Casein-fed mice showed faster recovery from DSS-induced colitis than

chicken-protein-fed mice

Lili Yu¹, Di Zhao¹, Yingqun Nian¹, Chunbao Li^{1*}

¹Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of

Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat

Production and Processing, Quality and Safety Control; Nanjing Agricultural

University, Nanjing 210095, P.R. China

Corresponding author:

Dr. Chunbao Li

E-mail: <u>chunbao.li@njau.edu.cn</u>

Address: College of Food Science and Technology, Nanjing Agricultural University,

Weigang 1#, 210095, Nanjing, P.R. China

	Casein	Chicken
protein	88.65	86.88
water	9.90	10.34
ash	1.09	1.80
fat	0.36	0.98

Table S1 Crude composition of protein powders (%)

Table S2 Mineral composition of protein powders (mg/Kg)

	Casein	Chicken
Ca	305.9	240.0
Cu	4.0	3.0
Fe	41.9	12.1
Κ	69.7	3171.5
Mg	178.4	493.3
Р	5291.0	2982.1
Zn	55.2	13.9
Na	64.2	367.2

Table S3 Ingredient composition of mineral mixes of the two diets (g/Kg diet)

	Casein	Chicken
calcium carbonate, anhydrous, Ca 40.04%	12.33500	12.36500
potassium dihydrogen phosphate, P 22.76% K 28.73%	7.86200	10.02200
sodium dihydrogen phosphate, P 22.76% Na 28.73%	0.69800	0.50700
potassium Citrate, K 36.16%	3.46700	0.00000
sodium chloride, Na 39.34%	2.03400	2.03400
potassium sulphate, S 18.39% K 44.87%	1.63100	1.63100
magnesium oxide, Mg 60.32%	0.79100	0.68400
iron citrate, Fe 16.5%	0.22200	0.25800
zinc carbonate, Zn 52.14%	0.05200	0.06700
curpic carbonate, Cu 57.47%	0.01050	0.01050
manganous carbonate, Mn 47.79%	0.02205	0.02205
potassium iodate, I 59.3%	0.00035	0.00035

sodium selenate, Se 41.79%	0.00036	0.00036
ammonium paramolybdate, 4 hydrate, Mo 54.34%	0.00028	0.00028
sodium meta-silicate, 9 hydrate, Si 9.88%	0.05080	0.05080
chromium potassium sulfate, 12 hydrate, Cr 10.42%	0.00960	0.00960
boric acid, B 17.5%	0.00290	0.00290
sodium fluoride, F 45.24%	0.00220	0.00220
nickel carbonate, Ni 45%	0.00111	0.00111
lithium chloride, Li 16.38%	0.00061	0.00061
ammonium vanadate, V 43.55%	0.00023	0.00023
Total	29.1927	27.6688

Casein Chicken Protein powder 200.00 204.00 Cornstarch 400.83 400.83 Dextrinised cornstarch 132.00 132.00 Sucrose 100.00 100.00 Soybean oil 70.00 70.00 Fiber 50.00 50.00 Mineral mix² 29.19 27.67 Vitamin mix³ 10.00 10.00 L-cystine 3.00 3.00 Choline chloride 2.50 2.50 Water 2.48 0.00 1000.00 1000.00 Total

Table S4 Ingredient composition and nutritional content of diets (g/Kg diet)

Protein¹, the amount of protein powder was adjusted and balanced according to the protein content in casein and chicken protein powder. Mineral mix², the formulation of mineral mixes for the two diets is listed in Table S3. Vitamin mix³: the formulation of vitamin mix as described ^[1].

[1] P. G. Reeves, F. H. Nielsen, G. C. Fahey, AIN-93 purified diets for laboratory

rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet, *J Nutr.*, 1993. **123**,1939-1951.

Score	Loss of weight	Visible fecal blood	Stool consistency
0	None	None	Normal
1	0%-5%	Slightly bloody	Slightly loose feces
2	5%-10%	Moderately bloody	Loose feces
3	10%-20%	Bloody	Diarrhea
4	>20%	Severely blood	Severe diarrhea

Table S5 Scoring of disease activity index (DAI).

