12)-Mo(7)-O(32) 82.0(3) O(12)-Mo(8)-O(34) 79.8(3) O(12)-Mo(7)-O(32) 75.0(3) O(2)-Mo
O(23)-Mo(5)-Mo(6) 37.6(2) O(23)-Mo(5)-Mo(6) 38.3(2) O(4)-Mo(7)-O(5) 106.2(5) O(1)-Mo(8)-O(13) 101.0(4) O(4)-Mo(7)-O(12) 106.0(4) O(1)-Mo(8)-O(12) 104.9(4) O(5)-Mo(7)-O(12) 94.3(4) O(13)-Mo(8)-O(12) 88.0(4) O(4)-Mo(7)-O(12) 94.3(4) O(13)-Mo(8)-O(12) 88.0(4) O(4)-Mo(7)-O(33) 100.0(5) O(1)-Mo(8)-O(5) 104.9(4) O(5)-Mo(7)-O(33) 153.0(4) O(13)-Mo(8)-O(5) 153.0(3) O(12)-Mo(7)-O(33) 84.3(4) O(12)-Mo(8)-O(5) 92.7(4) O(4)-Mo(7)-O(11) 96.4(4) O(1)-Mo(8)-O(2) 100.4(4) O(5)-Mo(7)-O(11) 84.9(4) O(13)-Mo(8)-O(2) 85.0(3) O(12)-Mo(7)-O(11) 86.0(4) O(5)-Mo(8)-O(2) 82.9(4) O(4)-Mo(7)-O(11) 86.0(4) O(5)-Mo(8)-O(2) 82.9(4) O(4)-Mo(7)-O(32) 169.1(4) O(1)-Mo(8)-O(34) 74.1(3) O(12)-Mo(7)-O(32) 80.0(3) O(13)-Mo(8)-O(34) 74.1(3) O(12)-Mo(7)-O(32) 73.1(3) O(5)-Mo(8)-O(34) <t< td=""></t<>
O(4)-Mo(7)-O(5)106.2(5)O(1)-Mo(8)-O(13)101.0(4)O(4)-Mo(7)-O(12)106.0(4)O(1)-Mo(8)-O(12)104.9(4)O(5)-Mo(7)-O(12)94.3(4)O(13)-Mo(8)-O(12)88.0(4)O(4)-Mo(7)-O(12)94.3(4)O(13)-Mo(8)-O(12)88.0(4)O(4)-Mo(7)-O(33)100.0(5)O(1)-Mo(8)-O(5)104.9(4)O(5)-Mo(7)-O(33)153.0(4)O(13)-Mo(8)-O(5)153.0(3)O(12)-Mo(7)-O(33)84.3(4)O(12)-Mo(8)-O(5)92.7(4)O(4)-Mo(7)-O(11)96.4(4)O(1)-Mo(8)-O(2)100.4(4)O(5)-Mo(7)-O(11)96.4(4)O(1)-Mo(8)-O(2)85.0(3)O(12)-Mo(7)-O(11)84.9(4)O(13)-Mo(8)-O(2)85.0(3)O(12)-Mo(7)-O(11)156.8(3)O(12)-Mo(8)-O(2)82.9(4)O(4)-Mo(7)-O(11)86.0(4)O(5)-Mo(8)-O(2)82.9(4)O(4)-Mo(7)-O(32)169.1(4)O(1)-Mo(8)-O(34)173.2(4)O(12)-Mo(7)-O(32)82.0(3)O(12)-Mo(8)-O(34)74.1(3)O(12)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.8(3)O(3)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O(4)-Mo(7)-O(33)100.0(5)O(1)-Mo(8)-O(5)104.9(4)O(5)-Mo(7)-O(33)153.0(4)O(13)-Mo(8)-O(5)153.0(3)O(12)-Mo(7)-O(33)84.3(4)O(12)-Mo(8)-O(5)92.7(4)O(4)-Mo(7)-O(11)96.4(4)O(1)-Mo(8)-O(2)100.4(4)O(5)-Mo(7)-O(11)96.4(4)O(13)-Mo(8)-O(2)100.4(4)O(5)-Mo(7)-O(11)84.9(4)O(13)-Mo(8)-O(2)85.0(3)O(12)-Mo(7)-O(11)156.8(3)O(12)-Mo(8)-O(2)85.0(3)O(3)-Mo(7)-O(11)86.0(4)O(5)-Mo(8)-O(2)82.9(4)O(4)-Mo(7)-O(32)169.1(4)O(1)-Mo(8)-O(34)173.2(4)O(5)-Mo(7)-O(32)80.0(3)O(13)-Mo(8)-O(34)74.1(3)O(12)-Mo(7)-O(32)82.0(3)O(12)-Mo(8)-O(34)79.8(3)O(33)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.5(3)O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O(12)-Mo(7)-O(33)84.3(4)O(12)-Mo(8)-O(5)92.7(4)O(4)-Mo(7)-O(11)96.4(4)O(1)-Mo(8)-O(2)100.4(4)O(5)-Mo(7)-O(11)84.9(4)O(13)-Mo(8)-O(2)85.0(3)O(12)-Mo(7)-O(11)156.8(3)O(12)-Mo(8)-O(2)85.0(3)O(33)-Mo(7)-O(11)86.0(4)O(5)-Mo(8)-O(2)82.9(4)O(4)-Mo(7)-O(32)169.1(4)O(1)-Mo(8)-O(34)173.2(4)O(5)-Mo(7)-O(32)80.0(3)O(13)-Mo(8)-O(34)74.1(3)O(12)-Mo(7)-O(32)82.0(3)O(12)-Mo(8)-O(34)79.8(3)O(33)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.5(3)O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O(5)-Mo(7)-O(11)84.9(4)O(