Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Biomimetically Synthesized Luminescent Tb³⁺-Doped Fluorapatite/Agar Nanocomposite for Detecting UO2²⁺, Cu²⁺, and Cr³⁺ Ions

Figure S1. SEM images of the Tb-HAP/agar sample.

Figure S2. The FT-IR spectra of the Tb-HAP/agar and Tb-FAP agar free samples.

Figure S3. Survey scan of the XPS spectrum of the Tb-HAP/agar sample.

Figure S4. TGA plots of the Tb-HAP/agar and agar samples.

Figure S5. XRD pattern of the Tb-HAP/agar sample accompanying with the standard pattern (PDF#86-0740).

Figure S6. Effect of pH on the fluorescence intensity of Tb-FAP/agar samples.

Figure S7. Luminescence lifetime curves of the Tb-FAP/agar, Tb-FAP agar free and Tb-HAP/agar samples ($\lambda_{ex} = 377 \text{ nm}$ and $\lambda_{em} = 543 \text{ nm}$).

Figure S8. Luminescence intensity ratio of the $\text{Tb}^{3+5}\text{D}_4 \rightarrow {}^7\text{F}_4$ transition (543 nm) of the Tb-FAP/agar sample (2.5 mL) after and before treated with different metal ions. (K⁺, Zn²⁺, Gd³⁺, Ca²⁺, Sr²⁺, La³⁺, Al³⁺, Ce³⁺, Na⁺ ions, 100 uL, 0.01 M), and (UO₂²⁺, Cu²⁺, Cr³⁺ ions, 10 uL, 0.01 M).

Figure S9. Luminescent intensities of the Tb-FAP/agar sample with the increase of storage time (without adding UO_2^{2+} , Cu^{2+} , and Cr^{3+} ions).

Figure S10. The linear fitting relationships between $(I_0 - I)/I_0$ and the concentration of UO₂²⁺, Cr³⁺, and Cu²⁺ ions.

Figure S11. (a) FTIR spectra of the Tb-FAP/agar after treated with UO_2^{2+} , Cu^{2+} and Cr^{3+} . (b) The enlargement of the FTIR spectra in (a) with the wavenumber ranging from 450 cm⁻¹ to 1300 cm⁻¹ to more intuitively indicate the location of the PO₄³⁻ peaks.

Figure S12. SEM images of the Tb-HAP/agar sample after treated with (a) UO_2^{2+} , (b) Cu^{2+} , and (c) Cr^{3+} solutions.

Figure S13. The luminescence spectrum of the Tb-FAP/agar sample and the UV-Vis spectra of $Cu(NO_3)_2 \cdot 3H_2O$, $Cr(NO_3)_3 \cdot 9H_2O$, and $(UO_2)(NO_3)_2$ aqueous solutions.

Table S1. Fitting parameters of the luminescence lifetime curves of the Tb-FAP/agar, Tb-FAP agar free and Tb-HAP/agar samples.

Parameters	$ au_1 (\mu s)$	$ au_2 (\mu s)$	A_1	A_2	τ_{ave} (µs)	\mathbb{R}^2
Tb-FAP/agar	1231.05	2.78	1170.62	9739.76	1208.37	0.9948
Tb-FAP agar free	1193.08	2.95	854	4466.57	1177.91	0.9955
Tb-HAP/agar	1107.45	2.68	292.99	5798.67	1056.97	0.9941

Fitting parameters in Table S1 were obtained by using the following biexponential lifetime decay function:

 $y = A_1 \exp(-x/\tau_1) + A_2 \exp(-x/\tau_2) + y_0$

 τ_{ave} values were calculated according to the equation:

 $\tau_{\rm ave} = (A_1 * \tau_1^2 + A_2 * \tau_2^2) / (A_1 * \tau_1 + A_2 * \tau_2)$

Parameters	$ au_1 (\mu s)$	$ au_2 (\mu s)$	A_1	A_2	$\tau_{\rm ave}$ (µs)	R^2
Tb-FAP/agar	1231.05	2.78	1170.62	9739.76	1208.37	0.9948
$Tb-FAP/agar + 7.2 \\ \mu M Cu^{2+}$	718.00	3.23	566.74	8938.66	670.59	0.9854
Tb-FAP/agar + 5.7 μ M Cr ³⁺	593.46	3.12	457.79	8808.25	539.26	0.9872
Tb-FAP/agar + 20 $\mu M UO2^{2+}$	95.13	2.97	756.81	8815.26	70.55	0.9915

Table S2. Fitting parameters of luminescence lifetime curves in the absence and presence of metallic ion aqueous solutions

Table S3. Average luminescence lifetimes of the Tb-FAP/agar sample in the presence of different metal ions

Metal ions	No ions	Al ³⁺	\mathbf{K}^+	Sr^{2+}	Ca ²⁺	Ce ³⁺	Gd^{3+}
$T_{\rm ave}(\mu s)$	1208.37	1208.49	1211.96	1198.27	1197.53	1188.76	1161.52
Metal ions	La ³⁺	Na ⁺	Zn ²⁺	Cu ²⁺	Cr ³⁺	UO ₂ ²⁺	
$T_{\rm ave}(\mu s)$	1166.84	1136.73	1177.84	670.59	539.26	70.55	

Determination of thee limit of detection (LOD) value:

The LOD values of the UO_2^{2+} , Cr^{3+} , and Cu^{2+} ions were determined based on the luminescence measurements shown in Figure S6. The linear domain of the low concentration range can be fitted as:

For UO_2^{2+} ions: y = 16.937x - 0.634, $R^2 = 0.9870$

For Cu^{2+} ions: y = 34.146x + 1.398, $R^2 = 0.9844$

For Cr^{3+} ions: y = 80.476x - 1.052, $R^2 = 0.9747$

where y is the quenching ratio of luminescence emission intensity $[100 \times (I_0-I)/I_0)]$ at 543 nm, and x is the UO₂²⁺, Cr³⁺, and Cu²⁺ concentration. The standard deviation (σ) is defined as 100 \times (I_{SE}/I_0), where I_{SE} is the standard error of the emission measurement of the solution without the Tb-FAP/agar sample and any ions monitored at 543 nm. I_0 is the luminescence intensity of the Tb-FAP/agar sample in deionized water measured at 543 nm. If defining eleven times of the standard deviation as the detectable signal, the LOD values can be calculated as:

 $3\sigma/\text{slope} (\text{UO}_2^{2+}) = 7.95 \text{ nM} (2.15 \ \mu\text{g/L})$ $3\sigma/\text{slope} (\text{Cu}^{2+}) = 3.94 \text{ nM} (0.25 \ \mu\text{g/L})$

 3σ /slope (Cr³⁺) = 1.67 nM (0.087 µg/L)