Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2021

Phytochemical profiles and their hypoglycemic effects of tree peony seed coats

Zenggen Liu^{a*}, Mingzhu Li^a, Dawen Qian^a, Zheng'an Liu^b, Qingyan Shu^{b*}

^a Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine

Research, Northwest Institute of Plateau Biology, CAS, Xining 810001, China

^b Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, CAS, Beijing 100093, China

^{*} Corresponding authors. Tel/Fax: +86 971 6143282, E-mail address: lzg@nwipb.ac.cn (ZG Liu), shuqy@ibcas.ac.cn (QY Shu). Addresses for other authors: 695469402@qq.com (MZ Li), dwqian@nwipb.ac.cn (DW Qian), liuzhengan@ibcas.ac.cn (ZA Liu).

No.	RD	PF	EG	SA	SB	VF	AD	UN I	UN II
S1	0.31±0.10	0.56±0.11	0.54±0.12	24.37±2.53	209.17±23.60	30.96±3.03	113.24±9.77	47.70±5.50	32.10±2.32
S2	0.30±0.05	0.37±0.04	-	25.86±1.95	227.17±18.77	47.23±2.26	145.75±12.52	12.84±2.21	46.55±3.44
S3	0.15±0.06	0.53±0.12	-	23.09±2.76	197.38±22.18	34.83±3.12	177.12±24.61	16.94±1.99	42.72±2.94
S4	0.08 ± 0.02	$0.40{\pm}0.07$	-	24.05±3.07	209.17±9.80	55.93±3.67	181.24±18.92	8.14±1.24	47.12±3.40
S5	0.12±0.03	0.42±0.05	0.49±0.10	21.52±1.18	187.99±12.86	28.77±2.27	119.37±8.67	28.06±2.34	32.12±1.95
S6	0.01±0.00	0.59±0.14	0.16±0.02	25.92±3.34	232.99±30.67	41.96±2.90	162.76±10.02	11.29±1.29	47.38±3.41
S7	0.32±0.14	0.47±0.10	0.07±0.01	16.15±2.10	132.46±14.29	71.77±5.24	115.97±6.50	19.31±1.05	26.74±1.66
S8	0.12±0.05	0.45±0.08	0.26±0.04	27.44±3.17	240.43±25.40	35.78±1.80	145.57±13.51	23.82±1.81	39.55±2.73
S9	0.16±0.02	0.51±0.12	0.05±0.01	23.57±2.06	199.65±21.69	52.88±4.31	108.41±9.75	34.47±2.94	31.97±2.01
S10	0.64±0.15	0.34±0.03	1.87±0.24	25.83±1.92	216.82±17.92	43.45±2.99	105.58±10.04	28.73±1.12	35.46±1.97
S11	0.58±0.22	0.46±0.05	0.87±0.22	24.07±2.30	197.11±15.33	54.44±3.27	100.95±12.38	13.16±1.50	36.20±2.25
S12	0.26±0.07	0.42±0.05	3.24±0.57	20.51±1.18	190.63±8.96	62.45±5.00	140.31±12.67	26.26±1.33	35.59±1.59
S13	0.18±0.00	0.25±0.07	-	18.11±1.37	156.07±23.07	32.98±1.66	154.67±19.18	38.38±2.94	35.15±2.92
S14	0.25±0.02	0.66±0.12	3.96±0.53	21.76±1.56	190.87±17.94	74.75±4.54	182.08±21.60	12.64±1.17	42.35±3.13
S15	0.16±0.02	0.50±0.04	2.36±0.32	19.41±2.33	180.60±12.89	48.38±3.30	204.34±16.36	14.08±2.11	47.95±2.85
S16	0.21±0.03	0.55±0.10	0.07±0.01	19.76±1.27	189.43±21.37	41.03±3.55	182.36±15.49	18.03±1.53	39.43±2.39
S17	1.05±0.34	0.08±0.03	2.14±0.20	17.76±3.44	118.10±22.96	20.32±4.38	35.60±4.72	3.51±0.92	17.23±1.50
S18	0.55±0.17	0.44±0.02	2.86±0.18	25.76±1.86	242.64±27.90	66.40±2.93	193.60±18.77	26.26±2.33	47.22±2.26
S19	0.14±0.01	0.50±0.07	-	19.96±2.39	169.97±18.72	34.90±3.12	77.75±7.04	60.17±5.28	21.40±1.52
S20	0.21±0.02	0.65±0.06	0.07±0.02	29.16±2.16	278.26±16.40	20.25±3.65	154.37±11.29	7.35±7.04	46.60±3.60
S21	9.26±2.20	0.05±0.01	0.25±0.04	7.04±1.04	35.11±4.29	12.50±1.72	100.50±6.53	4.14±1.02	15.89±1.87
S22	6.86±1.87	0.06±0.01	0.19±0.03	7.50±0.92	42.33±3.95	4.21±0.88	76.00±5.49	4.20±0.88	14.50±1.29
S23	1.96±0.63	0.22±0.04	0.19±0.02	0.69±0.24	2.93±0.77	8.23±1.42	99.87±3.92	3.87±1.30	14.84±0.98
S24	14.91±2.69	0.08±0.02	0.18±0.04	0.31±0.09	0.69±0.16	0.91±0.28	155.01±14.68	5.17±0.94	22.70±1.07
S25	6.29±1.08	0.10±0.00	0.03±0.00	2.96±0.84	9.86±1.30	0.27±0.05	14.49±2.05	1.03±0.37	11.00±0.84
S26	1.85±0.75	0.04±0.01	-	-	-	0.08±0.02	38.63±4.08	1.71±0.45	12.64±1.16