13)-Mo(8)-O(2)85.0(3)O(12)-Mo(7)-O(11)156.8(3)O(12)-Mo(8)-O(2)154.6(3)O(33)-Mo(7)-O(11)86.0(4)O(5)-Mo(8)-O(2)82.9(4)O(4)-Mo(7)-O(32)169.1(4)O(1)-Mo(8)-O(34)173.2(4)O(5)-Mo(7)-O(32)80.0(3)O(13)-Mo(8)-O(34)74.1(3)O(12)-Mo(7)-O(32)82.0(3)O(12)-Mo(8)-O(34)79.8(3)O(33)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.5(3)O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(12)-Mo(7)-O(11)156.8(3)O(12)-Mo(8)-O(2)154.6(3)O(33)-Mo(7)-O(11)86.0(4)O(5)-Mo(8)-O(2)82.9(4)O(4)-Mo(7)-O(32)169.1(4)O(1)-Mo(8)-O(34)173.2(4)O(5)-Mo(7)-O(32)80.0(3)O(13)-Mo(8)-O(34)74.1(3)O(12)-Mo(7)-O(32)82.0(3)O(12)-Mo(8)-O(34)79.8(3)O(33)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.5(3)O(33)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)79.5(3)O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(12) MO(7) O(11)1500(0)1000(0)1200(0)O(33)-Mo(7)-O(11)86.0(4)O(5)-Mo(8)-O(2)82.9(4)O(4)-Mo(7)-O(32)169.1(4)O(1)-Mo(8)-O(34)173.2(4)O(5)-Mo(7)-O(32)80.0(3)O(13)-Mo(8)-O(34)74.1(3)O(12)-Mo(7)-O(32)82.0(3)O(12)-Mo(8)-O(34)79.8(3)O(33)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.5(3)O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(4)-Mo(7)-O(32)169.1(4)O(1)-Mo(8)-O(34)173.2(4)O(5)-Mo(7)-O(32)80.0(3)O(13)-Mo(8)-O(34)74.1(3)O(12)-Mo(7)-O(32)82.0(3)O(12)-Mo(8)-O(34)79.8(3)O(33)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.5(3)O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(5)-Mo(7)-O(32)80.0(3)O(13)-Mo(8)-O(34)74.1(3)O(12)-Mo(7)-O(32)82.0(3)O(12)-Mo(8)-O(34)79.8(3)O(33)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.5(3)O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(12)-Mo(7)-O(32)82.0(3)O(12)-Mo(8)-O(34)79.8(3)O(33)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.5(3)O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(33)-Mo(7)-O(32)73.1(3)O(5)-Mo(8)-O(34)79.5(3)O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(11)-Mo(7)-O(32)75.0(3)O(2)-Mo(8)-O(34)74.8(3)O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(4)-Mo(7)-Mo(8)100.9(4)O(1)-Mo(8)-Mo(7)99.1(3)O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(5)-Mo(7)-Mo(8)48.6(2)O(13)-Mo(8)-Mo(7)134.8(3)O(12)-Mo(7)-Mo(8)48.4(3)O(12)-Mo(8)-Mo(7)47.7(3)
O(12)-Mo(7)-Mo(8) 48.4(3) O(12)-Mo(8)-Mo(7) 47.7(3)
O(33)-MO(7)-MO(8) 132.0(2) $O(5)-MO(8)-MO(7)$ 47.6(3)
O(11)-MO(7)-MO(8) 133.3(3) $O(2)-MO(8)-MO(7)$ 130.1(2)
O(32)-MO(7)-MO(8) 89.8(2) $O(34)-MO(7)$ 87.68(19)
$O(31)-M_0(9)-O(10)$ 106.7(5) $O(30)-M_0(10)-O(29)$ 100.4(4)
O(31)-MO(9)-O(28) 106.2(4) $O(30)-MO(10)-O(28)$ 105.9(4)
$O(10)-M_0(9)-O(28)$ 93 4(4) $O(29)-M_0(10)-O(28)$ 82 1(4)
$O(31)-M_0(9)-O(27)$ 100 9(4) $O(30)-M_0(10)-O(10)$ 104 7(4)
$O(10)-M_0(9)-O(27)$ 151 5(4) $O(29)-M_0(10)-O(10)$ 153 6(3)
O(28)-MO(9)-O(27) 85 5(4) $O(28)-MO(10)-O(10)$ 92 8(4)
O(31)-Mo(9)-O(11) 97.6(4) O(30)-Mo(10)-O(8) 98.3(4)

