Supporting Information

Fate of copper in soil: effect of agrochemical (nano)formulations and soil properties

Melanie Kah^{1*}, Divina Navarro^{2,3}, Walter Schenkeveld⁴, Rai S Kookana^{2,3}, Jason K Kirby², Swadeshmukul Santra^{5,6}, Ali Ozcan^{5,6,7}

¹The University of Auckland, School of Environment, 23 Symonds street, Auckland 1010, New Zealand

²CSIRO Land & Water, Industry Environmentals Program, PMB 2 Glen Osmond, SA 5064, Australia

³University of Adelaide, School of Agriculture, Food and Wine, PMB 1, Glen Osmond 5064, Australia.

⁴Wageningen University, Soil Chemistry and Chemical Soil Quality, P.O. Box 47, 6700 AA Wageningen, The Netherlands

⁵NanoScience Technology Center, Department of Chemistry, University of Central Florida, Orlando, US

⁶Department of Materials Science and Engineering and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, US

⁷Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey

*melanie.kah@auckland.ac.nz

Contents

Table S1. Parameters derived by nonlinear curve fitting	.S2
Table S2. Multi-surface equilibrium modelling parameters and predictions	.S3

Figure S1. Extractable Cu over a 29 days incubation for three soils (S1-S3)	.S4
Figure S2. pH measured in CaCl $_2$ 0.01M suspensions (soil comparisons).	.S5
Figure S3. pH measured in CaCl ₂ 0.01M suspensions (t=0 vs t=29 days)	.S6
Figure S4. Free Cu^{2+} concentration in equilibrium with $Cu(OH)_2(s)$ and $Cu_2(OH)_2CO_3(s)$.S7

Table S1. Parameters derived by nonlinear curve fitting with a pseudo first order kinetics (one phase association)

$y_t = y_0 + (plateau - y_0) \times (1 - e^{-kt})$
--

S1	Si50	Si500	CuSO ₄	Tribasic*	nCuO	Kocide	Cu(OH)₂	ChampDP	GO
Y ₀ (mg/kg)	0.132	0.121	0.150	0.193	0.011	0.096	0.124	0.175	0.044
Plateau (mg/kg)	0.074	0.080	0.075	~ -62.90	0.053	0.051	0.059	0.076	0.025
k (day ⁻¹)	0.325	0.333	0.403	~ 4.630e-005	0.064	0.418	0.418	0.660	0.373
Half-time (day)	2.131	2.081	1.721	~ 14971	10.880	1.657	1.657	1.050	1.858
R ²	0.973	0.855	0.967	0.598	0.973	0.962	0.954	0.937	0.932

*ambiguous fit

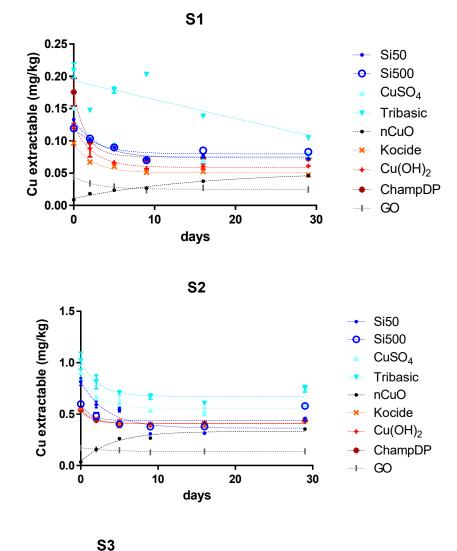
S2	Si50	Si500	CuSO₄	Tribasic	nCuO	Kocide	Cu(OH)₂	ChampDP	GO
Y ₀ (mg/kg)	0.815	0.599	0.903	1.020	0.040	0.560	0.544	0.541	0.173
Plateau (mg/kg)	0.364	0.436	0.557	0.673	0.332	0.409	0.410	0.411	0.135
k (day ⁻¹)	0.295	0.780	0.518	0.455	0.238	0.621	0.666	0.791	0.270
Half-time (day)	2.348	0.888	1.337	1.523	2.915	1.117	1.041	0.877	2.566
R ²	0.858	0.408	0.892	0.832	0.969	0.863	0.876	0.883	0.852

