1 Electronic supplementary information

2 Nano-goethite-mediated transformation of anthracene derivatives under low

3 moisture conditions

- 4 Pengfei Cheng, ^a Wei Zhang, ^b Xuqiang Zhao, ^a Bing Yang ^a and Yanzheng Gao ^{a*}
- 5 ^a Institute of Organic Contaminant Control and Soil Remediation, College of Resources
- 6 and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- 7 ^b Department of Plant, Soil and Microbial Sciences, and Environmental Science and
- 8 Policy Program, Michigan State University, East Lansing, Michigan 48824, United
- 9 States
- 10 *Corresponding author: Yanzheng Gao, Dr/Prof
- 11 Tel: +86-2584395019
- 12 ORCID No.: 0000-0002-3814-3555
- 13 E-mail: gaoyanzheng@njau.edu.cn, gaosoil@163.com
- 14 **Contents:**
- 15 S1. Supplemental methods
- 16 S2. Supplemental results
- 17 18 pages, 9 figures, 5 tables
- 18
- 19

21 S1. Supplemental methods

22 Nao-goethite synthesis

The Goe-03 nano-goethite sample was synthesized as follows. Five mL of 5 M KOH was mixed with 250 mL of 0.1 M Fe(NO₃)₃·9H₂O in a beaker under magnetic stirring. The mixture was aged at 60 °C for 70 h. Next, the cooled mixture was transferred into a dialysis tube (MD34 (7000)), which was then placed into a 2-L beaker filled with ultrapure water. The ultrapure water was replaced 10 times each day until the conductivity was less than 1.0 μ S·cm⁻¹. The product was dried at 80 °C for 4 h, and then at 50 °C for 2 h.

The Goe-02 nano-goethite sample was synthesized by reacting 30 mL of 0.5 M 31 Fe(NO₃)₃·9H₂O with 125 mL of 2.5 M KOH, followed by aging at 60 °C for 100 h. The 32 aged suspension was washed as abovementioned and then dried at 40 °C overnight to 33 obtain the final product.

The Goe-01 nano-goethite sample was synthesized by adding rapidly 180 mL of 5 M KOH to 100 mL of 1 M Fe(NO₃)₃·9H₂O under magnetic stirring, followed by immediate dilution of to 2 L with ultrapure water and subsequent aging at 70 °C for 60 h. The aged suspension was washed and dried as abovementioned.

38 Nao-goethite characterization

39 Specific surface areas of the nano-goethite samples were measured by the 40 Brunauer-Emmett-Teller (BET) gas adsorption isotherms with water vapor using a 41 surface area and porosimetry analyzer (Micromeritics ASAP 2460). The water vapor

adsorption curves and gravimetric water content for each sample at 20 °C were obtained 42 at vapor pressure of P/P₀=0–0.1. X-ray diffraction (XRD) analysis was performed using 43 a Bruker Discover diffractometer operating at 40 kV and 40 mA with Cu Ka radiation 44 $(\alpha = 1.54 \text{ Å})$ in a 20 range from 5° to 80° at a scan rate of 0.05°/s. The morphological 45 features of nano-goethite were observed using a transmission electron microscope 46 system (JEM-2100; JEOL, Tokyo, Japan) at 200KV. The nano-goethite were mixed 47 48 with KBr on a mass ratio of 1:100 before analysis using a FTIR spectrometer (Nicolet NEXUS870; Thermo Scientific). 49

50 Electron paramagnetic resonance (EPR) measurements

All samples were analyzed at room temperature with an X-band microwave frequency of 9.81 GHz, and microwave power of 20.0 mW. The instrument and operating parameters were set as follows: at center field, 3503 G; sweep width, 200 G; resolution of 1024 points; receiver gain of 3.17×10^3 ; modulation frequency of 100 kHz; modulation amplitude, 1 G; time constant, 39.06 ms; sweep time, 40.00 s.

56 Calculation of water film coverage

The theoretical length of three sides in a water molecule were calculated as 3.97, 3.27 and 3.04 Å, and three van der Waals molecular surface area are 9.95, 12.06 and 12.99 Å². Thus, the total areas of water molecules in 1.0 g of goethite were 160–209, 223–291, 283–369, 483–621 m² at 4.8%, 6.7, 8.5% and 14.5% water content. According to the BET specific surface area (138 m²/g) of nano-goethite (Goe-03), it is roughly estimated that mono-layer water film may form on the surface of nano-goethite with

- 63 $\,$ 4.8% and 6.7% water content. By contrast, at 8.5% and 14.5% water content multi-layer
- 64 water film may cover the surface of nano-goethite.

66 S2. Supplemental Results

68

69 Fig. S1 (a) TEM images showing aggregation of goethite nanorods in 87.0 nm (1, 2)

70 Geo-01 sample, (3), (4) 22.7 nm Geo-02 sample, (5), (6) 11.1 nm Geo-03 sample.

71 (b) XRD patterns of nano-goethite samples of different sizes.