Table S1 Phytochemical composition and content (mg/g) in seed coats of three tree peonies (*POSC*, *PDSC* and *PLSC*) located from different production regions.

RD: (E)-resveratrol 3,5-*O*-β-diglucoside, PF: paeoniflorin, EG: ethyl gallate, SA: suffruticosol A, SB: suffruticosol B, VF: trans-ε-viniferin, AD: ampelopsin D, UN I: Unidentified II, UN II: Unidentified II.

The symbol (-) presents that it is below the detection limit.

Phytochemicals	RD	PF	EG	SA	SB	VF	AD	UN I	UN II
(E)-resveratrol 3,5- <i>O-β</i> - diglucoside (RD)	1.000								
Paeoniflorin (PF)	-0.673**	1.000							
Ethyl gallate (EG)	-0.199	0.201	1.000						
Suffruticosol A (SA)	-0.716**	0.802**	0.235	1.000					
Suffruticosol B (SB)	-0.723**	0.834**	0.239	0.989**	1.000				
trans- <i>ɛ</i> -Viniferin (VF)	-0.618**	0.711**	0.506**	0.701**	0.706**	1.000			
Ampelopsin D (AD)	-0.245	0.630**	0.252	0.519**	0.591**	0.572**	1.000		
Unidentified I (UN I)	-0.428*	0.461*	0.028	0.473*	0.470*	0.370	0.122	1.000	
Unidentified II (UN II)	-0.551**	0.781**	0.266	0.829**	0.876**	0.694**	0.856**	0.199	1.000

Table S2 Pearson correlation coefficients among the main phytochemical contents of *Paeonia* seed coats.

**. P < 0.01, correlation is significant at the 0.01 level (2-tailed).

*. P < 0.05, correlation is significant at the 0.05 level (2-tailed).

Compound no.	Name/description	IC ₅₀ (µM)	
	Acarbose	0.022 ± 0.0026	
1	(E)-resveratrol 3,5- <i>O</i> -β-diglucoside	>3000	
2	Paeoniflorin	>3000	
3	Ethyl gallate	>3000	
4	Suffruticosol A	12.44 ± 1.10	
5	Suffruticosol B	12.55 ± 1.11	
6	trans- <i>e</i> -Viniferin	7.75 ± 0.85	
7	Ampelopsin D	3.92 ± 0.27	
8	Vateriferol	3.01 ± 0.18	
9	4-hydroxybenzoic acid	>3000	
10	4-hydroxybenzal-dehyde	>3000	
11	Unidentified I	>3000	
12	Unidentified II	>3000	

Table S3 Inhibitory effects of acarbose and the main compounds of *Paeonia* seed coats on α-glucosidase

Fig. S1. Geographic distribution of different sampled positions of *Paeonia* plants. Names of the numbered positions were listed in Table 1.

Fig. S2. Inhibition mechanism of ampelopsin D (a) and suffruticosol B (c) on α -glucosidase and Lineweaver-Burk plots for the inhibition of α -glucosidase by ampelopsin D (b) and suffruticosol B (d).