S3	Si50	Si500	CuSO ₄	Tribasic	nCuO	Kocide	Cu(OH)₂	ChampDP	GO
Y ₀ (mg/kg)	0.101	0.097	0.094	0.145	0.012	0.072	0.108	0.114	0.045
Plateau (mg/kg)	0.047	0.045	0.043	0.051	0.034	0.033	0.046	0.048	0.021
k (day ⁻¹)	0.250	0.319	0.227	0.179	0.211	0.338	0.318	0.265	0.257
Half-time (day)	2.776	2.175	3.053	3.884	3.286	2.049	2.179	2.614	2.697
R ²	0.980	0.974	0.982	0.978	0.952	0.978	0.959	0.960	0.982

		Soil model				Solution model		
Soil	рНª	Reactive Cu	Cu-OM	Cu- FeOx	log free Cu ²⁺	log free Cu ²⁺	Plateau/ Cu-CaCl₂ at t=∞	Predicted equilibrium CaCl ₂ -extractable Cu conc.
		(mg kg ⁻¹)	%	%			(mg kg⁻¹) ^b	(mg kg ⁻¹) ^c
No ac	dded Cu							
S1	6.92	0.21	100.00	0.00	-13.6	-10.8		
S2	5.54	2.17	99.83	0.17	-9.1	-9.2		
S3	5.89	4.08	99.99	0.01	-11.8	-11.0		
With	<u>Cu appli</u>	<u>cation</u>						
S1	6.4	50.21	92.06 ^d	7.67	-6.5	-7.3	0.06	0.26
S2	5.0	52.17	97.07	1.52	-5.8	-6.2	0.41	0.76
S3	6.1	54.08	99.34	0.66	-9.2	-8.9	0.04	0.04

Table S2. Multi-surface equilibrium modelling parameters and predictions

^apH value measured for each soil in CaCl₂; Lower pH value measured in each soil at t=29 days (see Figure S2 and S3)

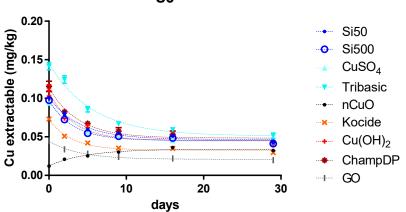
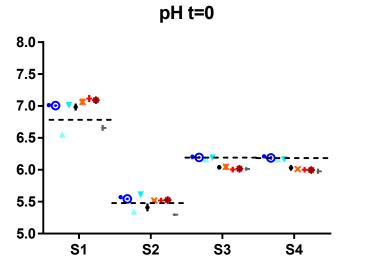
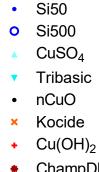

^bDerived from fitting the kinetics. Average value for the nine formulations considered

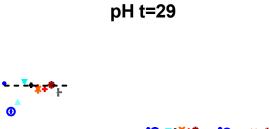
^cPredicted equilibrium CaCl₂-extractable Cu concentration; determined by predicting the free Cu²⁺ concentration using the Soil model, and implementing this free Cu²⁺ concentration into the solution model to predict the total dissolve Cu concentration. (This is the inverse modelling route as by which the free Cu²⁺ concentration was determined from the measured total Cu concentration in CaCl₂ extracts at 28 days) ^dPercentages do not add up to 100% because of the contribution of Cu not associated with soil organic matter and Fe(hydr)oxide minerals (e.g. Cu²⁺ (aq), Cu(OH)⁺(aq)) to the total reactive Cu pool.

