Supplementary Information

Pd-In bimetallic nanoparticles supported on chelating resin for nitrate removal in water: high efficiency and low NH₄⁺ selectivity

Zhanhui Shen^a*, Gege Peng^a, Ya Gao^a, Jialu Shi^{a,b}*

a Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, 64 East of Construction Road, Xinxiang 453007, P.R. China.

b State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210046, P.R. China
* Corresponding author: zhshen@htu.edu.cn (Zhanhui Shen) & shijialu@htu.edu.cn (Jialu Shi)

Abstract:

Nitrate pollution in ground water and surface water is a worldwide challenge. Reduction of nitrate to nitrogen gas according to electrocatalysis or hydrogenation catalysis is a prospective way to remove nitrate in water. Pd/In bimetallic catalyst supported on chelating resin was prepared by chemical reduction method in aqueous solution. SEM-EDS, TEM, XRD and XPS analysis revealed the Pd/In nanoparticles with a particle size range from 10 nm to 200 nm showed a uniform distribution in the prepared M-Pd/In composites. The prepared M-Pd/In composites showed high nitrate removal efficiency (96%) and low NH_4^+ selectivity (<2%) when the initial concentration of NO₃-N was 100 mg N/L. The coexisting anion, organic matter and initial pH value showed little influence on the nitrate removal ability of the prepared M-Pd/In composites. H_{ads} and NaBH₄ could be stored during the preparing process of the Pd/In bimetallic composites, which acted as reducing reagent in the nitrate removal process. The prepared M-Pd/In composites showed good nitrate removal ability after recycling 5 times. When it was used to treat actual wastewater, nearly all of the nitrate, nitrite and ammonium was removed from municipal WWTP effluent. Keywords: Palladium; Indium; Bimetallic nanoparticle; Catalysis; Nitrate

Sample mark	Solution bulk	PdCl ₂	InCl ₃ •4H ₂ O	Pd/In
	(mL)	(g)	(g)	mole ratio
M-Pd	50	0.2226		
M-In	50		0.3665	
M-Pd/In(1/1)	50	0.2226	0.3665	1/1
M-Pd/In(1/0.5)	50	0.2226	0.1832	1/0.5
M-Pd/In(0.5/1)	50	0.1113	0.3665	0.5/1

Table S1. Metal precursor solution for preparing Pd/In bimetallic nanoparticles on M4195 resin

Table S2 Pd/In mass loaded on 0.5 g DOW M4195 Resin in the prepared bimetallic composites

	Pd (mg)	In (mg)	Pd/In mass ratio	Pd + In (mg)
M-Pd/In(1/1)	64.8	23.9	2.7/1	88.7
M-Pd/In(1/0.5)	63.9	12.7	5.0/1	76.6
M-Pd/In(0.5/1)	45.2	28.6	1.6/1	73.8

NO₃⁻ removal efficiency (%)

Fig. S1 The NO₃⁻ removal efficiency of the prepared Pd/In bimetallic composites after 5h, 10h and 24h of reaction

Table S	S3.	Fitting	results	of the	pseudo-firs	st-order	kinetic	model	for	the	three	Pd/In
bimetal	llic o	compos	sites									

	M-Pd/In(1/1)	M-Pd/In(1/0.5)	M-Pd/In(0.5/1)
$k_{ m obs}$	0.230	0.232	0.214
R^2	0.907	0.900	0.901

NO3⁻ removal efficiency (%)

Fig. S2 The NO₃⁻ removal efficiency of M-Pd/In(1/0.5) at the 5th hour, the 10th hour and the 24th hour at the condition of different initial NO₃⁻-N concentration

Table S4. Fitting results of the pseudo-first-order kinetic model for nitrate removal process at different initial NO₃⁻-N concentration

	50 mg/L	100 mg/L	150 mg/L	200 mg/L
k _{obs}	0.807	0.232	0.125	0.095
R^2	0.987	0.900	0.797	0.786

Fig. S3 Product selectivity as a function of nitrate removal efficiency at different concentration of HCO₃⁻: (a) NH₄⁺-N; (b) NO₂⁻-N; (c) N₂

Fig. S4 Product selectivity as a function of nitrate removal efficiency at different concentration of Cl⁻: (a) NH₄⁺-N; (b) NO₂⁻-N; (c) N₂

Fig. S5 Product selectivity as a function of nitrate removal efficiency at different concentration of SO_4^{2-} : (a) NH_4^+ -N; (b) NO_2^- -N; (c) N_2

Fig. S6 Product selectivity as a function of nitrate removal efficiency at different concentration of humic acid: (a) NH₄⁺-N; (b) NO₂⁻-N; (c) N₂

