Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Exposure to biogenic phosphorus nano-agromaterials promotes early hatching

and causes no acute toxicity in zebrafish embryos

Ayushi Priyam^{a,b}, Pushplata Prasad Singh^{a,b}, Luis O.B. Afonso^a, Aaron G. Schultz^{a*}

^a School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217,

Australia.

^b National Centre of Excellence for Advanced Research in Agricultural Nanotechnology,

TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy

and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi,

110003, India

*Correspondence to <u>aaron.schultz@deakin.edu.au</u>

ESI Table 1. Checklist for Minimum Information for Publication of Quantitative Real-Time PCR Experiments¹

	IMPORTANC	REPORTE
ITEM TO CHECK	Ε	D
EXPERIMENTAL DESIGN		
Definition of experimental and control groups	E	YES
Number within each group	Е	YES
Assay carried out by core lab or investigator's lab?	D	YES
Acknowledgement of authors' contributions	D	YES
SAMPLE		
Description	Е	YES
Volume/mass of sample processed	D	YES
Microdissection or macrodissection	E	N/A
Processing procedure	E	YES
If frozen - how and how quickly?	E	YES
If fixed - with what, how quickly?	E	N/A
Sample storage conditions and duration (especially for		
FFPE samples)	E	YES
NUCLEIC ACID EXTRACTION		

Procedure and/or instrumentation	Е	YES
Name of kit and details of any modifications	Е	YES
Source of additional reagents used	D	N/A
Details of DNase or RNAse treatment	Е	YES
Contamination assessment (DNA or RNA)	Е	YES
Nucleic acid quantification	Е	YES
Instrument and method	Е	YES
Purity (A260/A280)	D	NO
Yield	D	NO
RNA integrity method/instrument	Е	N/A
RIN/RQI or Cq of 3' and 5' transcripts	Е	N/A
Electrophoresis traces	D	NO
Inhibition testing (Cq dilutions, spike or other)	Е	YES
REVERSE TRANSCRIPTION		
Complete reaction conditions	Е	YES
Amount of RNA and reaction volume	Е	YES
Priming oligonucleotide (if using GSP) and		
concentration	E	N/A
Reverse transcriptase and concentration	E	YES
Temperature and time	E	YES
Manufacturer of reagents and catalogue numbers	D	YES
Cqs with and without RT	D*	N/A
Storage conditions of cDNA	D	YES
qPCR TARGET INFORMATION		
If multiplex, efficiency and LOD of each assay.	Е	N/A
Sequence accession number	E	YES
Location of amplicon	D	NO
Amplicon length	E	YES
In silico specificity screen (BLAST, etc)	E	YES
Pseudogenes, retropseudogenes or other homologs?	D	N/A
Sequence alignment	D	NO
Secondary structure analysis of amplicon	D	NO
Location of each primer by exon or intron (if applicable)	Е	N/A
What splice variants are targeted?	Е	N/A
qPCR OLIGONUCLEOTIDES		
Primer sequences	Е	YES
RTPrimerDB Identification Number	D	YES
Probe sequences	D**	N/A
Location and identity of any modifications	Е	N/A
Manufacturer of oligonucleotides	D	YES
Purification method		
	D	YES

Complete reaction conditions	Е	YES
Reaction volume and amount of cDNA/DNA	Е	YES
Primer, (probe), Mg++ and dNTP concentrations	Е	YES
Polymerase identity and concentration	Е	YES
Buffer/kit identity and manufacturer	Е	YES
Exact chemical constitution of the buffer	D	N/A
Additives (SYBR Green I, DMSO, etc.)	Е	YES
Manufacturer of plates/tubes and catalog number	D	YES
Complete thermocycling parameters	Е	YES
Reaction setup (manual/robotic)	D	YES
Manufacturer of qPCR instrument	Е	YES
qPCR VALIDATION		
Evidence of optimisation (from gradients)	D	NO
Specificity (gel, sequence, melt, or digest)	Е	N/A
For SYBR Green I, Cq of the NTC	Е	N/A
Standard curves with slope and y-intercept	Е	NO
PCR efficiency calculated from slope	Е	YES
Confidence interval for PCR efficiency or standard		
error	D	NO
r2 of standard curve	E	YES
Linear dynamic range	E	NO
Cq variation at lower limit	E	NO
Confidence intervals throughout range	D	NO
Evidence for limit of detection	E	NO
If multiplex, efficiency and LOD of each assay.	E	N/A
DATA ANALYSIS		
qPCR analysis program (source, version)	E	YES
Cq method determination	E	YES
Outlier identification and disposition	E	N/A
Results of NTCs	E	YES
Justification of number and choice of reference genes	Е	YES
Description of normalisation method	Е	YES
Number and concordance of biological replicates	D	YES
Number and stage (RT or qPCR) of technical replicates	Е	YES
Repeatability (intra-assay variation)	E	YES
Reproducibility (inter-assay variation, %CV)	D	YES
Power analysis	D	NO
Statistical methods for result significance	Е	YES
Software (source, version)	Е	YES
Cq or raw data submission using RDML	D	NO

E: essential information; D: desirable information; FFPE: formalin-fixed, paraffinembedded; RIN: RNA integrity number; RQI: RNA quality indicator; GSP: gene- specific priming; dNTP: deoxynucleoside triphosphate; LOD: limit of detection. N/A: Not Applicable

ESI Table 2. Efficiency (E%) and R² values for the reference and target genes.