- Before Cu amendment, the Soil and Solution models are in reasonable agreement (within 1 log unit) for S2 and S3.
- For S1, the Soil model underestimates the free Cu concentration computed by the Solution model (2.8 log units). The cause for the discrepancy is unclear.
- After Cu amendment, the Soil and Solution models are again in good agreement for S2 and S3 (up to 0.4 log units difference).
- The Soil model for S1 overestimates the free Cu concentration in solution by 0.8 log units.
- A possible explanation for the overestimation could be of Cu-bearing minerals. However, Figure S4 showing the free Cu²⁺ concentration in equilibrium with Cu(OH)₂ and Cu₂(OH)₂CO₃ as a function of pH suggests that precipitation is unlikely to play an important role under the conditions measured in S1. The reasons why the model overestimated the dissolved Cu thus remain uncertain.
- The CaCl₂ extractable concentration at t=∞ from the kinetic model (Plateau) and the predicted equilibrium CaCl₂-extractable Cu concentration are in reasonable agreement, with a difference by a factor of 4.2 for S1, 1.8 for S2 and 1.1 for S3. The ranking of the measured Cu concentrations corresponds with the modelled results (i.e. higher Cu concentration in S2 than in S3).

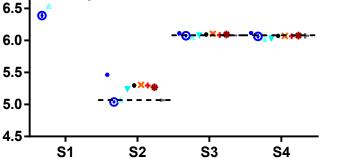
Figure S1. Extractable Cu over a 29 days incubation for three soils (S1-S3) spiked with nine different forms of Cu.

Results are expressed in mg/kg (data on Figure 1 are in % of Cu added). Error bars are the standard deviation between triplicates (often smaller than the symbols). The dashed lines are fits with a one-phase association model. Fitted parameters are presented in Table S1.


Figure S2. pH measured in $CaCl_2 0.01M$ suspensions after the addition of different forms of Cu.

The dashed line shows the pH of soil controls, which did not receive Cu additions. Error bars are for triplicates (often smaller than the symbols)



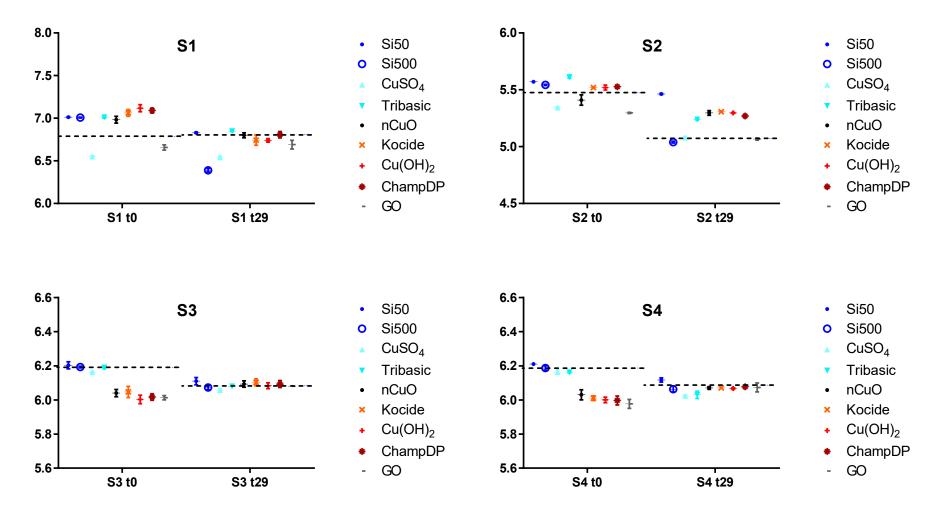
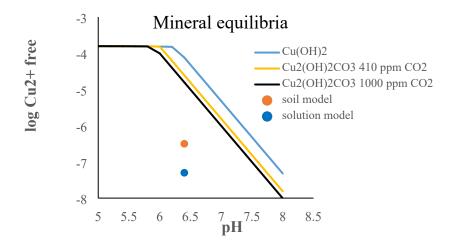
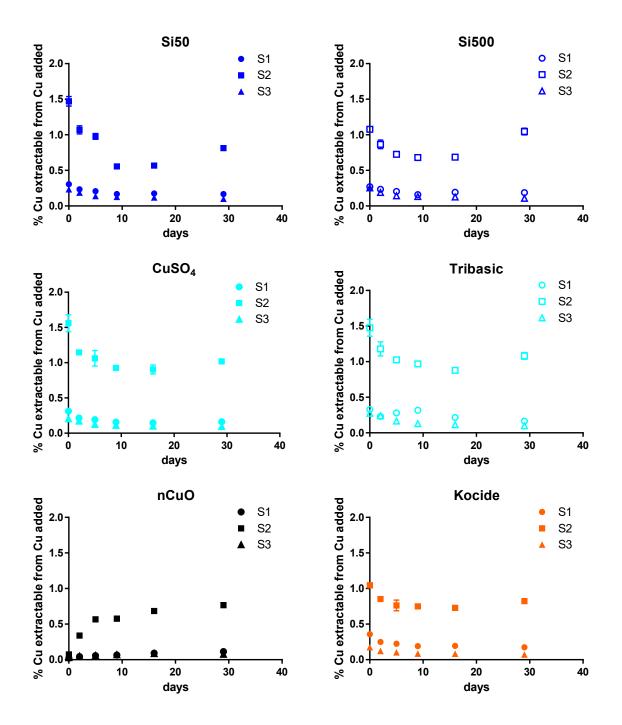
7.5-

