Electronic Supplementary Information

Mechanistic analysis identifying reaction pathways for rapid reductive photodebromination of polybrominated diphenyl ethers using BiVO₄/BiOBr/Pd heterojunction nanocomposite photocatalyst

Edward B. Miller,^a Elsayed M. Zahran,^b Marc R. Knecht,^{a,c} and Leonidas G. Bachas^{a,c*}

Contents

Figure S1. EDS spectra of (a) predominantly <i>m</i> -BiVO ₄ region and (b) predominantly BiOBr region of the <i>m</i> -BiVO ₄ /BiOBr composite.	S2
Figure S2. Adsorption of BDE-47 from 25 μ M 1:1 EtOH/H ₂ O solution on BiVO ₄ /BiOBr/Pd particles stirring in darkness.	S3
Figure S3. Propanal produced in the photodebromination of 100 μ M BDE-3 with BiVO ₄ /BiOBr/Pd in 1:1 solution of 1-propanol / H ₂ O.	S3
Table S1. Reaction of BDE-3 with <i>m</i> -BiVO ₄ /BiOBr/Pd in different solvent systems	S4
Natural Bond Orbital (NBO) analysis of selected alcohols	S4
Table S2. Select computed Natural Bond Orbital (NBO) data for C1-C3 alcohols, from DFT calculations at the B3LYP/6-31G(d,p) level.	S4
References	S5

 ^a Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
^b Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
^c Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, UM Life Science Technology Building, 1951 NW 7th Ave, Suite 475, Miami, Florida 33136, United States

Figure S1. EDS spectra of (a) predominantly m-BiVO₄ region and (b) predominantly BiOBr region of the m-BiVO₄/BiOBr composite.

Figure S2. Adsorption of BDE-47 from 25 μ M 1:1 EtOH/H₂O solution on BiVO₄/BiOBr/Pd particles stirring in darkness.

Figure S3. Propanal produced in the photodebromination of 100 μ M BDE-3 with BiVO₄/BiOBr/Pd in 1:1 solution of 1-propanol / H₂O

	reaction time				
solvent system	5 min	10 min	15 min		
	Percent of initial BDE-3 concentration debrominated				
MeOH / H ₂ O (1:1)	80%	100%	100%		
EtOH / H ₂ O (1:1)	80%	100%	100%		
n-PrOH / H ₂ O (1:1)	45%	70%	75%		
i-PrOH / H ₂ O (1:1)	NR	NR	NR *		
t-BuOH / H ₂ O (1:1)	NR	NR	NR		
ACN / H ₂ O (1:1)	NR	NR	NR		
ACN / EtOH / H ₂ O (1:1:1)	25%	85%	100%		

Table S1. Reaction of BDE-3 with *m*-BiVO₄/BiOBr/Pd in different solvent systems These reactions were done using a xenon lamp solar simulator as light source.

* Trace amount of product detected after 30 min irradiation.

Natural Bond Orbital (NBO)¹ analysis of selected alcohols

In a search for some measure of theoretical insight, simple Density Functional Theory (DFT) calculations were performed for the C₁-C₃ alcohols in the gas phase, using the General Atomic and Molecular Electronic Structure System (GAMESS) package (US version),^{2, 3} at the B3LYP/6-31G(d,p)⁴⁻⁹ level of theory for geometry optimization, vibrational frequency, and single-point energy calculations. Initial (unoptimized) geometries, used for the input to GAMESS, were constructed using Avogadro (version 1.2.0).^{10, 11} Conformations yielding the lowest total energy after optimization were used. Calculated energy, vibrational frequencies, and thermodynamic quantities were compared against the NIST Computational Chemistry Comparison and Benchmark Database¹² for validation of results. NBO analysis was completed in conjunction with the single-point energy calculations using NBO 7.0,¹³ which was linked with the GAMESS package. Selected results are listed in Table S2. In addition, pK_a values¹⁴ for the hydroxyl H atoms are included for reference.

Table S2. Select computed Natural Bond Orbital (NBO) data for C1-C3 alcohols, from DFT calculations at the B3LYP/6-31G(d,p) level.

Interactions greater than 20 kJ/mol for donor-acceptor pairs are listed. Dissociation constants (pK_a) for the alcohols included for reference.

alcohol	p <i>K</i> a ¹⁴	natural charge on α -H				donor	-acceptor orbi	tal interact	tions (kJ/mol)	
methanol	15.09	0.19003	0.19003	0.21676	O _{l.p.}	$\sigma^* C-H_{\alpha 1}$	26.6	O _{I.p.}	σ* C-H _{α2}	26.6
ethanol	15.93	0.19518	0.19531		O _{l.p.}	σ* C-H _{α1}	25.6	O _{I.p.}	σ* C-H _{α2}	25.4
1-propanol	16.1	0.19284	0.21869		O _{l.p.}	$\sigma^* C-H_{\alpha 1}$	24.0	O _{I.p.}	$\sigma^* C_1 - C_2$	27.9
2-propanol	17.1	0.23011			O _{l.p.}	$\sigma^* C_1 - C_2$	25.3	O _{I.p.}	σ* C ₁ -C ₃	25.2

References

- 1. F. Weinhold, J. Comput. Chem., 2012, **33**, 2363-2379.
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, *J. Comput. Chem.*, 1993, 14, 1347-1363.
- 3. M. S. Gordon and M. W. Schmidt, in *Theory and Applications of Computational Chemistry*, 2005, DOI: 10.1016/b978-044451719-7/50084-6, pp. 1167-1189.
- 4. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100.
- 5. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 6. C. Lee, W. Yang and R. G. Parr, *Phys Rev B Condens Matter*, 1988, **37**, 785-789.
- 7. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211.
- P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, 98, 11623-11627.
- 9. P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213-222.
- 10. Journal.
- 11. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, *J. Cheminform.*, 2012, **4**, 17.
- 12. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 20, August 2019, Editor: Russell D. Johnson III, http://cccbdb.nist.gov, DOI: 10.18434/T47C7Z).
- 13. J. K. B. E. D. Glendening, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold, *Journal*, 2018.
- 14. J. F. Stoddart, D. H. Barton, W. D. Ollis, P. G. Sammes, I. Sutherland, D. N. Jones, E. Haslam and C. Drayton, *Comprehensive Organic Chemistry; the Synthesis and Reactions of Organic Compounds; Chairman and Deputy Chairman of the Ed. Board: Derek Barton and W. David Ollis*, Pergamon Press, 1979.