Fig. S2 FITR spectra of nano-goethite samples of different sizes.

77 Fig. S3 Transformation kinetics of ANT and ANT derivatives on nano-goethite (Goe-

78 03) at different water content and 20 $^{\circ}$ C. The kinetic data were fitted to the first-order

79 kinetic model, and the fitting parameters are summarized in Table S3.

82 Fig. S4 Transformation of ANT and ANT derivatives on silica powder with 0.6% water

83 content at 10% relatively humidity and 20 °C.

Fig. S5 (a) Transformation kinetics of 0.5 mmol/kg ANT and ANT derivatives on Goe-01, Goe-02, and Goe-03 nano-goethite samples with water content of 2.3%, 3.1%, and 4.8%, respectively. (b) The transformation kinetics were fitted to the first-order kinetic model, and the fitting parameters are summarized in Table S4.

91 Fig. S6 (a) Fukui functions of 9-NH₂-ANT, 9-CH₃-ANT, 2-CH₃-ANT, 2-Cl-ANT, 9-Cl-

92 ANT and 9,10-DiCl-ANT. (b) Mulliken atomic spin densities of 9-NH₂-ANT, 9-CH₃-

93 ANT, 2-CH₃-ANT, 2-Cl-ANT, 9-Cl-ANT and 9,10-DiCl-ANT.

96 Fig. S7 (a) The first-order rate constants of 9-NH₂-ANT, 9-CH₃-ANT, ANT, 9-Cl-ANT,
97 and 9-NO₂-ANT as function of HOMO energy. (b) The first-order rate constants of 998 NH₂-ANT, 9-CH₃-ANT, 9-Cl-ANT, and 9-NO₂-ANT as function of Hammett constants
99 of their substitution groups.

102 Fig. S8 (a) GC-MS chromatograms of 1:1 acetone/dichlormethane extract of
103 Goethite/ANT, 2-Cl-ANT, 2-CH₃-ANT reaction mixture after 1 d, 4 d, and 8 d. (b) GC104 MS chromatograms of transformation products (9,10-anthraquinone, 2-Cl-9,10105 anthraquinone, 2-CH₃-9,10-anthraqunione).

108Fig. S9EPR spectra of original nano-goethite and nano-goethite reacted with ANT for1090.5,1,and2d,andwithANTderivativesfor1d.

		Boiling		Vapor	Solubility
Compounds	Formulae	point (°C)	$Log K_{ow}$	pressure	$(mg L^{-1})$
				(mmHg)	(1115 2)
9-aminoanthracene	$C_{14}H_{11}N$	402.2±14.0	3.43	4.05E ⁻⁰⁰⁶	4.3430
9-methylanthracene	$C_{15}H_{12}$	347.2±0.0	5.07	4.00E ⁻⁰⁵	0.2610
2-methylanthracene	$C_{15}H_{12}$	353.5±9.0	5.00	5.34E ⁻⁰⁶	0.0213
anthracene	$C_{14}H_{10}$	337.4±9.0	4.45	6.53E ⁻⁰⁶	0.0434
2-chloroanthracene	C ₁₄ H ₉ Cl	370.1±11.0	4.99	2.56E ⁻⁰⁰⁵	0.1601
9-chloroanthracene	C ₁₄ H ₉ Cl	370.1±11.0	4.99	2.56E ⁻⁰⁰⁵	0.1601
9-nitroanthracene	$C_{14}H_9NO_2$	402.9±14.0	1.96	5.09E ⁻⁰¹⁴	53.5100
9,10-dichloroanthracene	$C_{14}H_8Cl_2$	401.3±18.0	5.63	6.20E ⁻⁰⁰⁶	0.0294
9,10-anthraquinone	$C_{14}H_8O_2$	377.0±12.0	3.39	1.16E ⁻⁰⁰⁷	3.9230
2-methyl-9,10-anthraquinone	$C_{16}H_{12}O_2$	415.4±35.0	4.37	2.67E ⁻⁰⁰⁶	0.4049
2-chloro-9,10-anthraquinone	C ₁₄ H ₇ ClO ₂	425.7±34.0	3.99	2.36E-006	0.7905

110 Table S1. Physical and chemical properties of ANT, ANT derivatives and

111 transformation products.

112 Note: the boiling point, $\log K_{ow}$, vapor pressure, and solubility values for ANT, ANT derivatives and

113 degradation products were form <u>http://www.chemspider.com/</u>.