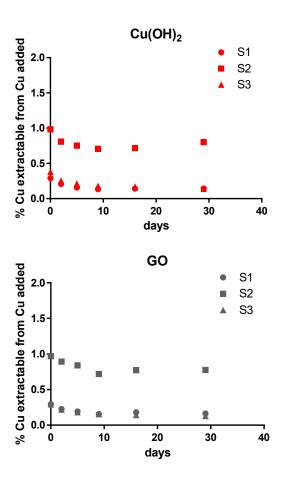
7.0

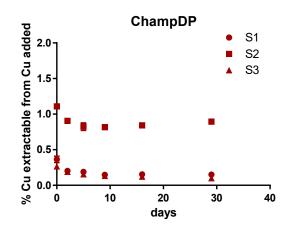
- Si50Si500
- CuSO₄
- Tribasic
- nCuO
- × Kocide
- Cu(OH)₂
- ChampDP
- GO

Figure S3. pH measured in CaCl₂ 0.01M suspensions after the addition of different forms of Cu.

The dashed line shows the pH of soil controls, which did not receive Cu additions. The data is the same as Figure S2 but allows an easier comparison between pH values measured at t=0 and t=29. Error bars are for triplicates (often smaller than the symbols).


Figure S4. Free Cu^{2+} concentration in equilibrium with $Cu(OH)_2(s)$ and $Cu_2(OH)_2CO_3(s)$ as a function of pH.



For $Cu_2(OH)_2CO_3(s)$, two gas phase CO_2 concentrations (410 ppm (=atmospheric) and 1000 ppm) were included. 10 mM CaCl₂ was included as background electrolyte. The maximum Cu concentration equals the total reactive Cu concentration in S1 after Cu addition (1.57 10^{-4} M). The predictions of the free Cu^{2+} concentration in S1 after application of the Cu treatments by the soil and the solution model (indicated with the orange and blue dot, respectively) are well below the concentrations in equilibrium with the minerals. This suggests that these Cu-bearing minerals did not form (and limit the free Cu^{2+} concentration) as a result of Cu application.

Figure S5. CaCl₂-extractable Cu over a 29 days incubation for three soils (S1-S3) spiked with nine different forms of Cu. Results are expressed as the % of Cu added. Error bars are the standard deviation between triplicates (often smaller than the symbols). The data is the same as that presented to Figure 1 in the main document.