Fig. S3. Molecular docking of ampelopsin D (a), suffruticosol B (b) and acarbose (c) in the region of the active site of the protein (PDB: 2QMJ).

Supplementary data

The NMR and MS data of the phytochemicals (1-10) isolated from POSC are as follows.

(1) (E)-Resveratrol 3,5-O- β -diglucoside

ESI-MS m/z 553 [M+H]⁺ (C₂₆H₃₂O₁₃). ¹H NMR (600 MHz, MeOD) δ_{H} : 7.42 (2H, d, J = 8.5 Hz, H-2', 6'), 7.11 (1H, d, J = 16.0 Hz, H-8), 6.98 (2H, brs, H-2, 6), 6.93 (1H, d, J = 16.0 Hz, H-7), 6.80 (2H, d, J = 8.5 Hz, H-3', 5'), 6.49 (1H, overlapped, H-4), 4.97 (2H, d, J = 7.5 Hz, H-1", 1"'), 3.97 (2H, d, J = 11.0 Hz, H-6a", 6a"'), 3.30~3.78 (10H, Glu); ¹³C NMR (151 MHz, MeOD) δ_{C} : 160.2 (C-4'), 158.6 (C-3, 5), 141.4 (C-1), 130.7 (C-), 130.6 (C-8), 130.2 (C-2', 6'), 129.0 (C-1'), 126.3 (C-7), 116.5 (C-3', 5'), 109.7 (C-2, 6), 104.8 (C-4), 102.3 (C-1", 1"'), 78.3 (C-3", 3"'), 78.0 (C-5", 5"'), 74.9 (C-2", 2"'), 71.7 (C-4", 4"'), 62.7 (C-6", 6"').

(2) Paeoniflorin

ESI-MS m/z 481 [M+H]⁺ (C₂₃H₂₈O₁₁). ¹H NMR (600 MHz, MeOD) δ_{H} : 8.05 (2H, d, J = 7.5 Hz, H-2", 6"), 7.61 (1H, t, J = 7.5 Hz, H-4"), 7.48 (2H, t, J = 7.5 Hz, H-3", 5"), 5.44 (1H, s, H-9), 4.74 (1H, overlapped, H-8), 4.54 (1H, d, J = 7.5 Hz, H-1'), 3.86 (1H, d, J = 11.5 Hz, Hb-6'), 3.62 (1H, d, J = 8.5 Hz, Ha-6'), 3.20~3.40 (4H, overlapped, H-3', 5', 2', 4'), 2.59 (1H, d, J = 6.0 Hz, H-5), 2.49 (1H, m, Hb-6), 2.20 (1H, d, J = 12.5 Hz, Hb-1), 1.96 (1H, d, J = 12.0 Hz, Ha-6), 1.82 (1H, d, J = 12.5 Hz, Ha-1), 1.37 (3H, s, H-10); ¹³C NMR (151 MHz, MeOD) δ_{C} : 168.0 (C-7"), 134.4 (C-4"), 131.1 (C-1"), 130.6 (C-2", 6"), 129.6 (C-3", 5"), 106.4 (C-4), 102.2 (C-9), 100.1 (C-1'), 89.3 (C-1), 87.2 (C-2), 78.0 (C-5'), 77.9 (C-3'), 74.9 (C-2'), 72.1 (C-7), 71.7 (C-4'), 62.8 (C-6'), 61.7 (C-8), 44.5 (C-3), 43.9 (C-5), 23.4 (C-6), 19.6 (C-10).

(3) Ethyl gallate

ESI-MS m/z 199 $[M+H]^+$ (C₉H₁₀O₅). ¹H NMR (600 MHz, MeOD) δ_H : 7.08 (2H, s, H-2, 6), 4.30 (2H, d, J = 7.0 Hz, H-8), 1.37 (3H, t, J = 7.0 Hz, H-9); ¹³C NMR (151 MHz, MeOD) δ_C : 168.6 (C-7), 146.5 (C-3, 4), 139.7 (C-4), 121.8 (C-1), 110.0 (C-2, 6), 61.7 (C-8), 14.6 (C-9).

