Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Supplementary Material

The bioaccumulation testing strategy for nanomaterials: correlations with particle properties and a meta-analysis of *in vitro* fish alternatives to *in vivo* fish tests

Handy, R.D., Clark, N.J., Boyle, D., Vassallo, J., Green, C., Nasser, F., Botha, T.L., Wepener, V., van den Brink, N.W. and Svendsen, C.

Supplemental Table S1. Linear equations for the curve fits of the physico-chemical parameters plotted against calculated biomagnification factors (*n*BMFs) for the materials, as shown in Figure 3 of the main manuscript.

Panel Letter/Metric	Fish body organ and Equation
Figure 3(D) Primary particle size	Liver: $y = -0.0709 + 0.0199x$
	Mid intestine: $y = 0.0033 + 0.0013x$
	Hind intestine: $y = -0.0634 + 0.0136x$
	Kidney: $y = -0.0802 + 0.0048x$
Figure 3(E) Hydrodynamic diameter	Liver: $y = 1.1036 - 0.0060x$
	Mid intestine: $y = 0.0999 - 0.0006x$
	Hind intestine: $y = 0.8245 - 0.0052x$
	Kidney: $y = 0.1539 - 0.0008x$
Figure 3(F) Metal dissolution rate	Liver: $y = 0.0933 + 27.1619x$
	Mid intestine: $y = 0.0003 + 2.5198x$
	Hind intestine: $y = -0.0158 + 21.8548x$
	Kidney: $y = -0.0032 + 4.6501x$

The equations are for the curve fits shown in Figure 3 using a polynomial, linear equation $y = b + a^*x$ where y is biomagnification factor and x is the respective metric value, with constants a and b shown (SigmaPlot 13). Supplemental Table S2. Multiple linear regression analysis using IBM SPSS Statistics 25.

(A) Trout liver *n*BMF linear regression analysis

(i) Model Summary

					Change Statistics					
			Adjusted R	Std. Error of	R Square				Sig. F	
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Change	
1	.911ª	.830	.811	.2387600	.830	43.838	2	18	.000	

a. Predictors: (Constant), DissolutionRate, ParticleSize

(ii) ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4.998	2	2.499	43.838	.000 ^b
	Residual	1.026	18	.057		
	Total	6.024	20			

a. Dependent Variable: BMF_Liver

b. Predictors: (Constant), DissolutionRate, ParticleSize

(iii) Coefficients^a

				Standar									
				dized									
		Unstand	lardized	Coefficie			95.0% Co	onfidence				Collin	earity
		Coeffi	efficients nts Interval for B		al for B	Co	rrelation	ns	Stati	stics			
			Std.				Lower	Upper	Zero-	Parti		Tolera	
Model		В	Error	Beta	t	Sig.	Bound	Bound	order	al	Part	nce	VIF
1	(Constant	639	.141		-	.000	936	343					
)				4.53								
					7								
	ParticleSi	.021	.003	.699	7.12	.000	.015	.027	.609	.859	.693	.983	1.018
	ze				2								
	Dissolutio	28.076	4.033	.683	6.96	.000	19.603	36.549	.591	.854	.677	.983	1.018
	nRate				2								

a. Dependent Variable: BMF_Liver

(B) Trout mid intestine *n*BMF linear regression analysis

(i) Model Summary

				Std. Error of	Change Statistics					
Mode		R	Adjusted R	the	R Square	F			Sig. F	
1	R	Square	Square	Estimate	Change	Change	df1	df2	Change	
1	.822ª	.676	.640	.0278175	.676	18.799	2	18	.000	

a. Predictors: (Constant), DissolutionRate, ParticleSize

(ii) ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.029	2	.015	18.799	.000 ^b
	Residual	.014	18	.001		
	Total	.043	20			

a. Dependent Variable: BMF_MidIntestine

b. Predictors: (Constant), DissolutionRate, ParticleSize

(iii) Coefficients^a

				Standar dized									
		Unstand	lardized	Coefficie			95.0% Co	onfidence				Collin	earity
	Coefficients		cients	nts			Interva	al for B	Co	rrelatior	าร	Stati	stics
			Std.				Lower	Upper	Zero-	Parti		Tolera	
Model		В	Error	Beta	t	Sig.	Bound	Bound	order	al	Part	nce	VIF
1	(Constant	043	.016		-	.017	077	008					
)				2.616								
	ParticleSi	.001	.000	.560	4.142	.001	.001	.002	.471	.699	.556	.983	1.018
	ze												
	Dissolutio	2.362	.470	.680	5.026	.000	1.374	3.349	.606	.764	.674	.983	1.018
	nRate												

