1	Inhibition of the intestinal postprandial glucose transport by gallic
2	acid and gallic acid derivatives

3 Huijun Wang ^{a,b}, Mark I. Fowler ^b, David J. Messenger ^b, Jose Juan Ordaz-Ortiz ^{c,f}, Xuelan Gu ^d,

- 4 Songshan Shi^a, Leon A. Terry^c, Mark J. Berry^b, Guoping Lian^{b,e*}, Shunchun Wang^{a,*}
- 5 a The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key
- 6 Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese
- 7 Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road,
- 8 Shanghai 201203, P. R. China;
- 9 ^bUnilever R&D Colworth, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, U.K.;
- 10 ° Plant Science Laboratory, Cranfield University, MK43 0AL, U.K.;
- ¹¹ ^d Unilever R&D Shanghai, 5/F, 66 Lin Xin Road, Shanghai 200335, P. R. China;
- 12 e Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK.
- 13 ^fNational Laboratory of Genomics for Biodiversity, CINVESTAV IPN, 36824 Irapuato, Guanajuato,
- 14 Mexico.

15 CORRESPONDING AUTHORS

- 16 * Guoping Lian, Unilever R&D Colworth, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ,
- 17 U.K. Tel.: +44 1234222741; E-Mail: Guoping.Lian@unilever.com (G.L.)
- 18 * Shunchun Wang, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese
- 19 Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China; Tel.: +86-21-5132-2511; Fax: +86-21-
- 20 5132-2519; E-Mail: <u>shunchunwang@126.com</u> (S.W.)
- 21

24 Figure S1. Flow chart of the extraction and fractionation from Terminalia chebula Retz., fructus

25 immaturus.

Figure S2. 1-butanol extract from *T. chebula* aqueous ethanol extract was divided into 17 fractions
after separation by HPLC and collected by Agilent 1260 infinity LC fraction collector (1 tube/3
minutes)

32

Figure S3. Gallic acid and gallic acid derivatives characterization of chemical constituents from active fractions of *T. chebula*. The structures shown are based on UPLC-ESI-Q-TOF/MS data, in some cases ambiguities may remain concerning linkage positions, configuration, etc. Compound numbers, names and molecular formulas are presented in Table 2.

Figure S4. Gallic acid and its derivates inhibition of glucose transport at 5 mM glucose and 25 mM glucose in Caco-2 cells (n=3). Phloridzin (Pz) was tested at 300 μ M and Phloretin (Pt) was tested at 150 μ M. The other samples were tested at 200 μ M.

Figure S5. Gallic acid derivates of flavonoids and their original flavonoids inhibition of glucose
transport at 5 mM glucose and 25 mM glucose in Caco-2 cells (n=3). Phloridzin (Pz) was tested at
300 μM and Phloretin (Pt) was tested at 150 μM. EC, EGC, EGCG, TF, and TFMG were tested at
200 μM.

Samples (200 us/ml)	% Glucose transport inhibition	% Glucose transport inhibition 25 mM D-Glucose	
Samples (200 µg/mL)	5 mM D-Glucose		
Ethanol extract (EE)	57.1±6.1	34.2±2.5	
Petroleum ether fraction (PE)	29.7±1.5	7.9±3.4	
Dichloromethane fraction (DCM)	48.4±1.0	15.9±2.3	
Ethyl acetate fraction (EA)	82.0±0.7	43.4±2.8	
1-Butanol fraction (1-But)	88.0±0.5	57.6±2.1	
Water fraction (Water)	61.0±1.1	45.0±0.5	
1-Bu-1	0.1	-3.2	
1-Bu-2	70.4	79.4	
1-Bu-3	26.8	-5.0	
1-Bu-4	24.5	6.3	
1-Bu-5	87.4	102.2	
1-Bu-6	84.9	71.0	
1-Bu-7	24.3	3.1	
1-Bu-8	68.2	55.3	
1-Bu-9	49.4	53.2	
1-Bu-10	50.7	7.0	
1-Bu-11	68.4	14.8	
1-Bu-12	38.6	12.3	
1-Bu-13	26.8	6.4	
1-Bu-14	29.5	9.7	
1-Bu-15	25.8	3.5	
1-Bu-16	4.9	7.0	
1-Bu-17	-21.9	-8.6	
Phloridzin	52.8 ± 0.3	17.8 ± 0.2	
Phloretin	84.8 ± 4.1	42.2 ± 3.0	
Control	0 ± 2.0	0 ± 1.1	

