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Supporting Information 

Section 1: Additional Site Information 

The Headingley air quality monitoring station is Automatic Urban and Rural Network 

(AURN) affiliated, and further information about the site can be found at:  

https://uk-air.defra.gov.uk/networks/site-info?site_id=LED6 

Other local air quality monitoring stations used in this study (Kirkstall Road and Temple 

Newsam) are independently operated by Leeds City Council (LCC), and further 

information about these, other air quality monitoring and management activities 

undertaken by LCC can be found in, e.g.: 

https://cleanairleeds.co.uk/sites/default/files/Leeds%20ASR%202018.pdf  

Figure S1 shows the locations of all eleven automatic air quality monitoring stations in 

the Leeds area.  

Figure S1: Locations of Leeds City Council (LCC) and Automatic Urban and Rural Network 

(AURN) monitoring stations in Leeds. Leeds Centre and Headingley are AURN and AURN 

affiliated sites, respectively, and all other sites are LCC operated sites. Headingley (the 

intervention site), Kirkstall (used as nearby control) and Temple Newsam (the local 

background) were used in the main study, but analyses of other sites are included below as 

part of further discussion of events. (Map tiles produced by Stamen Design, under CC BY 3.0. 

Data under ODbL using R package OpenStreetMap; Fellows & Stotz50.)  
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Section 2: Theil-Sen Analysis of NO2 Trends at Main Study Sites   
 

 

Figure S2: Ambient NO2 1-hour resolution time-series for Headingley, Kirkstall Road and 
Temple Newsam (blue), with estimated underlying general trend (red) estimated using 
deseasonalised month-average measurement and Theil-Sen method in openair43 [*** 
p<0.001, ** p<0.01, * p<0.05]. 

  



Section 3: Selection of Main Study Sites  

Although all eleven sites were investigated as part of this study, work reported here 

focuses on these three sites because the objective here is to demonstrate the 

measurement of the impact of a local intervention. The local impact measurement itself 

is made using Headingley, meteorological and background data. Headingley is on the 

outskirts of Leeds. By comparison to Kirkstall, other sites were significantly less like 

‘Headingley-without-the-intervention’. For example, several were inner-city sites 

and/or in residential areas where bus contributions from multiple near-by roads/routes 

were complex, several had less complete time-series than Kirkstall, and all were 

further away from Headingley than Kirkstall. So, Kirkstall was selected as ‘best 

available control’.  

Section 4: Break-point/segment Analysis of NO2 at Other Sites  

The analysis of data from other near-by sites is reported here in Figures S3 and S4 

and briefly discussed as part of the interpretation of the likely nature of the earlier 

(2015) break-point/segment seen in the Headingley data. 

A 2015 break-point/segment, similar in both timing and magnitude to that at 

Headingley, was also observed at Tillbury Terrace and Intpool. At several other sites, 

e.g. Jack Lane and Corn Exchange, a 2015 break-point was detected but dismissed 

by either BIC or p-score screening (see Methods, section 2.2). No 2015 events were 

seen at other sites. However, in all cases, except Leeds Centre and Temple Newsam, 

there was significant missing data late 2015 and/or 2016, which may hinder analysis 

in break-point/segment detection and quantification in this period. In the cases of two 

sites, Abbey Road and Bishopgate, at-site monitoring only started late 2016 and early 

2017, respectively, so no comment can be made regarding the likelihood of a 2015 

event at these. As late 2015 events are seen at several sites, and, where seen, they 

were of magnitudes close to the estimated detection limit for the method, it suggests 

it is a less consistently/confidently detected but potentially more widespread than the 

bus intervention seen in 2018. Although far from unambiguous, it not being observed 

at the background site, Temple Newsam, suggests it may be urban rather than 

background/regional in nature. This is about the time Euro 6 vehicle regulations were 

introduced in the UK and otherse.g.,32 have reported similar changes that aligned with 

the introduction of earlier vehicle regulations. However, at this stage without further 

work and the analysis of more sites across the UK, such an interpretation would be 

highly speculative. 