O(10)-Mo(9)-O(11)	84.0(4)	O(29)-Mo(10)-O(8)	84.4(3)
O(28)-Mo(9)-O(11)	155.8(4)	O(28)-Mo(10)-O(8)	155.6(4)
O(27)-Mo(9)-O(11)	85.5(4)	O(10)-Mo(10)-O(8)	84.0(3)
O(31)-Mo(9)-Mo(10)	101.4(4)	O(30)-Mo(10)-O(36)	171.0(4)
O(10)-Mo(9)-Mo(10)	48.3(2)	O(29)-Mo(10)-O(36)	74.1(3)
O(28)-Mo(9)-Mo(10)	47.8(3)	O(28)-Mo(10)-O(36)	81.3(3)
O(27)-Mo(9)-Mo(10)	132.3(3)	O(10)-Mo(10)-O(36)	80.0(3)
O(11)-Mo(9)-Mo(10)	131.9(3)	O(8)-Mo(10)-O(36)	74.3(3)
O(20)-Mo(11)-O(25)	105.2(4)	O(30)-Mo(10)-Mo(9)	99.7(4)
O(20)-Mo(11)-O(40)	104.9(4)	O(29)-Mo(10)-Mo(9)	135.2(3)
O(25)-Mo(11)-O(40)	94.1(3)	O(28)-Mo(10)-Mo(9)	47.9(3)
O(20)-Mo(11)-O(22)	100.7(4)	O(10)-Mo(10)-Mo(9)	47.6(3)
O(25)-Mo(11)-O(22)	84.3(4)	O(8)-Mo(10)-Mo(9)	131.2(2)
O(40)-Mo(11)-O(22)	153.8(4)	O(36)-Mo(10)-Mo(9)	89.1(2)
O(20)-Mo(11)-O(19)	97.5(4)	O(26)-Mo(12)-O(29)	101.1(4)
O(25)-Mo(11)-O(19)	156.7(3)	O(26)-Mo(12)-O(25)	105.5(4)
O(40)-Mo(11)-O(19)	85.0(3)	O(29)-Mo(12)-O(25)	87.2(4)
O(22)-Mo(11)-O(19)	86.3(4)	O(26)-Mo(12)-O(40)	106.1(4)
O(20)-Mo(11)-O(38)	170.2(4)	O(29)-Mo(12)-O(40)	151.4(3)
O(25)-Mo(11)-O(38)	82.2(3)	O(25)-Mo(12)-O(40)	93.6(3)
O(40)-Mo(11)-O(38)	80.5(3)	O(26)-Mo(12)-O(9)	100.1(4)
O(22)-Mo(11)-O(38)	73.4(3)	O(29)-Mo(12)-O(9)	84.5(3)
O(19)-Mo(11)-O(38)	74.7(3)	O(25)-Mo(12)-O(9)	154.2(3)
O(20)-Mo(11)-Mo(12)	99.6(3)	O(40)-Mo(12)-O(9)	82.5(3)
O(25)-Mo(11)-Mo(12)	48.4(3)	O(26)-Mo(12)-Mo(11)	100.8(3)
O(40)-Mo(11)-Mo(12)	48.4(2)	O(29)-Mo(12)-Mo(11)	133.9(2)
O(22)-Mo(11)-Mo(12)	132.0(3)	O(25)-Mo(12)-Mo(11)	47.9(3)
O(19)-Mo(11)-Mo(12)	133.0(2)	O(40)-Mo(12)-Mo(11)	48.3(2)
O(38)-Mo(11)-Mo(12)	90.0(2)	O(9)-Mo(12)-Mo(11)	130.2(2)
N(1)-Zn(1)-O(35)	105.3(4)	O(12)-Zn(2)-O(16)	98.2(4)
N(1)-Zn(1)-O(40)	121.2(4)	O(12)-Zn(2)-N(3)	126.4(5)
O(35)-Zn(1)-O(40)	109.1(4)	O(16)-Zn(2)-N(3)	108.4(4)
N(1)-7n(1)-O(39)	109.2(4)	O(12)-7n(2)-O(24)	108.4(4)
O(35)-Zn(1)- $O(39)$	111.7(4)	O(16)-Zn(2)-O(24)	110.4(4)
O(40)-Zn(1)-O(39)	100.4(3)	N(3)-Zn(2)-O(24)	104.6(5)
O(25)-7n(3)-O(23)	110.6(4)	O(6)-7n(4)-N(2)#1	108.7(4)
O(25)-7n(3)-N(5)	125.6(4)	O(6)-Zn(4)-O(5)	111.5(4)
O(23)-7n(3)-N(5)	105.7(5)	N(2) # 1-7n(4) - O(5)	124.3(4)
O(25)-7n(3)-O(28)	98 2(4)	$\Omega(6)-7n(4)-\Omega(10)$	110 5(4)
O(23)-7n(3)-O(28)	107 4(4)	N(2) # 1 - 7n(4) - O(10)	102 1(4)
N(5)-7n(3)-O(28)	108.1(5)	O(5)-7n(4)-O(10)	98.1(4)
O(36)-P(1)-O(34)	111 0(3)	O(36)-P(1)-O(32)	108 8(5)
O(36)-P(1)-O(38)	109 1(5)	O(34)-P(1)-O(32)	108 2(5)
O(34) - P(1) - O(38)	108 5(5)	O(38)-P(1)-O(32)	111 2(3)
P(1)-O(32)-Mo(7)	126 0(5)	$P(1)-O(36)-M_O(10)$	127 9(5)
P(1) = O(34) = MO(7)	128 3(1)	P(1) - O(38) - Mo(11)	125 9(5)
· (±)=0(3+)=1010(0)	120.3(4)	· (1)-0(30)-100(11)	120.3(0)

