Using nanoselenium to combat Minamata Disease in rats: The regulation of gut microbes

Yang Liu,^{a,b#} Wei Zhang,^{c,b,d#} Jiating Zhao,^{b,d} Xiaoying Lin,^{e,b} Liming Wang,^{b,d} Liwei Cui,^{b,d} Junfang Zhang^{f*}, Bai Li,^b Yu-Feng Li^{b,d,*}

- ^a Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China;
- ^b CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
- ^c State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China;
- ^d University of the Chinese Academy of Sciences, Beijing 100049, China;
- ^e Jilin Medical University, Jilin 132013, China;
- f Guizhou Institute of Environmental Science and Designing, Guiyang 550081, Guizhou, China
- # These authors contribute equally to this work.
- * Corresponding authors: Yu-Feng Li, E-mail: liyf@ihep.ac.cn, Tel: +86-10-88233908; Junfang Zhang, E-mail: 7385969@qq.com.

Supplemental File

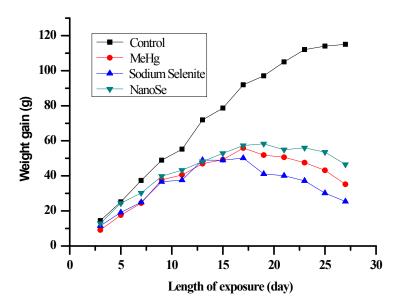


Figure. S1 Changes in body weight of rats during exposure

Control: the control group, MeHg: the MeHg-poisoned group, Sodium Selenite: the MeHg-poisoned+sodium selenite group and NanoSe: the MeHg-poisoned+nanoSe group