 

  



 

 
Figure S3: Break-point detection and change-segment analysis of normalised local 
contributions for Leed Centre, Corn Exchange and Haslewood time-series (Top, Middle and 
Bottom); data (grey), change-segments, with start and ends marked (blue) and associated 
confidence intervals (blue dashed) and segmented trends (red).  
  



 

 
Figure S4: Break-point detection and change-segment analysis of normalised local 
contributions for Intpool, Jack Lane and Tillbury Terrace time-series (Top, Middle and Bottom); 
data (grey), change-segments, with start and ends marked (blue) and associated confidence 
intervals (blue dashed) and segmented trends (red).  

 



Figure S5: Break-point detection and change-segment analysis of normalised local 
contributions for Bishopgate, Abbey Road and Temple Newsam time-series (Top, Middle and 
Bottom); data (grey), change-segments, with start and ends marked (blue) and associated 
confidence intervals (blue dashed) and segmented trends (red). Temple Newsam analysis is 
of the modelled data used as the background for all other sites and therefore itself without 
background subtraction. Given the limited amount of data available for Bishopgate, the 2017 
event detected there should be treated with caution.   



Section 5: Simulation Study Characterisation of Break-point/segment Methods  

Traditionally, change detection methods have been applied to air quality applications 

in relative isolation: methods applied, results reported and interpreted on the basis of 

what was expected (e.g. seen elsewhere or predicted using modelling). This is entirely 

understandable because for the most part, the methods are applied to applications 

where there is little or no other evidence regarding performance. However, there is a 

need to extend research efforts and investigate the likely performance of change-

detection methods if we are to ask the authorities tasked with the delivery of air quality 

improvements to use these methods to benchmark their air quality management 

activities. There is also a need to consider the trade-offs between minimal and more-

aggressive signal isolation when used as a prelude to break-point detection because: 

(1) Increasing method complexity creates extra burdens for users, e.g. more datasets 

to collect and quality assure, and more sophisticated models to implement. And, (2) 

These steps by their nature remove variance, and variance is the data property that 

change-detection methods typically test for change. When applied in a standalone 

fashion, more sophisticated, multiple-site methods that filter data and smooth trends 

over longer time-periods are obviously highly useful when investigating underlying 

regional and/or longer time-scale processes. But these methods can also potentially 

distort outcomes when used to pre-process data prior to an analysis like break-point 

testing if, for example, models are over-fit and variance associated with local change 

is removed. With this in mind, data sources, data handling, method refinements and 

simulation testing strategies are all discussed as part of this work to provide measures 

of both intervention impact and method performance, and to contribute to efforts to 

develop more widely applicable environmental change-point detection and 

quantification methods in future. 

The findings reported (Section 3.2 in the main paper) are in good agreement with 

expected findings for a Euro VI bus fleet upgrade, so appear sensible. This is 

encouraging, but if such methods are to be used more widely benchmark the 

performance and appraisal of air quality interventions, the methods need to be verified 

and characterised.  

A series of simulation studies were undertaken to investigate the performance of the 

methods used. Elsewheree.g.* it has been observed that even the best designed 

simulations are artificial constructs and that analytics tend to work better on simulated 

data than on real-world data. With this in mind, a study-specific approach was adopted 

for this work. For the first set of simulations, the Headingley time-series was used to 

build the base case for simulation: The above analysis was repeated, and detected 

break-points were subtracted from the local contribution time-series and the time-

series rebuilt. This generated a base case which when analysed contained no 

detectable break-points, but had statistical properties (mean, variance, etc.) that were 

                                            
* Additional reference (not in main paper): B. M. Kim and R. C. Henry, Extension of self-modeling curve resolution to mixtures of more 

than three components: Part 3. Atmospheric aerosol data simulation studies, Chemom. Intell. Lab. Syst., 2000, 52, 2, 145–154, DOI: 

10.1016/S0169-7439(00)00077-0. 



highly similar to the original Headingley time-series. A change was simulated by 

isolating the local contribution of this base case, adding an artificial change at a known 

point and of a known duration and magnitude, rebuilding the time-series, and then 

rerunning the analysis and comparing the change and change prediction (Figure S6). 

