Supplementary materials for

Adding exogenous protein relieves the toxicity of nanoparticles to anammox

granular sludge by adsorption and the formation of eco-corona

Wen-Jie Ma, Xin Wang, Jiang-Tao Zhang, Jie-Yun Guo, Yan-Xu Lin, Yu-Xi Yao,

Gui-Feng Li, Ya-Fei Cheng, Nian-Si Fan*, Ren-Cun Jin

Laboratory of Water Pollution Remediation, School of Life and Environmental

Sciences, Hangzhou Normal University, Hangzhou 311121, China

*Corresponding author:

Dr. Nian-Si Fan

ORCID: 0000-0001-8640-8223

E-mail address: nsfan@hznu.edu.cn

Text 1 Methods of determining specific anammox activity (SAA).

A glass serum bottle(160 mL) was used. And the liquid volume was kept at 120 mL, which contained 5 mL anammox granular sludge, 5 mL basal mineral medium, 200 mg L⁻¹ total nitrogen and MgO NPs. The mixed solution was removed oxygen by argon gas aeration and put in a constant temperature shaker (35 °C, 180 rpm). 1 mL supernate was withdrew from bottle to determine the consumed substrate concentration every hour until the substrate was totally consumed.

Category	Target	Drimor	Sequence (5! 2!)	Annealing		
	gene	FIIIICI	Sequence (5-5)	Temperature (°C)		
Functional	hdh	hdh-F	GGTGGTTTGAGGGGTTCCAA	55		
genes		hdh-R	TATGGCGACCTCTGTGCATC			
	nirS	nirS-F	GTSAACGTSAAGGARACSGG	56		
		nirS-R	GASTTCGGSTGSGTCTTGA			
	hzsA	1597F	WTYGGKTATCARTATGTAG	55		
		1857R	AAABGGYGAATCATARTGGC			
	nirK nirK-F		TCATGGTGCTGCCGCGKGACGG	70		
		nirK-R	GAACTTGCCGGTKGCCCAGAC			
	norZ	norZ-F	CGKTGTTCMTCGACAGCCAG	53		
		norZ-R	CGSACCTTSTTGCCSTYGCG			
	norB	norB-F	ACACAAATCACTGCCGCCCA	65		
		norB-R	TGCAGTACACCGGCAAAGGT			

 Table S1 Primers used for gene quantifications in this study.

Composition	Component	Concentration			
Substrate (mg L ⁻¹) ^a	NaNO ₂	70/140/210/280			
	$(NH_4)_2SO_4$	70/140/210/280			
Inorganic solution (mg L ⁻¹)	NaH ₂ PO ₄	10			
	CaCl ₂ •2H ₂ O	5.6			
	MgSO ₄ •7H ₂ O	300			
	NaHCO ₃	1250			
Trace elements (mL L ⁻¹)	Trace elements I	1.25			
	Trace elements II	1.25			
Trace elements I (g L ⁻¹)	EDTA	5			
	FeSO4•7H ₂ O	9.14			
	H ₃ BO ₄	0.014			
	MnCl ₂ •4H ₂ O	0.99			
	CuSO4•5H ₂ O	0.25			
	ZnSO ₄ •7H ₂ O	0.43			
Trace elements II (g L ⁻¹)	EDTA	15			
	CoCl ₂ •6H ₂ O	0.24			
	NaMnO ₄ •H ₂ O	0.22			
	NiCl ₂ •6H ₂ O	0.21			

Table S2 Composition of the synthetic wastewater

^a The concentrations of substrates were adjusted depending on the operational performance of anammox during the

experimental

period.

Table	S3	Relative	abundance	of r	nicrobial	comp	osition	at	genus	level	in	different	phase
			OTU ID		R01	R02	R03	R04	R11	R12	R13	R14	
		norank_f_norank_o_SBR1031				24.39%	25.10%	16.90%	22.20%	22.45%	14.82%	15.11%	
		norank_f_A4b				11.20%	10.98%	9.62%	10.26%	7.44%	9.62%	9.44%	
		OLB14				0.38%	2.78%	1.61%	0.53%	0.70%	0.39%	0.36%	
		norank_f_AKYG1722				0.15%	1.34%	0.94%	1.36%	0.14%	0.90%	0.76%	
		norank_f_Caldilineaceae norank_f_JG30-KF-CM45			1.10%	0.64%	0.83%	0.76%	1.10%	0.51%	0.75%	1.28%	
					0.95%	0.14%	1.09%	0.82%	0.95%	0.08%	0.79%	0.81%	
	OLB13			1.09%	2.26%	1.91%	4.16%	1.09%	3.58%	2.52%	1.72%		
		Candidatus_Kuenenia			24.15%	16.39%	21.76%	23.09%	24.15%	27.81%	23.49%	29.78%	
			SM1A02		3.43%	4.97%	2.10%	2.55%	3.43%	4.55%	2.64%	3.92%	
			Denitratisoma		4.29%	8.27%	4.90%	9.41%	4.29%	6.37%	15.58%	11.89%	
		norank_f	_norank_o_JG36-0	GS-52	1.16%	1.15%	2.12%	2.14%	1.16%	1.28%	1.05%	1.24%	
			Arenimonas		0.14%	0.25%	1.06%	1.18%	0.14%	0.41%	1.20%	0.86%	
		X	anthobacteraceae		0.67%	0.34%	0.71%	0.95%	0.67%	0.29%	1.57%	1.61%	
			Limnobacter		6.59%	4.44%	7.63%	6.29%	6.59%	4.73%	4.83%	4.04%	
]	Kapabacteriales		1.25%	1.03%	0.81%	1.07%	1.25%	0.92%	0.73%	0.80%	
			AKYH767		0.97%	0.72%	0.39%	0.76%	0.97%	0.73%	1.20%	0.76%	
		norank_f_no	orank_o_norank_c	SJA-28	0.78%	1.54%	0.80%	1.20%	0.78%	1.06%	0.49%	0.70%	
		norank_fnora	nk_o_norank_c_D	ojkabacteria	1.97%	2.53%	2.15%	3.34%	1.97%	1.94%	2.55%	2.01%	
			Subgroup_10		1.63%	1.72%	1.31%	0.95%	1.63%	1.15%	1.16%	0.89%	
	Haliangium				0.72%	3.63%	0.28%	0.39%	0.72%	1.92%	0.76%	0.57%	
		norank_f_norank_o_Fimbriimonadales			1.06%	0.53%	0.35%	1.28%	1.06%	0.64%	1.24%	1.10%	
			others		13.70%	13.30%	9.60%	10.59%	13.70%	11.28%	11.71%	10.35%	

Fig. S1 The identified fluorescent components of EPS by perform parallel factor (PARAFAC)

Fig. S2 Nitrogen cycle genes involved anammox (hzsA and hdh) and denitrification

(nirS, nirK, norZ and norB) process in two reactors

Fig. S3 FTIR absorbance spectra of the freeze-dried BSA and BSA-MgO NPs

complex

Fig. S4 Scanning electron microscope characterization of original anammox granular

sludge (a) and explored by MgO NPs