49 Table S1. Glucose transport inhibition of ethanol extract of *Terminalia chebula* Retz., fructus
50 immaturus, dried, and its bioassay directed fractions

51 Phloridzin was tested at 300 µM and Phloretin was tested at 150 µM. The other samples were tested at 200 µg/mL.

Table S2 Characterization of chemical constituents from active fractions of *Terminalia chebula* Retz., fructus immaturus, dried in negative modeby UPLC-ESI-Q-TOF/MS

No	Retention	Compound name	Mol. Formula	Exact mass	Theoretical	Observed	Mass error	Major fragment ions: m/z	Fraction
	time (min)			(calc.)	m/z (M-H)	m/z (M-H ⁻)	(ppm)		
S 1	0.51	Gallic acid	$C_7H_6O_5$	170.022	169.0137	169.0145	4.7	125.0250	1-Bu-2
S2	2.92	Tri-gallic-glu	$C_{27}H_{24}O_{18}$	636.096	635.0884	635.0906	3.5	465.0678, 313.0569, 221.0455, 169 .0150, 125.0246	1-Bu-5
S3	2.74	Chebulanin	$C_{27}H_{24}O_{19}$	652.091	651.0834	651.0863	4.5	634.0777, 482.0676, 169.0143	1-Bu-5
S4	2.88	Chebulagic acid	$C_{41}H_{30}O_{27} \\$	954.097	953.0896	953.0926	3.1	463.0514, 337.0200, 300.9990, 275.0197, 205.0508	1-Bu-8
S5	4.43	Chebulinic acid	$C_{41}H_{32}O27$	956.113	955.1053	955.1061	0.8	786.0858, 686.0689, 618.0804, 466.0702, 337.0183, 275.0199, 169.0131	1-Bu-11
S6	2.88	Corilagin	$C_{27}H_{22}O_{18}$	634.081	633.0728	633.0734	0.9	300.9991, 275.0204, 249.0405, 169.0149	1-Bu-6
S 7	0.78	Terflavin B	$C_{34}H_{24}O_{22}$	784.076	783.0681	783.0702	2.7	784.0689, 451.9984, 300.9988, 275.0193, 250.0425, 187.0397	1-Bu-2
S 8	4.61	Ellagic acid	$\mathrm{C}_{14}\mathrm{H}_6\mathrm{O}_8$	302.006	301.1287	301.1277	-3.3	299.9901, 283.9955, 254.9918,245.0081, 228.0048, 201.0184, 173.0237, 145.0292	1-Bu-11
S9	3.67	Gallagic acid	$C_{28}H_{10}O_{16}$	601.997	600.9891	600.9901	1.7	583.9801, 298.9823, 273.0030, 247.0243	1-Bu-8
S10	2.80	Neochebulagic acid	$C_{41}H_{32}O_{28}$	972.670	971.1002	971.0996	-0.6	954.0937, 802.0819, 634.0767, 337.0205, 300.9993, 249.0405	1-Bu-9
S11	3.76	Tetra-gallic-glu	$C_{34}H_{28}O_{22}$	788.107	787.0994	787.1010	2.0	636.0900, 618.0793, 484.0804, 466.0696, 295.0437, 169.0134, 125.0254	1-Bu-8

Tri-gallic-glu: 3,4,6-Tri-O-galloyl-β-D-Glucose

Chebulanin: 1-O-galloyl-2,4-O-chebuloyl-β-D-Glucose

Chebulagic acid: 1-O-galloyl-2,4-O-chebuloyl-3,6-O-HHDP-β-D-Glucose

Chebulinic acid: 1,3,6-tri-O-galloyl-2,4-O-chebuloyl-β-D-Glucose

Corilagin: 1-O-galloyl-3,6-(R)-HHDP-β-D-Glucose

Terflavin B: 4-O-(S)-flavogallonyl-6-O-galloyl-β-D-Glucose

Tetra-gallic-glu: 1,3,4,6-Tetra-O-galloyl-β-D-Glucose