Genes	Efficiency (E%)	R ² values
Reference gene: Beta actin (β - actin)	94	0.998
Reference gene: Elongation factor alpha (<i>elf-1</i> α)	92.2	0.994
Target gene: Activin type 2 receptor (<i>acvr 2</i> α)	96.3	0.976
Target gene: Zebrafish hatching enzyme 1 (zhe1)	102.9	0.996
Target gene: Superoxide dismutase 1 (sod 1)	96.3	0.996
Target gene: Catalase (<i>cat</i>)	91.3	0.999

ESI Table 3. Reference gene stability using geNorm², NormFinder³, and BestKeeper⁴ algorithm

Gene stability by GeNorm at 48 hpf		
Gene name	Stability value	
β- actin elf-1α	0.46	
Gene stability by NormF	inder t 48 hpf	
Genes	Geomean of ranking values	
β- actin	1.41	
elf-1α	1.19	
Pearson correlation coefficient (r)	by BEST KEEPER	at 48 hpf
	β- actin	elf-1α
n	72	72
geo Mean [CP]	18.82	19.04
AR Mean [CP]	18.82	19.05
min [CP]	17.79	18.18
max [CP]	20.24	21.54
std dev [+/- CP]	0.48	0.34
CV [% CP]	2.54	1.77
min [x-fold]	-2.04	-1.82
max [x-fold]	2.68	5.65
std dev [+/- x-fold]	1.39	1.26
Pearson correlation coefficient (r) by BEST KEEPER		
	β- actin	elf-1α

Elf1a	0.67	-
p-value	0.001	-
Pearson correlation coefficient (r)		
BestKeeper vs.	β- actin	elf-1α
coeff. of corr. [r]	0.935	0.89
p-value	0.001	0.001
Ranking Order (BetterGoodAverage) at 48 hpf		
Method	1	2
<u>Delta CT</u>	elf-1α	β- actin
BestKeeper	elf-1α	β- actin
<u>Normfinder</u>	β- actin	elf-1α
Genorm	β- actin elf-1α	
Recommended comprehensive ranking	elf-1α	β- actin

Gene stability by GeNorm at 96 hpf		
Gene name	Stability value	
β- actin elf-1α	0	.224
Gene stability by NormFi	nder at 96 hpf	
Genes	Geomean of ranking values	
β- actin	1.414	
elf-1α	1.189	
Pearson correlation coefficient (r)	by BEST KEEPER	at 96 hpf
	β- actin	elf-1α
n	72	72
geo Mean [CP]	18.36	19.33
AR Mean [CP]	18.36	19.33
min [CP]	17.44	18.53
max [CP]	19.25	20.21
std dev [+/- CP]	0.37	0.28
CV [% CP]	2.01	1.46
min [x-fold]	-1.89	-1.74
max [x-fold]	1.86	1.84
std dev [+/- x-fold]	1.29	1.22
Pearson correlation coefficient	(r) by BEST KEE	EPER
	β- actin	elf-1α
Elf1a	0.886	-
p-value	0.001	-
Pearson correlation coefficient (r)		
BestKeeper vs.	β- actin	elf-1α
coeff. of corr. [r]	0.98	0.961

p-value	0.001	0.001
Ranking Order (BetterGoodAverage) at 96 hpf		
Method	1	2
<u>Delta CT</u>	elf-1α	β- actin
<u>BestKeeper</u>	elf-1α	β- actin
<u>Normfinder</u>	β- actin	elf-1α
<u>Genorm</u>	β- actin elf-1α	
Recommended comprehensive ranking	elf-1α	β- actin

d. nHAP_SRL (Needle shaped)

100

% Survival

0

25 50

b. nHAP_C (Rod shaped)

a. nHAP_B (Platelet shaped)

c. nHAP_Sigma (Spherical shaped)

ESI Fig. 1. Effect of a. biologically synthesized nHAP (nHAP_B), b. chemically synthesized nHAP (nHAP_C), c. Sigma Aldrich nHAP (nHAP_Sigma), d. SRL nHAP (nHAP_SRL), e. nanophosporous (nP), f. rock phosphate bulk control (RP), and g. calcium phosphate bulk control (Ca_3PO_4) at increasing concentrations (0, 25, 50, 100, 250 and 500 µg.mL⁻¹) on survival of zebrafish embryos at after 96 hpf. Values reported as mean ± S.E.M.

f. RP (Bulk source)

Embryo age

125

□ 100

å

250 500

ESI Fig. 2. Effect of a. biologically synthesized nHAP (nHAP_B), b. chemically synthesized nHAP (nHAP_C), c. Sigma Aldrich nHAP (nHAP_Sigma), d. SRL nHAP (nHAP_SRL), e. nanophosphorus (nP), f. rock phosphate bulk control (RP), and g. calcium phosphate bulk control (Ca_3PO_4) at increasing concentrations (0, 25, 50, 100, 250 and 500 µg.mL⁻¹) on hatch rate of zebrafish embryos at 80 and 96 hpf. Values reported as mean ± S.E.M.