Score	Severity of inflammatory infiltration	Crypt injury	Disappearance of goblet cells
0	Normal	None	None
1	Occasionally, cell limited to submucosa	Some crypt damage	Rarely disappeared
2	Significant presence of inflammatory cells in submucosa	Large spaces between crypts, some shortening of crypts	Slightly disappeared
3	Infiltrate present in both submucosa and lamina propria	Large areas without crypts	Moderately disappeared
4	Large amount of infiltrate in submucosa, lamina propria and surrounding blood vessels	No crypts	Depletion of goblet cells

Table S6 Scoring of colonic histology.

Target genes	Primer Sequence (5'-3')	Annealing T (°C)	
TNF-α	FW: CTCATGCACCACCATCAAGG	50	
	RV: ACCTGACCACTCTCCCTTTG	59	
ZO-1	FW: TGTTTATGCGGACGGTGGCG	64	
	RV: TCCATTGCTGTGCTCTTAGCGG	04	
MUC1	FW: TGCCCTTCCAAGTGAGGAAA	50	
	RV: CTGGAGTGGTAGTCGATGCT	39	
COX-2	FW: CCCATTAGCAGCCAGTTGTC	50	
	RV: CAGGATGCAGTGCTGAGTTC	57	
MUC2	FW: TTTGGGTCCTGTGGGACTTT	50	
	RV: ACTGGTCTTCTCCTCCTTGC	57	
TLR-4	FW: GCCACCAGTTACAGATCGTC	58	
	RV: GAGGCATCATCCTGGCATTT	38	
II 15	FW: AGAGTTCTGGATGGATGGCA	58	
IL-15	RV: TGCCCAGGTAAGAGCTTCAA		
CAPDH	FW: GGACTTACAGAGGTCCGCTT	50	
UAT DII	RV: CTATAGGGCCTGGGTCAGTG	57	

Table S7 Primer sequences used in RT-qPCR assays in colonic tissue.

	DH (%)			
	G ₁₅	G ₁₂₀	I ₁₅	I ₁₂₀
Casein	3.86 ± 0.54	13.15 ± 0.25	47.20 ± 3.86**	60.71 ± 2.45**
Chicken Protein	3.67 ± 0.55	14.21 ± 1.97	29.22 ± 4.83	37.83 ± 8.13

Table S8. The degree of hydrolysis (DH) of samples during gastrointestinal digestion.

G15 and G120 indicate digestibility after 15 or 120 min of gastric digestion; I15 and I120 indicate digestibility after 120 min of gastric digestion and 15 or 120 min of intestinal digestions.

Degree of hydrolysis (DH)

Method

Chicken protein and casein were digested by gastric and intestinal digestive enzymes using the INFOGEST method ^[1]. The protein digestibility was calculated by the change of primary amino group content before and after enzyme treatments, which was quantified by a fluorescamine method as described previously ^[2]. The degree of hydrolysis (DH) was determined as follows:

$$DH = \frac{[-NH2 (h)] - [-NH2 (0)]}{[-NH2 (\infty)] - [-NH2 (0)]}$$

[-NH2] indicates the concentration of primary amines in the hydrolyzed (h) or unhydrolyzed (0) samples and [-NH2(∞)] indicates the maximum primary amine concentration assuming total digestion to free amino acids (AAs). The [-NH2(∞)] value was determined the fluorescence of each sample (before digestion) that was totally hydrolyzed by 6 M hydrochloric acid at 100 °C for 48 h.

References

- [1] A. Brodkorb, L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, A. Clemente, M. Corredig, INFOGEST static in vitro simulation of gastrointestinal food digestion, *Nat Protocols.*, 2019, 14, 991-1014.
- [2] D.Zhao, Y. Xu, T. Gu, H. Wang, Y. Yin, B. Sheng, Y. Li, Y. Nian, C. Wang, C. Li, X. Xu, G. Zhou, Peptidomic investigation of the interplay between enzymatic tenderization and the digestibility of beef semimembranosus proteins, *J Agr. Food Chem.*, 2020, 68, 1136.

Figure S1. The mRNA levels of TNF- α (A), IL-15 (B), TLR-4 (C), ZO-1 (D) and COX-2 (E) in the colon, respectively.

Figure S2. The gut microbiota composition at phylum level on day 21.

Figure S3. A Venn diagram showing the overlap of the OTUs identified in the gut microbiota among six groups on day 27.