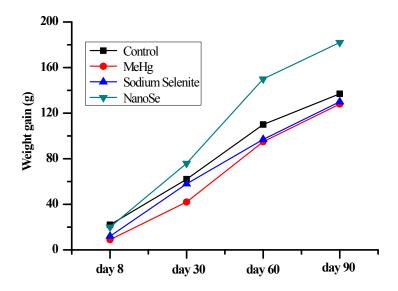


Figure. S2 Weight change after Se treatment

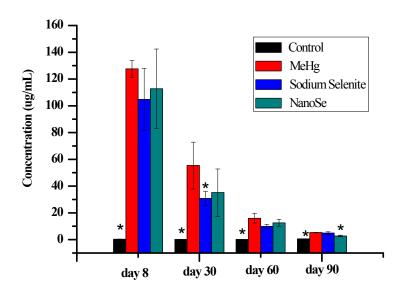


Figure. S3 Total mercury content in red blood cells

* Indicates that compared with the MeHg-poisoned group, P<0.05

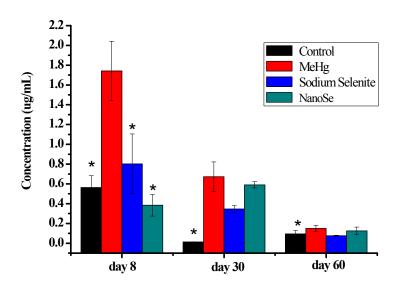


Figure. S4 Total mercury content in serum

^{*} Indicates that compared with the MeHg-poisoned group, P<0.05

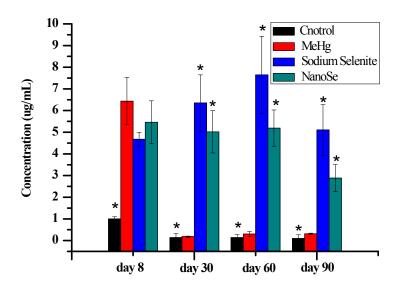


Figure. S5 Selenium content in red blood cells

* Indicates that compared with the MeHg-poisoned group, P<0.05

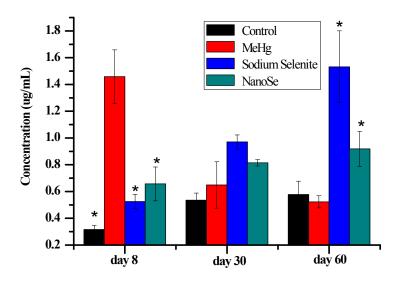


Figure. S6 Serum selenium content

^{*} Indicates that compared with the MeHg-poisoned group, $P \le 0.05$

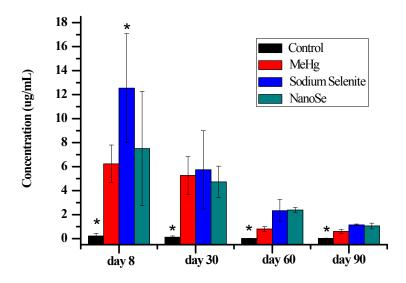


Figure. S7 Total mercury content in the brain

* Indicates that compared with the MeHg-poisoned group, P<0.05

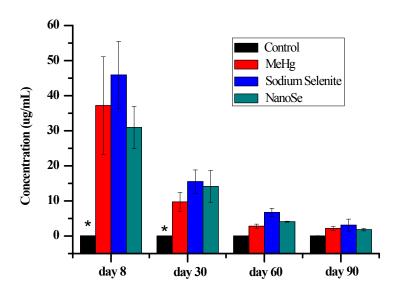


Figure. S8 Total mercury content in liver

Control: the control group, MeHg: the MeHg-poisoned group, Sodium Selenite: the MeHg-poisoned+sodium selenite group and NanoSe: the MeHg-poisoned+nanoSe group

* Indicates that compared with the MeHg-poisoned group, $P \le 0.05$

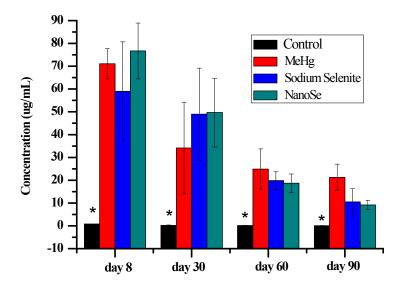


Figure. S9 Total mercury content in the kidney

* Indicates that compared with the MeHg-poisoned group, P<0.05

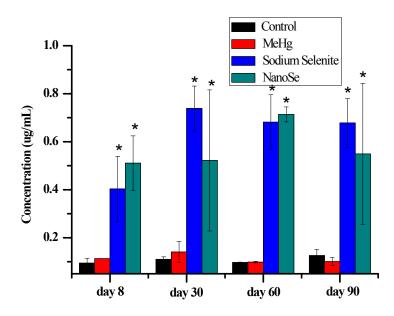


Figure. S10 Total selenium content in the brain

Control: the control group, MeHg: the MeHg-poisoned group, Sodium Selenite: the MeHg-poisoned+sodium selenite group and NanoSe: the MeHg-poisoned+nanoSe group

* Indicates that compared with the MeHg-poisoned group, P<0.05

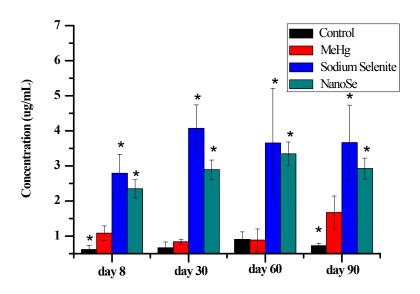


Figure. S11 Total selenium content in liver

* Indicates that compared with the MeHg-poisoned group, $P \le 0.05$

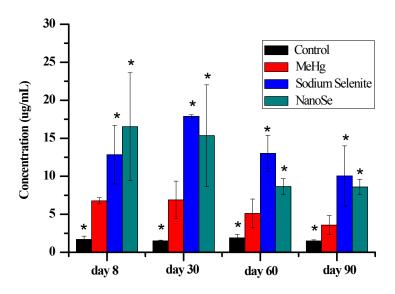
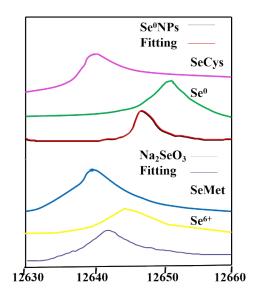



Figure. S12 Total selenium content in kidney

^{*} Indicates that compared with the MeHg-poisoned group, $P \le 0.05$

Figure. S13 The chemical forms of Se in the small intestine walls studied by XANES. Se was mainly in the form of SeCys and Se⁰ in the Se⁰NPs group while it was SeMet and Se⁶⁺ in the Na₂SeO₃ group.