116	limits of ANT and AN	JT derivatives for	r the extra	action and analy	tical met	hods in this
117	study.					
	Comercia	0.50 mm	ol/kg	0.05 mm	Detection limit	
	Compounds	Recovery %	RSD	Recovery %	RSD	ug/L
	9-NH ₂ -ANT	97.37	5.80	96.62	1.74	0.53
	9-CH ₃ -ANT	96.13	3.34	96.61	2.89	0.12
	2-CH ₃ -ANT	99.19	2.01	96.19	1.82	0.05
	ANT	100.98	4.53	98.29	4.09	0.15
	2-Cl-ANT	100.78	2.00	98.33	3.57	0.19
	9-Cl-ANT	99.69	1.83	98.96	1.42	0.26
	9-NO ₂ -ANT	105.90	0.66	97.50	1.55	0.21

1.42

2.42

2.50

1.78

96.9

97.35

96.83

96.19

1.80

5.64

6.11

4.56

104.43

97.92

97.99

98.04

9,10-DiCl-ANT

9,10-anthraquinone

2-CH₃-9,10-anthraquinone

2-Cl-9,10-anthraquinone

_

0.40

2.00

2.71

2.24

115 **Table S2**. The recovery percentage, relative standard deviation (RSD), and detection

	4.8%				6.7%			8.5%			14.5%					
Compounds		<i>k</i> /d ⁻¹		R ²	k	/d-1	-	R ²	<i>k</i> /d ⁻	1	ŀ	R ²	<i>k</i> /d	l ⁻¹	R ²	2
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
9-NH ₂ -ANT	3.681	0.034	0.998	0.001	1.815	0.008	0.976	0.0004	0.907	0.008	0.985	0.001	0.346	0.003	0.975	0.002
9-CH ₃ -ANT	2.941	0.152	0.986	0.005	1.335	0.009	0.991	0.002	0.796	0.013	0.991	0.002	0.339	0.008	0.977	0.009
2-CH ₃ -ANT	1.802	0.018	0.979	0.006	1.113	0.008	0.925	0.001	0.436	0.005	0.964	0.003	0.169	0.006	0.993	0.006
ANT	1.536	0.021	0.972	0.009	0.791	0.008	0.971	0.005	0.285	0.007	0.962	0.006	0.075	0.004	0.948	0.026
2-Cl-ANT	0.858	0.009	0.969	0.002	0.588	0.004	0.982	0.001	0.217	0.002	0.980	0.003	0.050	0.005	0.886	0.015
9-Cl-ANT	0.397	0.004	0.975	0.005	0.147	0.003	0.946	0.010	0.052	0.002	0.902	0.049	0.036	0.002	0.887	0.042
9-NO ₂ -ANT	0.119	0.001	0.993	0.002	0.085	0.003	0.996	0.002	0.051	0.002	0.964	0.012	0.031	0.002	0.936	0.023
9,10-DiCl-ANT	0.069	0.004	0.983	0.009	0.034	0.002	0.962	0.022	0.027	0.007	0.879	0.024	0.014	0.004	0.841	0.066

120 The mean is the average value of the fitted first-order kinetic parameters, and SD is the standard deviation from the triplicate experiments.

119 **Table S3.** The fitted first-order kinetic parameters of ANT and ANT derivatives on nano-goethite (Goe-03) at different water content.

122	Table S4. The fitted first-order kinetic parameters of ANT and ANT derivatives on
123	Goe-01, and Goe-02 nano-goethite samples at water content of 2.3%, and 3.1%,
124	respectively. The mean is the average value of the fitted first-order kinetic parameters,
125	and SD is the standard deviation from the triplicate experiments.

		Go	pe-01		Goe-02				
Compounds	k/d-1		R ²		<i>k</i> /d ⁻¹		Ι	R ²	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
9-NH ₂ -ANT	1.561	0.024	0.995	0.002	1.875	0.026	0.994	0.004	
9-CH ₃ -ANT	1.425	0.021	0.996	0.002	1.816	0.048	0.996	0.002	
2-CH ₃ -ANT	0.872	0.002	0.979	0.002	1.117	0.015	0.972	0.007	
ANT	0.390	0.003	0.980	0.007	0.610	0.010	0.956	0.014	
2-Cl-ANT	0.323	0.008	0.950	0.015	0.494	0.012	0.960	0.007	
9-Cl-ANT	0.175	0.005	0.982	0.006	0.250	0.012	0.965	0.017	
9-NO ₂ -ANT	0.038	0.002	0.964	0.014	0.046	0.003	0.987	0.005	
9,10-DiCl-ANT	0.051	0.002	0.980	0.011	0.053	0.001	0.991	0.005	

	Samples	Phase	QS (mm/s)	IS (mm/s)	H (T)	Area (%)	
	Nova casthita	Fe(II) Doublet	3.55	1.25		2.4	
Nano-goeunte		Fe(III) Sixlet	-0.20	0.26	38.56	97.6	
	Nano-goethite	Fe(II) Doublet	3.38	1.41		5.2	
	+ANT	Fe(III) Sixlet	-0.27	0.25	38.02	94.8	
	Nano-goethite	Fe(II) Doublet	3.06	1.43		4.2	
	+9-NO ₂ -ANT	Fe(III) Sixlet	-0.27	0.25	38.74	95.8	

129 after reaction with ANT and 9-NO₂-ANT.

130 QS: quadrupole splitting; IS: isomer shifts; H: Hyperfine field; Area: relative phase abundance in %.