Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Converting mesoporous polydopamine coated MIL-125 (Ti) to core-shell

heterostructure for efficient water desalination

Hao Zhang, Chaohai Wang, Xiaodie Li, Jia Xie, Xin Yan, Junwen Qi, Xiuyun Sun, and Jiansheng Li* Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

E-mail: lijsh@njust.edu.cn

Chemicals. Tetra-n-butyl titanate $Ti(OC_4H_9)_4$ was purchased from Sinopharm Chemical Reagent Co., Ltd. Terephthalic acid (H₂BDC), dopamine hydrochloride, and 1, 3, 5-trimethylbenzene (TMB) were purchased from Aladdin Industrial Corporation. Pluronic F127 and were purchased from Sigma-Aldrich. Carbon black was purchased from Alfa Aesar. Tris-buffer was purchased from Bio-Rad Laboratories, Inc. Polytetrafluoroethylene (PTFE), anhydrous ethanol, methanol, sodium chloride (NaCl), and N, Ndimethylformamide (DMF) were obtained from Nanjing Chemical Reagent Co., Ltd. All chemicals were used as received without further purification.

Materials Characterization. The morphology and structure of the samples were conducted by scanning electron microscopy (SEM, JEOL 7800 system) and transmission electron microscopy (TEM, FEI Tecnai G2 F30 S-Twin). The composition was investigated by X-ray diffraction (XRD, BRUKER D8, Cu K α) at 40 kV and 40 mA ($\lambda = 1.5418$ Å). The N₂ adsorption-desorption isotherms were collected using the Micromeritics ASAP-2020 instrument. X-ray photoelectron spectroscopy (XPS) spectra were obtained by PHI Quantera II ESCA System with Al K α radiation at 1486.8 V. Thermogravimetric analysis (TGA) measurements were conducted by the SDT Q600 thermogravimetry/differential thermal analyzer. Raman spectroscopy was conducted using the Renishaw in Via reflex spectrometer system. Fourier transform infrared (FTIR) spectra of the samples were obtained using FT-IR spectrometer (Bruker HYPERION, Germany).

Fig. S1. The digital photograph of HCDI device.

Fig. S2. (a) SEM image and (c) TEM image of MIL-125. (b) SEM image and (d) TEM image of MIL-125@PDA.

Fig. S3. Fourier transform infrared (FTIR) spectra of MIL-125, MIL-125@PDA, and MIL-125@mPDA.

Fig. S4. X-ray diffraction (XRD) patterns of MIL-125, MIL-125@PDA, and MIL-125@mPDA.

Fig. S5. N_2 adsorption/desorption isotherms and pore size distributions (insert) of MIL-125, MIL-125@PDA, and MIL-125@mPDA.

Fig. S6. (a) SEM image, (b) TEM image, (c) N₂ adsorption/desorption isotherm, and (d) pore size distribution of the mesostructured PDA shell after the alkali etching of MIL-125 core.

Fig. S7. Raman spectra ranging from 1100 cm⁻¹ and 1900 cm⁻¹ of TiO₂/C, TiO₂/C@NC, and TiO₂/C@NMC.

Fig. S8. XPS full surveys of TiO₂/C, TiO₂/C@NC, and TiO₂/C@NMC.

Fig. S9. (a) TGA curves of TiO₂/C, TiO₂/C@NC, and TiO₂/C@NMC tested in air atmosphere with a heating rate of 10 °C min⁻¹ and (b) the digital photograph of TiO₂/C, TiO₂/C@NC, and TiO₂/C@NMC before and after calcining.

Fig. S10. (a) Ti 2p spectra, (b) C 1s spectra, (c) O 1s, and (d) N 1s of TiO₂/C@NMC.

Sample	$S_{\rm BET}$	$V_{\rm pore}$	Surface elemental			Ti content calculated	
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	composition (%)			by TGA (%)	
			С	0	Ti	Ν	
TiO ₂ /C	330.6	0.22	79.9	14.6	5.5	/	37.1
TiO ₂ /C@NC	189.7	0.09	89.4	6.3	0.8	3.5	22.3
TiO ₂ /C@NMC	202.3	0.12	89.7	7.3	0.7	2.3	24.0

Table S1. Structural parameters and elemental compositions of TiO₂/C, TiO₂/C@NC, and TiO₂/C@NMC.

Fig. S11. TGA curves of MIL-125, MIL-125@PDA, and MIL-125@mPDA tested in N_2 atmosphere with a heating rate of 5 °C min⁻¹.

