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Supporting Methods

Text S1. Characterization of soil and materials. 

The soil pH (soil: water = 1: 2.5, m/v) was measured with a pH meter (S220, Mettler Toledo, 

Switzerland). The soil texture was analyzed by Mastersizer 2000 (Malvern, UK). The elemental 

content of soil was obtained by an X-ray fluorescence spectrometry (PW2403, PANalytical B.V., 

Netherlands) and the organic-associated element content (C, N, S, H, O) was measured with an 

elemental analyzer (FlashSmart, ThermoFisher, Germany). 

In order to add PCBs and nanoparticles into soil homogeneously, a 10-fold dilution method was 

used.1,2 First, a fraction of soil was saturated with the acetone solution of PCB28 or PCB180 in a 

fume hood. After solvent volatilization, the contaminated soil was diluted twice to reach the target 

concentration of about 1.0 mg·kg−1 PCB.3 Then, the calculated amounts of nZVI powder were added 

and mixed mechanically for 10 min within 20 L plastic cylinder to achieve the target doses of 0, 10, 

100, and 1000 mg·kg−1 and Fe3O4 nanoparticles were mixed into soil in the same way.

Text S2. Iron determination. 

Plant issues and soil samples (0.1 g) were used to measure the active and total Fe content. The 

active Fe was extracted by 0.1 M HCl of 10 mL at 25 ℃ and 200 rpm for 4 h. For the total Fe 

measurement, the alfalfa tissues were digested with a mixture of HNO3 (6 mL) and H2O2 (2 mL) in a 

microwave digestion system (Mars 4, CEM, USA), and the soil samples were digested with a mixture 

of HNO3 (6 mL) and HF (2 mL). Following the microwave digestion, the resultant solutions were 

diluted with 50 mL of 0.1 M HNO3 to ascertain total Fe content. Then, 1 mL of solution was pipetted, 

and the Fe(Ⅲ) was reduced to Fe(Ⅱ) with hydroxylamine hydrochloride (NH2OH·HCl). Then 1,10-

phenanthroline was used to react and quantify Fe(Ⅱ) using the absorbance at 510 nm.4 The root 

tissues for SEM-EDS analysis were previously fixed with 2.5% glutaraldehyde for 4 h, post-fixed 

with osmium tetroxide for 2 h, dehydrated by a graded series of ethanol (30%, 50%, 70%, 80%, 90%, 

and 95%) for 15 min at each step, and further dehydrated in a critical point dryer (HCP-2, Hitachi, 

Japan).
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Text S3. Extraction and analyses of PCBs and metabolites. 

PCBs in soil were extracted according to the previous method.1 Briefly, 1.0 g of soil was 

thoroughly extracted with a mixture of hexane (5 mL) and acetone (5 mL) by ultrasonication at 35 ℃ 

for 30 minutes twice. The extracts were mixed and enriched under a gentle nitrogen stream into 1 

mL. PCBs in liquid culture were purified with 2 mL of sulfuric acid, demulsified with 1 g of 

ammonium sulfate, and extracted by 5 mL of hexane.5 The organic phase containing PCBs was 

dehydrated by anhydrous sodium sulfate and measured by gas chromatography (GC, 7890A, Agilent, 

USA) equipped with a 63Ni-microelectron capture detector (ECD, Agilent, USA). The congeners 

were determined by GC (7890B, Agilent, USA) linked to a mass spectrometer (MS, 5977A, Agilent, 

USA). Sample separation was done with a DB-5MS capillary column (30 m  0.25 mm  0.25 µm, 

Agilent, USA). The column temperature was programmed as follows: initial temperature was held at 

80 °C for 2 min, increased to 196 °C with a gradient of 10 °C·min−1, and then raised to 280 °C at 15 

°C·min−1 and held for 1 min.

In the simulation process, the intermediate products of PCB28 were analyzed according to the 

methods of Hong et al.6 The reaction solution was extracted with 10 mL of ethyl acetate twice and 

the supernatants were mixed and dried with nitrogen blowing. After that, a mixture (100 L) of N,O-

bis(trimethylsilyl)trifluoroacetamide(BSTFA) and trimethylchlorosilane(TMCS) at a ratio of 99:1  

were added and incubated at 60 °C for 15 min. The obtained mixtures were then transferred to a vial 

and brought to volume of 1.0 mL with hexane. The intermediate products were analyzed by the GC-

MS. The chromatographic column was an Agilent DB-5MS capillary column (30 cm × 0.25 mm, 

0.25 μm). Helium (purity 99.99%) was used as a carrier gas; the injection volume was 1 μL; the oven 

temperature program was initially 60 °C and held for 2 min, and then increased to 280 °C at 10 

°C·min−1 and maintained for 8 min. The ion source and quadrupole temperature of mass spectrometer 

were 230 °C and 150 °C, respectively.

