Supporting Information

High-performance n-type Ta4SiTe4/polyvinylidene fluoride (PVDF)/graphdiyne organic-inorganic flexible thermoelectric composites

Sanyin Qu^{1#}, Chen Ming^{1#}, Pengfei Qiu^{1,2*}, Kunqi Xu¹, Qing Xu^{1,3}, Qin Yao¹, Ping Lu¹, *Huarong Zeng¹ , Xun Shi1,3* , Lidong Chen1,3*

Details about the X*^d* **calculation**

The thickness of the fully depleted layer (X_d) in the Ta₄SiTe₄ and GDY interface can be calculated by the depletion approximation^[1]

$$
X_d = \left(\frac{2\varepsilon\Delta V}{qN_d 3}\right)^{1/2},
$$

where ε , ΔV , q, and N_d are the dielectric constant of Ta₄SiTe₄, the built-in potential in the interfacial area, the elementary charge, and the carrier concentration of Ta_4SiTe_4 . ϵ is assumed to be $10 \epsilon_0$ for Ta₄SiTe₄, where ϵ_0 is permittivity of vacuum. ΔV equals to the difference in work functions between Ta_4SiTe_4 and GDY.

Fig. S1 Bending radius for the *y wt.*%PVDF/Ta₄SiTe₄/5.8 *wt.*%GDY composite films with different Ta₄SiTe₄ mass ratios. The inset shows the optical image of rolling the

composite film on a cylindrical object with $r = 0.05$ mm. This method was proposed by Liang et al. [2]

Fig. S2 X-ray diffraction patterns of the *y wt.*%PVDF/Ta4SiTe4/5.8 *wt.*%GDY composite films with different Ta_4SiTe_4 mass ratio.

Fig. S3 SEM image of 50 *wt*.%Ta4SiTe4/PVDF/5.8 *wt*.%GDY composite film and the elemental mapping of Ta, Si, Te, and C.

Fig. S4 Low-resolution TEM images of Ta₄SiTe₄/GDY composites.

Fig. S5 Carrier concentration and carrier mobility of 50 wt .%PVDF/Ta₄SiTe₄/ x *wt.*%GDY (*x* = 0, 1.2, 3.6, and 5.8) composite films.

Fig. S6 (a) Relative resistance variation (Δ*R*/*R*0) as a function of various curvatures for 50 *wt.*% Ta4SiTe4/PVDF/5.8 *wt.*% GDY composite film. b) Δ*R*/*R*⁰ as a function of bending cycles over a curvature of 0.11 mm⁻¹ for 50 *wt.*% Ta₄SiTe₄/PVDF/5.8 *wt.*% GDY composite film. The resistance is almost unchanged after 10000 bending cycles.

Fig. S7 Electrical conductivity and Seebeck coefficient variations of 50 *wt.*%PVDF/Ta₄SiTe₄/5.8 *wt.*%GDY composite film during the stability test (a-b) in air and (c-d) Argon atmosphere.

Fig. S8 SEM images of *y wt*.%Ta4SiTe4/PVDF/5.8 *wt*.%GDY (*y* = 20, 30, 50, 60, and 70) composite films.

Fig. S9 Open voltage (*V*) as a function of temperature gradient (ΔT) for the prototype Ta4SiTe4/PVDF/GDY-PEDOT:PSS/CNT TE module.

Fig. S10 Output voltage (V) and power (P) as a function of current (I) for prototype Ta4SiTe4/PVDF/GDY-PEDOT:PSS/CNT TE module under different operating temperatures. The inset shows the sketch map of the prototype module.

References

[1] D. A. Neamen, Semiconductor Physics and Devices, *Basic Principles*, New York: The McGraw-Hill Companies, Inc.

[2] L. R. Liang, C. Y. Gao, G. M. Chen, C-Y Guo, *J. Mater. Chem. C*, 2016, **4**, 526.