(4) Suffruticosol A

ESI-MS m/z 681 [M+H]⁺ (C₄₂H₃₂O₉). ¹H NMR (600 MHz, MeOD) δ_{H} : 7.14 (2H, d, J = 8.5 Hz, H-2", 6"), 6.99 (2H, d, J = 8.5 Hz, H-2, 6), 6.72 (2H, d, J = 8.5 Hz, H-3", 5"), 6.52 (2H, d, J = 8.5 Hz, H-2', 6'), 6.41 (2H, d, J = 8.5 Hz, H-3, 5), 6.29 (1H, brs, H-12"), 6.23 (1H, s, H-12'), 6.15 (2H, d, J = 8.5 Hz, H-3', 5'), 6.10 (1H, brs, H-12), 6.02 (2H, brs, H-10, 14), 5.96 (1H, brs, H-14"), 5.72 (1H, d, J = 12.0 Hz, H-7"), 5.46 (1H, d, J = 3.0 Hz, H-7'), 4.78 (1H, s, H-8), 4.39 (1H, d, J = 11.5 Hz, H-8"), 3.97 (1H, m, H-8'), 3.72 (1H, d, J = 7.5 Hz, H-7); ¹³C NMR (151 MHz, MeOD) δ_{C} : 160.2 (C-11'), 159.3 (C-11, 13), 159.0 (C-4"), 156.7 (C-13"), 156.5 (C-4), 155.1 (C-13'), 155.0 (C-11"), 154.5 (C-4'), 148.4 (C-9), 144.7 (C-9'), 141.8 (C-9"), 135.5 (C-1), 133.9 (C-1'), 130.9 (C-1"), 130.8 (C-2', 6'), 130.7 (C-2, 6), 130.5 (C-2", 6"), 126.9 (C-10"), 123.0 (C-14'), 117.3 (C-10'), 116.2 (C-3", 5"), 115.4 (C-3, 5), 114.2 (C-3', 5'), 106.8 (C-10, 14), 105.9 (C-14"), 101.9 (C-12"), 101.4 (C-12), 96.2 (C-12'), 91.5 (C-7"), 61.1 (C-7), 54.6 (C-8), 49.6 (C-8"), 48.8 (C-8'), 39.7 (C-7').

(5) Suffruticosol B

ESI-MS m/z 681 [M+H]⁺ (C₄₂H₃₂O₉). ¹H NMR (600 MHz, MeOD) $\delta_{\rm H}$: 7.57 (2H, d, J = 8.5 Hz, H-2", 6"), 6.96 (2H, brd, H-2', 6'), 6.91 (2H, d, J = 8.5 Hz, H-3", 5"), 6.50 (2H, d, J = 8.5 Hz, H-3', 5'), 6.27 (4H, overlapped, H-3, 5, 2, 6), 6.22 (2H, brd, H-10, 14), 6.19 (1H, s, H-12'), 6.17 (1H, s, H-12"), 6.14 (1H, s, H-12), 5.95 (1H, d, J = 2.0 Hz, H-14"), 5.86 (1H, d, J = 11.5Hz, H-7"), 5.08 (1H, d, J = 11.5 Hz, H-8'), 4.22 (1H, d, J = 11.5 Hz, H-7'), 4.09 (2H, overlapped, H-8, 8'), 3.81 (1H, d, J = 6.0 Hz, H-7); ¹³C NMR (151 MHz, MeOD) $\delta_{\rm C}$: 160.2 (C-11'), 159.4 (C-11, 13), 159.1 (C-4"), 158.4 (C-13"), 157.2 (C-11"), 156.1 (C-4'), 156.1 (C-4), 155.7 (C-13'), 147.5 (C-9), 147.5 (C-9), 142.4 (C-9"), 135.5 (C-1), 133.8 (C-1'), 133.1 (C-2', 6'), 130.9 (C-1"), 130.5 (C-2", 6"), 129.5 (C-2, 6), 123.6 (C-14'), 122.9 (C-10"), 118.5 (C-10'), 116.5 (C-3", 5"), 115.2 (C-3, 5), 114.7 (C-3', 5'), 107.3 (C-10, 14), 104.9 (C-12"), 103.7 (C-14"), 101.4 (C-12), 96.2 (C-12'), 91.1 (C-7"), 63.1 (C-7), 56.9 (C-8), 47.8 (C-8"), 46.5 (C-8'), 39.7 (C-7'). (6) Trans-ε-viniferin