96 hpt

500

Length [mm]

ASHP

0 25

d. nHAP_SRL (Needle shaped)

72 mp

Embryo age

ESI Fig. 3. Effect of a. biologically synthesized nHAP (nHAP_B), b. chemically synthesized nHAP (nHAP_C), c. Sigma Aldrich nHAP (nHAP_Sigma), d. SRL nHAP (nHAP_SRL), e. nanophosphorus (nP), f. rock phosphate bulk control (RP), and g. calcium phosphate bulk control (Ca_3PO_4) at increasing concentrations (0, 25, 50, 100, 250 and 500 µg.mL⁻¹) on embryo length of zebrafish embryos at 48, 72 and 96 hpf. Values reported as mean ± S.E.M.

b. nHAP_C (Rod shaped)

ESI Fig. 4. Effect of a. biologically synthesized nHAP (nHAP_B), b. chemically synthesized nHAP (nHAP_C), c. Sigma Aldrich nHAP (nHAP_Sigma), d. SRL nHAP (nHAP_SRL), e. nanophosphorus (nP), f. rock phosphate bulk control (RP), and g. calcium phosphate bulk control (Ca_3PO_4) at increasing concentrations (0, 25, 50, 100, 250 and 500 µg.mL⁻¹) on head to tail angle of zebrafish embryos at 48, 72 and 96 hpf. Values reported as mean ± S.E.M.

d. nHAP_SRL (Needle shaped)

f. RP (Bulk source)

□ 50

100

□ 250

500

□ 0

25

b. nHAP_C (Rod shaped)

d. nHAP_SRL (Needle shaped)

ESI Fig. 5. Effect of a. biologically synthesized nHAP (nHAP_B), b. chemically synthesized nHAP (nHAP_C), c. Sigma Aldrich nHAP (nHAP_Sigma), d. SRL nHAP (nHAP_SRL), e. nanophosphorus (nP), f. rock phosphate bulk control (RP), and g. calcium phosphate bulk control (Ca_3PO_4) at increasing concentrations (0, 25, 50, 100, 250 and 500 µg.mL⁻¹) on eye area of zebrafish embryos at 48, 72 and 96 hpf. Values reported as mean ± S.E.M.

ESI Fig. 6. Effect of a. biologically synthesized nHAP (nHAP_B), b. chemically synthesized nHAP (nHAP_C), c. Sigma Aldrich nHAP (nHAP_Sigma), d. SRL nHAP (nHAP_SRL), e. nanophosphorus (nP), f. rock phosphate bulk control (RP), and g. calcium phosphate bulk control (Ca_3PO_4) at increasing concentrations (0, 25, 50, 100, 250 and 500 µg.mL⁻¹) on swim bladder area of zebrafish embryos at 48, 72 and 96 hpf. Values reported as mean ± S.E.M.

c. nHAP_Sigma (Spherical shaped)

b. nHAP_C (Rod shaped)

d. nHAP_SRL (Needle shaped)

f. RP (Bulk source)

ESI Fig. 7. Effect of a. biologically synthesized nHAP (nHAP_B), b. chemically synthesized nHAP (nHAP_C), c. Sigma Aldrich nHAP (nHAP_Sigma), d. SRL nHAP (nHAP_SRL), e. nanophosphorus (nP), f. rock phosphate bulk control (RP), and g. calcium phosphate bulk control (Ca_3PO_4) at increasing concentrations (0, 25, 50, 100, 250 and 500 µg.mL⁻¹) on

yolk sac area of zebrafish embryos at 48, 72 and 96 hpf. Values reported as mean ± S.E.M.

ESI Fig. 8. No structural deformities (NSD) in zebrafish embryos after exposure to a. biologically synthesized nHAP (nHAP_B), b. chemically synthesized nHAP (nHAP_C), c. Sigma Aldrich nHAP (nHAP_Sigma), d. SRL nHAP (nHAP_SRL), and e. calcium phosphate bulk control (Ca_3PO_4) at increasing concentrations (0, 25, 50, 100, 250 and 500 µg.mL⁻¹) at 72 hpf. PE: pericardial edema, SC: spinal curvature, YSE: Yolk sac edema.

References:

1. Bustin, S. A.; Benes, V.; Garson, J. A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M. W.; Shipley, G. L., The MIQE Guidelines: M inimum I nformation for Publication of Q uantitative Real-Time PCR E xperiments. Oxford University Press: 2009.

2. Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome biology* **2002**, *3* (7), 1-12.

3. Andersen, C. L.; Jensen, J. L.; Ørntoft, T. F., Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer research* **2004**, *64* (15), 5245-5250.

4. Pfaffl, M. W.; Tichopad, A.; Prgomet, C.; Neuvians, T. P., Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. *Biotechnology letters* **2004**, *26* (6), 509-515.