Supporting Information

Porous Organic Nanofiber Polymers as Superfast Adsorbents for Capturing Pharmaceutical Contaminants in Water

Seenu Ravi,^a Yujin Choi,^a Shiliang Wu,^b Rui Xiao,^b and Youn-Sang Bae^{a,*}

^a Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

^b Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,

School of Energy and Environment, Southeast University, Nanjing 210018, PR China

*Corresponding author: Fax: +82-2-312-6401; Tel.: +82-2-2123-2755;

E-mail: <u>mowbae@yonsei.ac.kr</u> (Y.-S. Bae)

Scheme S1. Chemical and structural characteristics of PPCP compounds:^{1 2} a) DFS; b) SMX; c) AMP. Optimized 3D structures drawn by ChemSketch software are also displayed along with their molecular dimensions. For DFS, Na⁺ ion was removed considering its ionic state in aqueous solution.

Fig. S1. FTIR spectra and CH bending mode vibrations of the HPOPs.

Fig. S2. PXRD pattern of of HPOP-1, -2, and -3

Fig. S3. Effect of pH on DFS, SMX, and AMP removal: (a) HPOP-1; (b) HPOP-2.

Fig. S4. Adsorption kinetics of DFS, SMX, and AMP on (a) HPOP-1 and (b) HPOP-2.

Fig. S5. Comparisons of equilibrium time vs. adsorption capacity for PPCP adsorption in PONF and previously reported benchmark materials. For each material, the equilibrium time (t_{eq}) was determined to be the time to reach 95% of the saturated adsorption capacity.

Fig. S6. (a) FTIR spectra and (b) BET surface areas of PONF before and after SMX adsorption.

Fig. S7. Effect of PONF exposure to different pH conditions for 72 h: a) FTIR spectra; b) N_2 adsorption-desorption isotherms at 77 K.

Fig. S8. (a) C 1s, (b) O 1s, (c) N 1s, and (d) S 2p XPS binding energy peaks of PONF before and after SMX capture.

Fig. S9. Determination of pH_{pzc} of PONF by the pH drift method.

Fig. S10. Adsorption quantity relationship with the physicochemical characteristics of PPCP: (a) molecular weight; (b) Logkow.

РРСР	Langi	nuir adsorption isot	Freundlich adsorption isotherm			
	q_{m} $[mg.g^{-1}]$	K_L [L.mg ⁻¹]	R^2	K_{F} [mg.g ⁻¹]	n	R^2
DFS	380.8	2.064	0.979	186.9	3.200	0.833
SMX	331.9	2.125	0.930	173.5	3.770	0.760
AMP	251.6	2.496	0.932	144.4	4.815	0.686

Table S1. Equilibrium isotherm parameters of DFS, SMX, and AMP adsorption on PONF.

 Table S2. Comparison of adsorption capacities of the various reported benchmark materials for PPCP removal from water.

Adsorbent	Adsorbed amount (Q _m) [mg g ⁻¹] ^a			Adsorption mechanism	Ref
	DFS	SMX	AMP		
ZIF-8	100	-	-	Hydrogen bonding	3
PCDM	400	-	-	Hydrogen bonding	
ZCPC	159.6			Anion exchange and partitioning	4
Expanded graphite	330	-	-	Hydrophobicity and energetically	5
				uniform carbon surface	
OH-MCOF	203.4	-	-	π - π , hydrophobic and CH- π interactions	6
CNT/Al ₂ O ₃	27	-	-	π - π and van der Waals forces	7
CTAB-ZIF-67	60.5	-	-	Electrostatic and Lewis acid-base	8
				interactions	

Commercial AC	76	-	-	Electrostatic	9
OAC	487	-	-	Electrostatic and H-bonding	9
P-POP	217	-	-	H-bonding, π - π , and van der Waals	10
				forces	
Graphene	-	239.0	-	π - π interactions	11
МСТР	-	483	-	π - π interactions	12
Activated carbon	-	259	-	-	-
Biochar	-	19.0	-	Electrostatic attractions	13
Carbon PBFG4	-	118	-	π - π interactions	14
CuZnFe2O4–biochar	-	212	-	H-bonding, hydrophobic, and π – π	15
				electron donor-acceptor interactions	
PAC14-Vt	-	72	-	π - π and NH- π interactions	16
Polymeric resin	-	-	6.9	Hydrogen bonds and Van der Waals	17
				forces	
Biomass-AC	-	-	100	π - π interactions	18
Wood carbon	-	-	267	Dispersive forces	19
Graphene	-	-	12.98	π - π interactions and Van der Waals	20
				forces	
HPOP-3 or PONF	380.8	331.9	251.6	Hydrogen bonds and hydrophobic, π - π	This work
				interactions, and Van der Waals forces	
^a The amount of PPCPs a	dsorbed is the	monolayer ads	orption capac	ity (Q_m) obtained from Langmuir model.	1