For the first step of the simulation exercise, 2000 randomly selected changes were 

simulated using the rules: change anywhere in data range, magnitude and duration 

randomly selected from the ranges +50% to -50% and 1 to 100 days, respectively.  

Figure S7 summarises the outcomes for simulated instantaneous changes (classic 

break-points) and Figures S9 and S10 summarise outcomes for simulated changes of 

variable durations. Unsurprisingly, better performance is observed for instantaneous 

change detection by comparison to more gradual change (compare S7 and S9 or see 

Figure S8). However, Figure S9 Top Right demonstrates the performance of the 

method when detecting the location of simulated change-segment mid-point. The high 

agreement (nearest to y = x, predicted = actual) for the majority of cases, demonstrates 

that the approach is actual still very good at locating the point about which change 

happens even when that change is more gradual. Horizontal regions at the start and 

end of the plot range reflect failure to detect changes that happened within the range 

of the first or last averaging window (10% of the time-series range) used when break-

point testing. Other deviations from y = x typically associate with smaller magnitude 

changes, roughly -10% to +10%, and reflect increasing misassignment as the method 

detection limit is approached (see below). Figure S9 Top Left and Bottom Left show 

similar plots for change-segment start and end prediction, respectively. Although 

agreement is not as good here, this is to be expected because identifying the start or 

end of a gradual change is obviously harder than detecting either instantaneous 

change or gradual change mid-point. One feature worth noting here is that the method 

tends to assign starts late and ends early and that this trend becomes more 

pronounced as change magnitudes get smaller. Figure S9 Bottom Right shows 

magnitude predictions. Here, again, agreement is good in the majority of cases, and 

cases that deviate from y = x tend to associate with the start and end of the time-

series, indicating a change happen within or near to the first or last averaging windows. 

One other feature to note here is the gap in the middle of the data range which is 

associated with undetected changes. This indicates an asymmetrical detection limit of 

ca. -5% for decreases and ca. 10% for increases at Headingley during the timescales 

of this study. 

This simulation approach can also be used to investigate more complex situations. 

For example, when testing multiple break-points scenarios, it was noted that near 

predictions were often influenced by the break-point test window size. As the distance 

between two break-points decreases to window length, one, often the smaller, or both 

would be displaced, and as distance between break-points decreased to less than the 

window length, the two were often merged and detected at a single mid-location 

change or the smaller was sometimes obscured. There is also some indication that (in 

simulation at least) wrong break-point assignments are often less stable that than 

correct assignments. So, break-point consistency when an analysis is repeated with a 



shorter or longer time-series, and/or different time windows, may also provide an extra 

measure of likely performance. 

The effect of the properties of the supplied data on method performance was also 

investigated by modifying the properties of the base case and repeating this simulation 

procedure multiple times (typically 10 per investigated parameter). To compare the 

changes in method performance across a series of these simulation sets (each 

equivalent to Figure S9), a simplified descriptor was applied: % near fit, which was the 

percentage of predictions with ± 2 months of actual date for start and end points and 

within ± 10% of prediction for magnitude (Figure S11). Selected outputs from this 

simulation study are shown in Figures S12-S14. Here, general observations are 

consistent with those reported above. Predictive power generally decreases 

significantly towards the start and end of the study period (indicated by red low near 

fit regions in Figure S12 Left Top and Left Bottom plots and in other examples in the 

supporting information), reflecting the expected lower performance in the ranges of 

first and last break-point test window. Here, there is also some variation in 

performance with data properties such as gradient and variance. However, away from 

the time-series limits, i.e., within the middle 70-80% of the full data set time range, 

performance is generally good (near fit scores were typically > 70%) and any variations 

in performance tended to be seen as smooth horizontal bands, rather than sloping 

and/or broadening bands indicating a relationship with data at that time in the supplied 

time-series rather than the influence of the investigated data property. Again, as 

expected, predictive power also typically decreased towards detection limits for 

magnitude predictions (indicated by red near fit regions in Figure S12). Here, positive 

and negative change detection limits both varied with input data gradient, but the range 

(positive limit – negative limit) was relatively consistent. This asymmetric behaviour, 

noted earlier for the base case which has a small negative gradient, was, however 

only apparent near the detection limit, and, again, away from the detection limit 

performance was generally good (near fit scores were > 70%) and most variations 

appeared to associate more strongly with input data rather than varying gradient. 