Text S4. Metabolomics analysis. 

Ten mg of root powder was ultrasonically extracted in a mixture of chloroform: water: methanol 
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(1.2 mL, 2:2:5, v/v/v) at 4 °C for 1 h and then centrifugated at 10000g for 10 min. Then 400 µL of 

supernatant was collected and freeze-dried for derivatization. Briefly, 50 µL of methoxyamine 

hydrochloride in pyridine (20 mg·L-1) was added to the vial and incubated at 37 °C for 90 min; 80 

µL of MSTFA were then added and incubated at 37 °C for 30 min. To prevent the decomposition of 

organic matter, all vials were tested within 24 h. Root metabolites were analyzed as six biological 

replicates. The metabolites were analyzed by the GC-MS. The column temperature was programmed 

as follows: initial temperature was set at 70 °C for 4 min, raised to 300 °C with the gradient of 15 

°C·min−1, and held for 5 min. The m/z values were monitored in full scan mode ranging from 33 to 

600.

Text S5. Illumina-based 16S rDNA gene sequencing. 

The PCR was conducted in triplicate using the following program: 3 min of denaturation at 95 

°C, 27 cycles of 30 s at 95 °C, 30 s for annealing at 55 °C, and 45 s for elongation at 72 °C, and a 

final extension at 72 °C for 10 min. The reaction solution (20 μL) contained 4 μL of 5× FastPfu buffer, 

2 μL of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of FastPfu polymerase, and 10 ng of 

the template DNA. The resulting PCR products were extracted with a 2% agarose gel and further 

purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, USA). Quantification was 

done using QuantiFluor-ST according to the manufacturer’s protocol. Finally, purified amplicons 

were pooled in equimolar amounts and were paired-end sequenced (2 × 300) on an Illumina MiSeq 

platform (Illumina, USA) according to the standard protocols by Majorbio Bio-Pharm Technology 

Co. Ltd., China.

Text S6. Soil microbial community functions. 

For the metabolic function analysis of soil microbial community, 1.0 g of soil was added into 

100 mL of sterilized PBS solution, and the mixed solution was shaken at 200 rpm and 25 ℃ for 30 

min. After 30 min of settling, 180 µL of supernatant were added to microplates. Biolog ECO 

microplates (Biolog Inc., USA) with 96 wells containing 31 carbon sources in triplicates and three 

wells without carbon sources were used. The carbon sources consisted of six carbon substrate groups 



S5

(carbonhydrates, carboxylic acids, amino acids, polymers, phenols, and amines) and are shown in 

Table S2. Each microplate well also contained a colorless tetrazolium dye, which can be reduced to 

a purple formazan when the carbon source is utilized by microorganisms. The different color shades 

reflect the differences in the utilization of carbon sources. The Biolog ECO microplates were 

incubated at 25℃ for 7 days before evaluation. Absorbances were recorded at 590 nm (color + 

turbidity) and 750 nm (turbidity) with a microplate spectrophotometer (infinite M200 pro, Tecan, 

Switzerland). The two indexes were calculated by equations 1 and 2, where Ci is the difference in 

absorbance between 590 and 750 nm from the wells containing carbon sources, and R is the difference 

of the blank without carbon sources.

              (1)
U = (∑(Ci - R)2)  

       (2)

H' =-∑( Ci - R

∑(Ci - R)
× ln

Ci - R

∑(Ci - R)
 )

Text S7. Isolation and identification of PCB-degrading bacteria.

The microorganisms used in this study were isolated from the rhizosphere of alfalfa which had 

grown for 4 months in the PCB28-contaminated soil. According to the previous method,7,8 a mixture 

of 1 g of soil, 100 mg of biphenyl, and 100 mL of liquid mineral medium (MM) was incubated (150 

rpm) at 28 °C. The bacterial suspension was transferred every 7 days for three times to ensure purity. 

