SUPPORTING INFORMATION

Prevention and underlying mechanism of *Rhus chinensis* Mill. fruits on dextran sulphate sodium-induced ulcerative colitis in mice

Yi Zhang¹, Ou Wang², Nan Ma¹, Junjie Yi¹, Hongying Mi^{3*}, Shengbao Cai^{1*}

¹Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming

University of Science and Technology, Kunming, Yunnan Province, People's

Republic of China, 650500;

²National Institute for Nutrition and Health, Chinese Center for Disease Control and

Prevention, Beijing, People's Republic of China, 100050;

³The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming

University of Science and Technology, Kunming, Yunnan Province, People's

Republic of China, 650032.

* Corresponding author and proofs

Shengbao Cai E-mail: caikmust2013@163.com Hongying Mi E-mail: hongyingmi6100@sina.com

Fig. S1 The chromatograms of ethanol extract of *Rhus chinensis* Mill. fruits. Peaks identification and their MS data are shown in Table S1. The base peak chromatogram is shown in Fig. A and the extracted ion chromatogram is shown in Fig. B-G.

Peak No.	Compounds	Molecular formula	Retention time (min)	$[M-H]^{-}(m/z)$	MS/MS ion fragments
1	Citric acid	$C_6H_8O_7$	1.83	191.0188	57.0332(64.43), 87.0074(100), 111.0075(49.46)
2	Gallic acid	$C_7H_6O_5$	2.72	169.0132	69.0331(100), 97.0281(37.62), 125.0230(32.21)
3	Di-O-galloyl-glucoside I	$C_{20}H_{20}O_{14}$	3.18	483.0780	125.0231(25.56), 169.0132(100), 331.0675(4.53)
4	Di-O-galloyl-glucoside II	$C_{20}H_{20}O_{14}$	3.51	483.0780	125.0231(22.51), 169.0132(100), 331.0674(5.52)
5	Protocatechuic acid	$C_7H_6O_4$	5.33	153.0182	108.0203 (100), 109.0286 (40.74)
6	Digallic acid I	$C_{14}H_9O_9$	9.55	321.0250	125.0231 (100), 169.0132(30.57)
7	Digallic acid II	$C_{14}H_{10}O_9$	10.40	321.0251	125.0231 (100), 169.0132 (29.67)
8	Trigalloylglucose I	$C_{27}H_{24}O_{18}$	10.43	635.0894	169.0132(100), 483.0777(29.91), 635.0892(5.90)
9	Trigalloylglucose II	$C_{27}H_{24}O_{18}$	10.79	635.0894	169.0132(100), 483.0772(22.61), 635.0893(13.11)
10	Myricetin-3-O-rhamnoside	$C_{21}H_{20}O_{12}$	12.19	463.0881	271.0245(28.19), 300.0273(100), 316.0221(40.44)
11	Luteolin-7-O-glucoside	$C_{21}H_{20}O_{11}$	12.33	447.0931	284.0325(51.13), 285.0402(100)
12	Quercetin-3-O-rhamnoside	$C_{21}H_{20}O_{11}$	12.85	447.0930	300.0274(100),301.0341(53.33)
13	Kaempferol-3-O-hexoside	$C_{21}H_{20}O_{10}$	13.49	431.0983	255.0295(79.61), 284.0325(100), 285.0398 (86.51)

 Table S1 Phenolic compounds identified in *Rhus chinensis* Mill. fruits by UHPLC-ESI-HRMS/MS in negative mode.

Raw images of western blot in Figure 6

 DSS+
 DSS+

 Mark C
 DSS L-RM
 H-RM

 1
 2
 3
 4
 5
 6
 7
 8
 9
 DSS+ DSS+ Mark C DSS L-RM H-RM 1 2 3 4 5 ____ ---Nrf2(100kDa) ---NQO1(31kDa) DSS+ DSS+ Mark C DSS L-RM H-RM 1 2 3 4 5 6 7 8 9 -DSS+ DSS+ C DSS L-RM H-RM 6 7 8 9 -----Mark 1 2 HO-1(32kDa) 3 4 5 -~~~~ β-actin(42kDa)

Raw images of western blot in Figure 7

Raw images of western blot in Figure 8

111 , DSS+ DSS+ Mark C DSS L-RM H-RM 1 2 3 4 5 6
 DSS+
 DSS+

 Mark
 C
 DSS
 L-RM
 H-RM

 1
 2
 3
 4
 5
 6
 40kDa 35kDa 40kDa P38 (40kDa) . 1 . DSS+ DSS+ Mark C DSS L-RM H-RM 1 2 3 4 5 DSS+ DSS+ Mark C DSS L-RM H-RM 1 2 3 4 5 6 7 8 9 -Erk1/2 (42kDa/44kDa) quit aly DSS+ DSS+ C DSS L-RM H-RM 2 3 4 5 6 7 8 9 p-JNK (46kDa/54kDa) Marl DSS+ DSS+ Mark C DSS L-RM H-RM 1 2 3 4 5 1 50kDa 40kDa ==== JNK (46kDa/ 54kDa) DSS+ DSS+ Mark C DSS L-RM H-RM 1 2 3 4 5 6 7 8 9 β-actin (42kDa)