Detection limit did, however, improve significantly with reducing input data variance 

(see e.g. reduction in the size of undetected or empty-data region about 0% change, 

with reducing variance in Figure S13 bottom right. This suggests that pre-processing 

steps that further reduce variance could significantly improve detection limits. That 

said, decreased performance in the detection of larger magnitude changes (indicated 

by expanding yellow and red regions in Figures S13 and S14) strongly suggest that 

there are trade-offs involved and, e.g., over-smoothing of variance could limit the 

predictive power of subsequent break-point investigations. So, while this is 

encouraging in terms of the potential for further improvements in sensitivity, it is also 

an option that needs careful handling if robust quantification is the objective. 

To investigate the effects of the local contribution isolation step, a second set of 

simulations were undertaken using the Kirkstall NO2 time-series as the base case. 

While this dataset is not as directly representative of Headingley as the base case 

used for the previous simulations, this change was made because in this instance the 



intention was to modify the properties of the EQ.4 formula used as part of the signal 

isolation step. As the methods used to generate the ‘event-free’ Headingley base case 

used in the previous simulations required the assumption of a form for EQ.4 when 

identifying events to remove, it was decided that modifications to EQ.4 were better 

investigated using a dataset that did not require prior event-removal. The results of the 

Kirkstall Road base case simulations are provided in the Supporting Information 

Figures S15 and S16. By comparison to Figures S6 and S7 trends, these are highly 

similar but arguably noisier, most likely reflecting the lower NO2 levels at Kirkstall Road 

by comparison to Headingley. In addition, simulated events to the start and end of the 

time-series are more often not detected and data-related features (e.g. horizontal 

banding) were more pronounced in simulations using Kirkstall Road data as the base 

case.  

Simulation tests using meteorological data from different sources (Figure S17), clearly 

highlighted the benefits of using either the Ricardo WRF or the NOAA Integrated 

Surface Database/worldmet meteorological data rather than data from the nearest 

meteorological station. Arguably models that used the WRF data performed slightly 

better than those using worldmet data, but without more testing of more sites, this is 

probably best regarded as site/dataset-specific observation at this stage.  

The influence of under/over-fitting was investigated by changing the number of knots 

used in the splines applied to the model inputs. As an example, Figure S18 shows the 

effect of applying knots in the range 3 to 30 to the combined wind speed and direction 

spline term used in EQ. 4. The number of knots in a GAM spline controls the 

‘wiggliness’ of the fitting term, and model fit (agreement between modelled data and 

prediction of same data) generally increases with the number of knots. However, much 

like trained model performance on test-data (i.e., data not used to develop the model), 

break-point performance generally increases up to the point where the model 

becomes over-fitted and then performance starts to deteriorate. Here, it is important 

to acknowledge that the GAM models used in this study are by default subject to 

penalisation weighted regression56,57, and that fits that actually applied the highest 

number of knots were only obtained if the penalisation term was removed. So, while 

this is not a strictly correct use of this particular model as its developer intended, it 

does demonstrate (1) the effect of non-linear fitting terms like knots in a spline, nodes 

in a neural network or trees in a forest, and (2) that fit statistics like the same-data 

regression coefficient of the isolation model do not necessarily provide a reliable 

measure of subsequent performance in break-point/segment tests. It is also worth 

noting that in this instance the best break-point/segment detection was observed for 

this spline term at about 15-19 knots, which is roughly where the penalisation weighted 

GAMs self-optimised. 

The influence of the isolation model expression was also investigated, by addition and 

subtraction of input terms in EQ.4. Figure A19 uses a series of models, starting with a 

simple two-term (hour-of-day and day-of-year) model and building by addition to a 

seven-term (hour-of-day, day-of-year, background, wind speed/direction, air 



temperature, day-of-week and month-of-year) model, to illustrate the effect of 

increasing isolation expression complexity on break-point/segment test outcomes. 