The MM solution consists of 0.20 g·L-1 MgSO4, 0.02 g·L-1 CaCl2, 0.36 g·L-1 KNO3, 2.8 g·L-1 KH2PO4 

and 6.7 g·L-1 K2HPO43H2O. The isolated microorganisms were then introduced into Luria-Bertani 

(LB) broth and cultured in an incubator shaker (150 rpm, 37°C) for 24 h. The LB broth consisted of 

5 g·L-1 yeast extract, 10 g·L-1 tryptone, and 10 g·L-1 NaCl. The bacteria in the broth were collected 

after centrifugation (3000g, 10 min) and cleaned with PBS solution three times for the following 

assays. The PBS solution consisted of 6.71 g·L-1 K2HPO4·3H2O and 2.80 g·L-1 KH2PO4. The 

synthetic root exudates consist of D-fructose (9.0 mg·L-1), D-glucose (9.0 mg·L-1), sucrose (17.1 

mg·L-1), succinic acid (3.0 mg·L-1), L-malic acid (3.4 mg·L-1), L-arginine (2.2 mg·L-1), L-serine (1.3 
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mg·L-1) and L-cysteine (1.5 mg·L-1).9 All solutions were sterilized by autoclaving at 121 °C for 20 

min before the assays were conducted.

Bacterial physiological, morphological, and biochemical characteristics were measured using a 

published method.8 The gram staining picture was taken with an optical microscope (DM6MLIBS, 

Leica, Germany). Transmission electron microscopy (TEM) images were obtained from a JEM-1230 

tem (JEOL, Japan). 16S rDNA was amplified and analyzed for identification. The bacterial cells were 

collected by centrifugation at 5000g for 3 min and washed twice with sterile water and the genomic 

DNA was extracted using an E.Z.N.A. bacterial DNA kit (Omega Bio-Tek, Norcross, GA). 16S 

rDNA was amplified by polymerase chain reaction (PCR) with oligonucleotide primers 27F (50-

AGAGTTTGATCCTGGCTCAG-30) and 1492R (50-TACGGCTACCTTGTTACGACTT-30). The 

PCR were performed with denaturation at 94 °C for 5 min, followed by 30 cycles at 94 °C for 30 s, 

55 °C for 30 s, 72 °C for 90 s, and a final extension at 72 °C for 10 min. The PCR product was 

sequenced by the Invitrogen Corporation Shanghai Representative Office. Sequences were compared 

with the 16S rDNA gene database with BLAST at National Center for Biotechnology Information 

(NCBI) public database (http://blast.ncbi.nlm.nih. gov/Blast.cgi). A phylogenetic tree was generated 

by the neighbor-joining method using MEGA version 7.

Text S8. Cell viability and hydroxyl radical measurements.

Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenynyl 

tetrazoliumbromide (MTT) assay kit (Nanjing Jiancheng, China).10 Cells were seeded in triplicate on 

96-well plates at a density of 1.0×104 cells per well, followed by addition of 10 L of 1 mg·L-1 MTT 

and incubation at 37 °C for 4 h. After discarding the media, 200 L of dimethyl sulfoxide were added 

to solubilize the blue MTT-formazan product. The optical density of the culture solution in the plate 

was measured at 570 nm using a microplate reader (infinite M200 pro, Tecan, Switzerland). The 

production of •OH was determined using the fluorescence probing technique with coumarin.11 

Briefly, 5 mL of the collected samples were added to 5 mL of 1.5 mM coumarin. After 0, 2, 4, 8, 16, 

and 24 h, 0.2 mL of methanol was added to terminate the reaction. The concentration of •OH was 
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obtained by measuring 7-hydroxylcoumarin, a strongly luminescent product, using a microplate 

reader (infinite M200 pro, Tecan, Switzerland) at 350/460 nm of the excitation/emission wavelengths. 

The total amount of •OH produced was estimated as [7-hydroxylcoumarin]/14.5%.12 The detection 

limit of •OH using this method was 0.09 μM. All reagents were chromatographic grade and obtained 

from J&K Scientific Ltd, China.
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Fig. S1 The crystal structures of nZVI and Fe3O4 nanoparticles. The number after each Fe 

species in the figure is its percentage content.
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Fig. S2 The effects of nZVI (0, 10, 100, and 1000 mg kg-1) on the content of active and residual Fe 

in the leaves, stems, and roots of alfalfa cultivated in PCB180-contaminated soil for 120 days. The 

bars indicate the mean  standard deviation.
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Fig. S3 The effects of nZVI on (a and b) active and (c and d) total Fe content in (a and c) PCB28- 

and (b and d) PCB180-contaminated soils after 120 d. The Fe concentrations are given as mean  

standard deviation. Different letters indicate significantly differences at p<0.05 (one-way ANOVA).
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Fig. S4 Proposed PCB28 and PCB180 dechlorination pathways in soil.
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significant differences at p<0.05 (one-way ANOVA). 
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ig. S6 (a) Hierarchical clustering heatmap, (b) metabolism pathway analysis, and (c) schematic 

diagram of root metabolites in alfalfa cultivated in PCB180-contaminated soils with 0, 10, 100, or 