a. Dependent Variable: BMF_MidIntestine

(C) Trout hind intestine *n*BMF linear regression analysis

(i) Model Summary

					Change Statistics					
		R	Adjusted R	Std. Error of	R Square	F			Sig. F	
Model	R	Square	Square	the Estimate	Change	Change	df1	df2	Change	
1	.906ª	.820	.799	.1610478	.820	38.802	2	17	.000	

a. Predictors: (Constant), DissolutionRate, ParticleSize

(ii) ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2.013	2	1.006	38.802	.000 ^b
	Residual	.441	17	.026		
	Total	2.454	19			

a. Dependent Variable: BMF_HindIntestine

b. Predictors: (Constant), DissolutionRate, ParticleSize

(iii) Coefficients^a

				Standar dized									
	Unstandardized		Coefficie			95.0% Co	onfidence				Collin	earity	
	Coefficients		cients	nts			Interva	al for B	Co	rrelatior	าร	Stati	stics
			Std.				Lower	Upper	Zero-	Parti		Tolera	
Model		В	Error	Beta	t	Sig.	Bound	Bound	order	al	Part	nce	VIF
1	(Constant	407	.098		-	.001	614	200					
)				4.148								
	ParticleSi	.014	.002	.729	6.962	.000	.010	.019	.598	.860	.716	.964	1.037
	ze												
	Dissolutio	18.411	2.783	.693	6.616	.000	12.540	24.282	.555	.849	.680	.964	1.037
	nRate												

a. Dependent Variable: BMF_HindIntestine

(D) Trout kidney *n*BMF linear regression analysis

(i) Model Summary

					Change Statistics					
			Adjusted R	Std. Error of	R Square	F			Sig. F	
Model	R	R Square	Square	the Estimate	Change	Change	df1	df2	Change	
1	.783ª	.614	.571	.0886015	.614	14.298	2	18	.000	

a. Predictors: (Constant), DissolutionRate, ParticleSize

(ii) ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.224	2	.112	14.298	.000 ^b
	Residual	.141	18	.008		
	Total	.366	20			

a. Dependent Variable: BMF_Kidney

b. Predictors: (Constant), DissolutionRate, ParticleSize

(ii) Coefficients^a

				Standar									
				dized									
	Unstandardized		Coefficie			95.0% Confidence					Collinearity		
	Coefficients		nts			Interval for B		Correlations			Statistics		
			Std.				Lower	Upper	Zero-	Parti		Tolera	
Model		В	Error	Beta	t	Sig.	Bound	Bound	order	al	Part	nce	VIF
1	(Constant	181	.052		-	.003	291	071					
)				3.46								
					4								
	ParticleSi	.005	.001	.679	4.59	.000	.003	.007	.615	.735	.674	.983	1.018
	ze				8								
	Dissolutio	4.955	1.497	.489	3.31	.004	1.811	8.100	.400	.615	.485	.983	1.018
	nRate				1								

a. Dependent Variable: BMF_Kidney

Figure S1. Measured total metal concentration in the fish feed plotted against the mean total metal concentration in rainbow trout (*Oncorhynchus mykiss*) tissue (mean \pm S.E.M, n = 4 - 9) as liver, mid intestine, hind intestine and kidney, sampled following the last experimental uptake time point for (A) copper- and (B) silver-based test materials. Copper data sourced from Boyle *et al.*¹ Silver data sourced from Clark *et al.*²

Figure S2. Correlations between tier 3 (*ex vivo* exposure, mid intestine muscularis) and tier 4 (*in vivo* exposure, liver concentrations) of the testing strategy. The materials used are silver (left panels) or copper (right panels) based. The data were ranked and then correlated. Copper data sourced from Boyle *et al.*³ for gut sacs. Silver data sourced from Clark *et al.*^{2, 4}

References

- D. Boyle, N. J. Clark, B. P. Eynon and R. D. Handy, Dietary exposure to copper sulphate compared to a copper oxide nanomaterial in rainbow trout: bioaccumulation with minimal physiological effects, *Environmental Science: Nano*, 2021, 8, 2297-2309.
- N. J. Clark, D. Boyle, B. P. Eynon and R. D. Handy, Dietary exposure to silver nitrate compared to two forms of silver nanoparticles in rainbow trout: bioaccumulation potential with minimal physiological effects, *Environmental Science: Nano*, 2019, 6, 1393–1405.
- 3. D. Boyle, N. J. Clark, T. L. Botha and R. D. Handy, Comparison of the dietary bioavailability of copper sulphate and copper oxide nanomaterials in *ex vivo* gut sacs of rainbow trout: effects of low pH and amino acids in the lumen, *Environmental Science: Nano*, 2020, **7**, 1967-1979.
- N. J. Clark, R. Clough, D. Boyle and R. D. Handy, Development of a suitable detection method for silver nanoparticles in fish tissue using single particle ICP-MS, *Environmental Science: Nano*, 2019, 6, 3388-3400.