Fig. S7 Product selectivity as a function of nitrate removal efficiency at different initial pH: (a) NH₄⁺-N; (b) NO₂⁻-N; (c) N₂

Fig. S8 Product selectivity as a function of nitrate removal efficiency at different recycling nitrate removal reaction (1 to 5): (a) NH₄⁺-N; (b) NO₂⁻-N; (c) N₂

Fig. S9 The concentration of NH_4^+ -N in the presence of M-Pd/In(1/0.5) and the control at the initial pH of 9.50

Fig. S10 The pH value during the nitrate removal reaction by M-Pd/In(1/0.5)

Fig. S11 FESEM-EDS results of M-Pd/In(1/0.5) after 5 cycles of reuse

Fig. S12 TEM images of M-Pd/In(1/0.5) after 5 cycles of reuse

Fig. S13 XRD spectrum of M-Pd/In(1/0.5) after 5 cycles of reuse

Fig. S14 XPS results of the prepared M-Pd/In composite after 5 cycles of reuse: (a) Pd and (b) In

Wastewater Treatment Plant					
	Influent	Effluent	Limits	Units	
pН	7.7	7.42	6-9	1	
BOD	181	5.6	10	mg/L	
TP	1.9	0.29	0.5	mg/L	
COD	489	23	50	mg/L	
Volatile phenol	0.0067	0.0023	0.5	mg/L	
Chromaticity	32	8	30	multiple	
Hg	< 0.00004	< 0.00004	0.001	mg/L	
Cd	0.071	< 0.004	0.01	mg/L	
Cr	0.404	< 0.004	0.1	mg/L	
Cr (VI)	< 0.004	< 0.004	0.05	mg/L	
As	0.0047	0.0029	0.1	mg/L	
Pb	0.024	< 0.02	0.1	mg/L	
SS	394	10	10	mg/L	
LAS	1.19	0.129	0.5	mg/L	
Fecal coliform	24000	3500	1000	1/L	
NH_4^+-N	24.6	0.092	5	mg/L	
TN	29.9	5.75	15	mg/L	

Table S5. Characteristic of Influent and Effluent of Xiaoshangzhuang Municipal

The Effluent meets the l	limits of one-class	A of Municipal	Wastewater	Treatment	Plant
Pollutant Discharge Star	ndard (GB 18918-	2002).			

Treatment Plant						
	Influent	Effluent	Limits	Units		
pН	7.72	7.41	6-9	1		
BOD	65.5	3.3	10	mg/L		
TP	2.34	0.38	0.5	mg/L		
COD	177	18	50	mg/L		
Volatile phenol	0.0076	0.0023	0.5	mg/L		
Chromaticity	32	8	30	multiple		
Hg	< 0.00004	< 0.00004	0.001	mg/L		
Cd	0.071	< 0.004	0.01	mg/L		
Cr	0.404	< 0.004	0.1	mg/L		
Cr (VI)	< 0.004	< 0.004	0.05	mg/L		
As	0.0032	0.0022	0.1	mg/L		
Pb	< 0.02	< 0.02	0.1	mg/L		
SS	135	7	10	mg/L		
LAS	0.724	0.334	0.5	mg/L		
Fecal coliform	24000	3500	1000	1/L		
NH_4^+-N	28.8	0.293	5	mg/L		
TN	35.1	14.7	15	mg/L		

Table S6. Characteristic of Influent and Effluent of Luotuowan Municipal Wastewater

The Effluent meets the limits of one-class A of Municipal Wastewater Treatment Plant Pollutant Discharge Standard (GB 18918-2002).

Fig. S15 FESEM image of of raw resin

Table S7 Pd/In mass loading on 0.5 g DOW M4195 Resin in the prepared M-Pd/In(1/0.5) after 5 cycles of reuse by regeneration

	Pd (mg)	In (mg)	Pd/In mass ratio	Pd + In (mg)
M-Pd/In(1/0.5)	58.5	10.2	5.7/1	68.7

Table S8 The mass ratio of Pd to NO_3 ⁻-N, In to NO_3 ⁻-N, and Pd+In to NO_3 ⁻-N at different initial NO_3 ⁻-N concentration

Initial NO ₃ ⁻ -N	Initial NO ₃ ⁻ -N	Mass ratio of	Mass ratio of	Mass ratio of
(mg/L)	(mg)	Pd/NO ₃ N	In/NO ₃ N	Pd+In/NO ₃ N
50	2.5	25.56	5.08	30.64
100	5.0	12.78	2.54	15.32
150	7.5	8.52	1.69	10.21
200	10.0	6.39	1.27	7.66