1000 mg·kg-1 nZVI. In panel (b), every circle represents a metabolic pathway, and the log of the p-

value was from the enrichment analysis (the redder the circle, the larger the difference) and the 

pathway impact value was from the topology analysis (the larger the circle, the more impact). In panel 

(c), red and blue represent metabolites that increased and decreased in 1000 mg·kg-1 nZVI-treated 

roots compared with the control, respectively.
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Fig. S9 (a) The McIntosh index and Shannon-Wiener diversity index, (b) a trained neural network, 

and (c) the ability of the microbiome to metabolize each carbon source in PCB180-contaminated soil. 

In panel (a), the bars indicate the mean  standard deviation; different letters indicate significant 

differences at p<0.05 (one-way ANOVA). In panels (a, b), alfalfa-planted soil is labeled as P, 

unplanted soil is labeled as U, the numbers following P or U represent nZVI concentrations. In panel 

(c), red and blue indicate absorbance value increases and decreases, respectively.
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Fig. S10 The abilities of microbial communities to metabolize carbon source in PCB28-contaminated 

soil with control (CK), 1000 mgkg-1 nZVI, and 1000 mgkg-1 Fe3O4 nanoparticles. In panel, alfalfa-

planted soil is labeled as P, unplanted soil is labeled as U. The bars indicate the mean  standard 

deviations; different letters indicate significant differences at p < 0.05 (one-way ANOVA).
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Fig. S11 Neighbor-joining algorithm tree of partial 16S rDNA gene sequences. The numbers 

at the branch nodes are bootstrap values based on 1000 re-samplings for maximum likelihood.
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Fig. S12 (a) Gram staining and (b) TEM image of the degradation bacteria cells.

Fig. S13 The oxidation products of PCB28 identified by gas chromatography-mass spectrometry.
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Fig. S14 Cellular survival rates in the simulated environment with PCB28 contamination. The bars 

indicate the mean  standard deviation 
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Supporting Tables

Table S1. Chemical composition of sampled agricultural soil.

Parameters Mean Standard deviation

pH 6.08 0.01

N (%) 0.20 0.01

C (%) 1.84 0.07

S (%) 0.05 0.00

H (%) 0.27 0.03

O (%) 5.46 0.20

MgO (%) 0.52 0.00

Al2O3 (%) 12.04 0.03

SiO2 (%) 71.43 0.03

K2O (%) 3.19 0.01

CaO (%) 0.65 0.01

Fe2O3 (%) 3.56 0.01
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Table S2. Distribution and classification of the 31 types of carbon sources in Biolog ECO microplate.

Serial number 1, 5, and 9 2, 6, and 10 3, 7, and 11 4, 8, and 12

A Water -Methyl-D-glucoside3 D-Galactonic acid γ-lactone3 L-Arginine2

B Pyruvic acid methyl ester4 D-Xylose3 D-Galacturonic acid4 L-Asparagine2

C Tween 406 i-Erythritol3 2-Hydroxy benzoic acid5 L-Phenylalanine2

D Tween 806 D-Mannitol3 4-Hydroxy benzoic acid5 L-Serine2

E -Cyclodextrin6 N-Acetyl-D-glucosamine3 γ-Hydroxy butyric acid4 L-Threonine2

F Glycogen6 D-Glucosaminic acid4 Itaconic acid4 Glycyl-L-Glutamic acid2

G D-Cellobiose3 Glucose-1-phosphate3 -Keto butyric acid4 Phenylethylamine1

H -D-Lactose3 D, L--Glycerol phosphate3 D-Malic acid4 Putrescine1

Note: A-H and 1-12 are the column and line numbers of the 96-well Biolog ECO microplate, respectively; the superscript numbers 1-6 in the table 
classify the corresponding carbon sources into amines, amino acids, carbohydrates, carboxylic acids, phenolic compounds, and polymers, respectively.