Fig. S12. CV curves and GCD plots of (a, b) TiO_2/C , (c, d) TiO_2/C @NC, and (e, f) TiO_2/C @NMC at different scan rates and current densities in 1 M NaCl solution.

Fig. S13. The *b* values determined by using the relationship between the current density and the scan rate.

Fig. S14. The equivalent circuit diagram of EIS.

Sample	$R_{\rm s}\left(\Omega ight)$	$R_{ m ct}(\Omega)$
TiO ₂ /C	2.81	3.56
TiO ₂ /C@NC	2.84	3.33
TiO ₂ /C@NMC	2.71	2.72

Table S2. R_s and R_{ct} of TiO₂/C, TiO₂/C@NC, and TiO₂/C@NMC electrodes.

Fig. S15. The SAR variations versus time f TiO₂/C, TiO₂/C@NC, and TiO₂/C@NMC.

Sample	Charge efficiency (%)	Energy consumption		
	Charge efficiency (70)	$(kWh kg_{NaCl}^{-1})$		
TiO ₂ /C	73.1	0.75		
TiO ₂ /C@NC	79.4	0.69		
TiO ₂ /C@NMC	87.3	0.61		

Table S3. The charge efficiency (Λ) and energy consumption (E) of TiO₂/C, TiO₂/C@NC, and TiO₂/C@NMC.

Fig. S16. SEM image of $TiO_2/C@NMC$ after regeneration tests.

Electrode materials	Voltage (V)	NaCl concentration (mg L ⁻¹)	SAC (mg g ⁻¹)	Ref.
rGO/T2	1.2	300	16.4	1
rGO-15TiO ₂	1.2	75	24.58	2
TiO ₂ @CNTs	1.4	25-800	4.0	3
TiO ₂ /carbon	1.2	280	17.4	4
MoS ₂ /graphene	1.2	500	19.4	5
MnO _x nanofiber	1.2	877	27.8	6
Open and interconnected	1.2	500	14.35	7
porous architectures	1.2	500		
Nitrogen-doped activated	1.2	460	24.7	8
carbon	1.2	408		
Sugarcane Biowaste-	1.2	(00	21.8	9
Derived Biochars	1.2	600		
ZIF-8@PZS-C	1.2	500	22.19	10
TiO ₂ @COF-2	1.4	200	26.0	11
TiO ₂ /C@NMC	1.2	250	27.73	This work
TiO ₂ /C@NMC	1.6	250	35.54	This work

Table S4. Comparison of TiO₂/C@NMC and other reported electrode materials.

References

- 1 A. G. El-Deen, J.-H. Choi, C. S. Kim, K. A. Khalil, A. A. Almajid and N. A. M. Barakat, *Desalination*, 2015, **361**, 53-64.
- H. M. Moustafa, M. Obaid, M. M. Nassar, M. A. Abdelkareem and M. S. Mahmoud, Sep. Purif. Technol., 2020, 235, 116178.
- 3 H. Li, Y. Ma and R. Niu, Sep. Purif. Technol., 2016, 171, 93-100.
- 4 P. Srimuk, M. Zeiger, N. Jäckel, A. Tolosa, B. Krüner, S. Fleischmann, I. Grobelsek, M. Aslan, B. Shvartsev, M. E. Suss, *Electrochim. Acta*, 2017, 224, 314-328.
- 5 J. Han, T. Yan, J. Shen, L. Shi, J. Zhang, D. Zhang, *Environ. Sci. Technol.*, 2019, **53**, 12668-12676.
- 6 B. W. Byles, D. A. Cullen, K. L. More, E. Pomerantseva, Nano Energy, 2018, 44, 476-488.
- 7 Y. Zhu, G. Zhang, C. Xu and L. Wang, ACS Appl. Mater. Interfaces, 2020, 12, 29706-29716.
- 8 C. C. Hsu, Y. H. Tu, Y. H. Yang, J. A. Wang and C. C. Hu, *Desalination*, 2020, **481**, 114362.
- 9 J. J. Lado, R. L. Zornitta, I. V. Rodríguez, K. M. Barcelos and L. A. M. Ruotolo, ACS Sustainable Chem. Eng., 2019, 7, 18992-19004.
- 10 J. Zhang, J. Fang, J. Han, T. Yan, L. Shi and D. Zhang, J. Mater. Chem. A, 2018, 6, 15245-15252.
- X. Liu, S. Zhang, G. Feng, Z.-G. Wu, D. Wang, M. D. Albaqami, B. Zhong, Y. Chen, X. Guo, X. Xu, and Y. Yamauchi, *Chem. Mater.*, 2021, **33**, 1657-1666.