Here, as with knots and as expected, increasing the number of model inputs typically 

increased the isolation model fit (input data/model prediction agreement), but 

simulation once again demonstrated that isolation model fit was an unreliable indicator 

of sequent break-point/segment test performance. Unsurprisingly, the two-input (hour-

of-day and day-of-year) performed poorest, but the addition of either a background 

term or a wind speed/direction term significantly increased break-point/segment 

detection rates and quantification accuracy. Optimal performance across the range of 

tested cases (1 to 100 day, +50% to -50% magnitude simulated change events) was 

seen for four-input (hour-of-day, day-of-year, background, wind speed/direction) 

models, although five-input (hour-of-day, day-of-year, background, wind 

speed/direction, air temperature) were only marginal poorer overall and arguably 

better at detection of smaller changes. Although beyond this point overall performance 

deteriorate further with each additional input, detection rates for smaller changes 

continued to improve, suggesting, albeit tentatively given the scale of current studies, 

that there are trade-offs here: more complex models may help to uncover smaller 

changes but they may also distort larger changes.           

 

  

 



 
 

Figure S6: Schematic for data simulation using break-point subtracted Headingley time-series as representative base case for simulation 
testing. 

  



 
 

 
 

Figure S7: Simulation (n = 2,000) break-point testing instantaneous changes using ‘break-point-free’ Headingley data as base case. 

 
 



 
Figure S8: Comparison of break-point testing performance for instantaneous changes (left) and gradual changes (right), simulation n = 2,000 in 

both cases. 



 
 

Figure S9: Simulation (n = 2,000) break-point testing gradual changes using ‘break-point-free’ Headingley data as base case. 
 

  



 
 

Figure S10: Simulation (n = 2,000) break-point testing gradual changes using ‘break-point-free’ Headingley data as base case. 
 



 

 
Figure S11: Simulation test schematic for the investigation base case data properties: For each simulation set (n = 2,000) the % near f it 

parameter was calculated as function of actual measurement, e.g. above actual start time in above example, left. Performance trend surfaces 
where then generated by repeating the process multiple times (typically about 10), each time modifying the investigated base case data 

property and fitting a surface to near-fit (y-axis) and property (x-axis), e.g. gradient in above example. 

  



 

 
 

Figure S12: Simulation testing of effect of base case data properties: time-series gradient. 



 

 

 
 
Figure S13: Simulation testing of effect of base case data properties: time-series variance.  



 

 

 
Figure S14: Simulation testing of effect of base case data properties: time-series time resolution.  



 

Figure S15: Simulation (n = 2,000) break-point testing gradual changes using Kirkstall Road data as base case.  
 

  



 

Figure S16: Simulation (n = 2,000) break-point testing gradual changes using Kirkstall Road data as base case. 



 
Figure S17: Simulation testing of effect of isolation model: meteorological data source. MET1 openair (WRF Ricardo) model (used in main 

study); MET2 Leeds Bradford MET via worldmet/NOAA; and, MET3 Leeds MET from local station. See also Table 1 and related discussion in 
main text. 



 
Figure S18: Simulation testing of effect of isolation model: changing number of knots applied by GAM model. The number of knots was forced 
when GAM fitting these simulations to demonstration effect of over/under-fitting. Without forcing the models typically self-optimised at 15-19 

knots. 
 



 
Figure S19: Simulation testing of effect of isolation model: changing model inputs. MOD 1 [NO2]site = s(day.hour) + s(year.day); MOD 2 [NO2]site 
= s(wind spd, dir) + s(day.hour) + s(year.day); MOD 3 [NO2]site = s([NO2]BG) + s(day.hour) + s(year.day); MOD 4 [NO2]site = s([NO2]BG) + s(wind 
spd, dir) + s(day.hour) + s(year.day) (model used in main study); MOD 5 [NO2]site = s([NO2]BG) + s(wind spd, dir) + s(air temp) + s(day.hour) + 

s(year.day); MOD 6 [NO2]site = s([NO2]BG) + s(wind spd, dir) + s(air temp) + s(day.hour) + s(year.day) + s(week.day); MOD 7 [NO2]site = 
s([NO2]BG) + s(wind spd, dir) + s(air temp) + s(day.hour) + s(year.day) + s(week.day) + s(month.year). 


