Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Supplementary material for:

Surface properties and rising velocities of pristine and weathered plastic production pellets

Tom Bond^{1*}, Jack Morton¹, Zeinab Al-Rekabi², David Cant², Stuart Davidson² and Yiwen

Pei²

1. Department of Civil and Environmental Engineering, University of Surrey, University Campus, Guildford, GU2 7XH, UK

2. Surface Technology group, National Physical Laboratory, Hampton Road, Teddington,

Middlesex, TW11 0LW, UK

*Corresponding author, email: <u>t.bond@surrey.ac.uk</u>

This supplementary material contains three tables (Tables SM-1 to SM-3) and two figures (Figures SM-1 and SM-2).

Samples	Root-mean-square roughness $(S_q, nm)^a$	Mean roughness $(S_a, nm)^a$
Pristine pellets	73 ± 14	59 ± 11
Weathered pellets	94 ± 35	74 ± 26

Table SM-1: AFM comparative analysis of the root-mean-square roughness (S_q) and the mean roughness (S_q) for the pristine and the weathered samples.

^aUncertainty is based on the AFM measurements at seven different locations of the same sample.

Peak	Pristine milled (salt free)	Pristine (with salt)	Pristine (salt free)	Weathered (with salt)
C 1s	97.7	91.2	98.6	86.0
O 1s	1.3	6.3	1.1	9.9
N 1s	-	0.2	-	0.3
Si 2p	1.0	1.4	-	2.4
Na 1s	-	0.5	< 0.1	0.5
Ca 2p	-	0.4	-	0.9
P 2p	-	-	0.2	-

Table SM-2: XPS analysis of elemental composition of selected samples

Table SM-3: Binding energies of pellet samples analysed by XPS

	Binding Energ	y (eV)		
Peak	Pristine milled	Pristine (salt)	Pristine (Salt Free)	Weathered
C 1s	285.0*	285.0*	285.0*	285.0*
O 1s	532.4	532.2	533.0	532.0
N 1s	-	400.0	-	400.2
Si 2p 3/2	102.2	102.2	-	102.4
Ca 2p 3/2	-	347.6	-	347.2
Na 1s	-	1071.4	1071.5	1071.7
P 2p 3/2	-	-	134.7	_

**All binding energies reported relative to hydrocarbon peak in C 1s spectrum, which is fixed at 285.0 eV

Figure SM-1: Relationships between experimental and Dietrich theoretical rising velocities

Figure SM-2: AFM images of height, amplitude and phase (30 µm x 30 µm) of the pristine pellet (top), pristine-milled sample (middle) and weathered pellet (bottom).