References

- 1. S.-W. Nam, D.-J. Choi, S.-K. Kim, N. Her and K.-D. Zoh, Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon, *Journal of Hazardous Materials*, 2014, **270**, 144-152.
- 2. P. Westerhoff, Y. Yoon, S. Snyder and E. Wert, Fate of Endocrine-Disruptor, Pharmaceutical, and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes, *Environmental Science & Technology*, 2005, **39**, 6649-6663.
- 3. B. N. Bhadra, I. Ahmed, S. Kim and S. H. Jhung, Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon, *Chem Eng J*, 2017, **314**, 50-58.
- 4. D. Krajišnik, A. Daković, M. Milojević, A. Malenović, M. Kragović, D. B. Bogdanović, V. Dondur and J. Milić, Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride, *Colloids and Surfaces B: Biointerfaces*, 2011, **83**, 165-172.
- 5. M. D. Vedenyapina, D. A. Borisova, A. P. Simakova, L. P. Proshina and A. A. Vedenyapin, Adsorption of diclofenac sodium from aqueous solutions on expanded graphite, *Solid Fuel Chemistry*, 2013, **47**, 59-63.
- 6. X. Mi, S. Zhou, Z. Zhou, M. Vakili, Y. Qi, Y. Jia, D. Zhu and W. Wang, Adsorptive removal of diclofenac sodium from aqueous solution by magnetic COF: Role of hydroxyl group on COF, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2020, **603**, 125238.
- 7. H. Wei, S. Deng, Q. Huang, Y. Nie, B. Wang, J. Huang and G. Yu, Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution, *Water Research*, 2013, **47**, 4139-4147.
- 8. K.-Y. Andrew Lin, H. Yang and W.-D. Lee, Enhanced removal of diclofenac from water using a zeolitic imidazole framework functionalized with cetyltrimethylammonium bromide (CTAB), *RSC Advances*, 2015, **5**, 81330-81340.
- 9. B. N. Bhadra, P. W. Seo and S. H. Jhung, Adsorption of diclofenac sodium from water using oxidized activated carbon, *Chem Eng J*, 2016, **301**, 27-34.
- S. Ravi, Y. Choi and J. K. Choe, Novel phenyl-phosphate-based porous organic polymers for removal of pharmaceutical contaminants in water, *Chem Eng J*, 2020, 379, 122290.
- 11. H. Chen, B. Gao and H. Li, Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene, *Journal of Environmental Chemical Engineering*, 2014, **2**, 310-315.
- 12. S. G. Akpe, I. Ahmed, P. Puthiaraj, K. Yu and W.-S. Ahn, Microporous organic polymers for efficient removal of sulfamethoxazole from aqueous solutions, *Micropor Mesopor Mat*, 2020, **296**, 109979.
- F. Reguyal and A. K. Sarmah, Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol, *Science* of The Total Environment, 2018, 628-629, 722-730.
- 14. V. Calisto, C. I. A. Ferreira, J. A. B. P. Oliveira, M. Otero and V. I. Esteves, Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons, *Journal of Environmental Management*, 2015, **152**, 83-90.

- 15. J. Heo, Y. Yoon, G. Lee, Y. Kim, J. Han and C. M. Park, Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite, *Bioresource Technology*, 2019, **281**, 179-187.
- 16. S. Guo, M. Gao, T. Shen, Y. Xiang and G. Cao, Effective adsorption of sulfamethoxazole by novel Organo-Vts and their mechanistic insights, *Micropor Mesopor Mat*, 2019, **286**, 36-44.
- R. N. Coimbra, C. Escapa and M. Otero, Adsorption Separation of Analgesic Pharmaceuticals from Ultrapure and Waste Water: Batch Studies Using a Polymeric Resin and an Activated Carbon, *Polymers*, 2018, 10, 958.
- 18. F. J. García-Mateos, R. Ruiz-Rosas, M. D. Marqués, L. M. Cotoruelo, J. Rodríguez-Mirasol and T. Cordero, Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments, *Chem Eng J*, 2015, **279**, 18-30.
- 19. I. Cabrita, B. Ruiz, A. S. Mestre, I. M. Fonseca, A. P. Carvalho and C. O. Ania, Removal of an analgesic using activated carbons prepared from urban and industrial residues, *Chem Eng J*, 2010, **163**, 249-255.
- 20. L. A. Al-Khateeb, S. Almotiry and M. A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets, *Chem Eng J*, 2014, **248**, 191-199.