D-H···A	D-H	Н…А	D…A	D-H…A
N5-H5O20	0.8600	1.9800	2.838(4)	177.00
C4-H4O5	0.9300	2.5400	3.458(6)	168.00
C8-H8AO19	0.9700	2.4300	3.210(4	137.00
C10-H10O3	0.9300	2.4200	3.210(4)	143.00
C14-H14O1	0.9300	2.4600	3.367(7)	167.00
C17-H17BO	0.9700	2.4600	3.406(5)	165.00
C21-H21O9	0.9300	2.4000	3.064(5)	129.00

Table S10. Hydrogen bonds for compound 1 [Å and °].

Table S11. Hydrogen bonds for compound 2 [Å and °].

D-H···A	D-H	Н…А	D…A	D-H…A
N4-H4…O29	0.8600	1.9400	2.801(15)	176.00
N6-H6…O13	0.8600	1.9300	2.789(16)	179.00
С9-Н9…О40	0.9300	2.5900	3.324(16)	136.00
C10- H10…O17	0.9300	2.5800	3.335(19)	138.00
C5A- H5AA…O21	0.9700	2.5400	3.50(2)	171.00
C10A-H10A…O21	0.9700	2.4800	3.24(2)	134.00
C14-H14… O29	0.9300	2.4400	3.31(2)	156.00
C18- H18…O12	0.9300	2.5600	3.23(2)	129.00
C21A-H21A…O30	0.9700	2.2400	3.18(2)	163.00
C23-H23…O13	0.9300	2.5100	3.27(2)	140.00
C27-H27… O25	0.9300	2.4600	3.19(2)	135.00

Section 6. Reference

References:

- 1. A. Bak, A. Fs, A. Ht, B. Htn and C. Nd, J. Mol. Liq. 2021, 342, 117104.
- 2. Y. Gu, Y. Choe and D. Park, *Cryst. Growth Des.* 2020, **21**, 1019-1027.
- 3. B. Lu, J. Yang, Y. Liu and J. Ma, *Inorg. Chem.* 2017, **56**, 11710-11720.
- 4. Z. Li, Y. Liu, G. Xu and J. Ma, Polyhedron. 2020, **178**, 114324.
- 5. M. Yu, T. Guo, X. Shi, J. Yang, X. Xu, J. Ma and Z. Yu, *Inorg. Chem*. 2019, **58**, 11010-11019.
- 6. H. An, Y. Hou, L. Wang, Y. Zhang, W. Yang and S. Chang, Inorg. Chem. 2017, 56, 11619-11632
- 7. Y. Gu, Y. Choe and D. Park, *Catal*. 2021, **11**, 430.
- 8. X. Wang, M. S. Liu, L. Yang, J. W. Lan, Y. L. Chen and J. M. Sun, *ChemistrySelect.*, 2018, **3**, 4101-4109.
- 9. K. Li, X. Wu, Q. Gu, X. Zhao and Z. Hou, *RSC Adv*. 2017, 7, 14721-14732.

10. Da-Wei, Kang, Xue, Han, Xin-Jun, Ma, Ying-Ying, Liu and Jian-Fang, *Dalton Trans*. 2018, **47**, 16197-162.