ESI-MS m/z 455 [M+H]⁺ (C₂₈H₂₂O₆). ¹H NMR (600 MHz, MeOD) δ_{H} : 7.16 (2H, d, J = 8.6 Hz, H-2,6), 7.11 (2H, d, J = 8.3 Hz, H-2',6'), 6.77 (2H, d, J = 9.2 Hz, H-3,5), 6.67 (2H, d, J = 8.8 Hz, H-3',5'), 6.64(1H, d, J = 2.0 Hz, H-10'), 6.25 (1H, d, J = 2.0 Hz, H-12'), 6.81 (1H, d, J = 16.0 Hz, H-7'), 6.55 (1H, d, J = 16.0 Hz, H-8'), 6.18 (1H, d, J = 2.0 Hz, H-12), 6.15 (2H, d, J = 2.0 Hz, H-10,14), 5.34 (1H, d, J = 6.5 Hz, H-7), 4.35 (1H, d, J = 6.5 Hz, H-8); ¹³C NMR (151 MHz, MeOD) δ_{C} : 133.8 (C-1), 128.5 (C-2,6), 116.0 (C-3, 5), 157.9 (C-4), 94.8 (C-7), 57.5 (C-8), 147.4 (C-9), 107.3 (C-10), 159.6 (C-11,13), 101.9 (C-12), 107.4 (C-14), 130.2 (C-1'), 131.0 (C-2',6'), 115.7 (C-3', 5'), 158.4 (C-4'), 131.7 (C-7'), 126.5 (C-8'), 137.7 (C-9'), 108.9 (C-10'), 159.1 (C-11'), 96.7 (C-12'), 162.8 (C-13'), 120.5 (C-14').

(7) Ampelopsin D

ESI-MS m/z 455 [M+H]⁺ (C₂₈H₂₂O₆). ¹H NMR (600 MHz, MeOD) δ_{H} : 7.01 (2H, d, J = 8.8 Hz, H-2,6), 6.67 (2H, d, J = 8.8 Hz, H-3,5), 4.18 (1H, brs, H-7), 4.05 (1H, brs, H-8), 6.05 (2H, d, J = 2.2 Hz, H-10,14), 6.04 (1H, t, J = 2.2 Hz, H-12), 7.09 (2H, d, J = 8.8 Hz, H-2',6'), 6.57 (2H, d, J = 8.8 Hz, H-3',5'), 6.95 (1H, d, J = 2.2 Hz, H-7'), 6.18 (1H, d, J = 2.2 Hz, H-12'), 6.70 (1H, d, J = 2.2 Hz, H-14'); ¹³C NMR (151 MHz, MeOD) δ_{C} : 137.9 (C-1), 129.0 (C-2,6), 116.5 (C-3, 5), 156.7 (C-4), 59.9 (C-7), 59.0 (C-8), 150.0 (C-9), 106.5 (C-10,14), 159.2 (C-11,13), 101.4 (C-12), 130.2 (C-1'), 131.2 (C-2',6'), 115.9 (C-3', 5'), 157.4 (C-4'), 122.7 (C-7'), 143.8 (C-8'), 148.0 (C-9'), 124.7 (C-10'), 156.4 (C-11'), 103.7 (C-12'), 159.8 (C-13'), 98.5 (C-14').

(8) Vateriferol

ESI-MS m/z 679 [M+H]⁺ (C₄₂H₃₀O₉). ¹H NMR (600 MHz, MeOD) $\delta_{\rm H}$: 6.74 (2H, d, J = 8.4 Hz, H-2",6"), 3.19 (1H, t, J = 10.0 Hz, H-7"), 6.49 (2H, d, J = 8.6 Hz, H-3",5"), 4.18 (1H, d, J = 9.6 Hz, H-8"), 5.76 (2H, d, J = 2.0 Hz, H-10",14"), 6.02 (1H, d, J = 2.1 Hz, H-12"), 6.95 (2H, d, J = 8.6 Hz, H-2,6), 6.86 (2H, d, J = 8.6 Hz, H-3,5), 5.23 (1H, d, J = 3.9 Hz, H-7), 3.92 (1H, dd, J = 10.4 Hz, J = 3.9 HZ, H-8), 6.69 (1H, s, H-12), 7.58 (2H, d, J = 8.6 Hz, H-2',6'), 7.05 (2H, d, J = 8.4 Hz, H-3',5'), 6.17 (1H, d, J = 2.5 Hz, H-12'), 6.69 (1H, d, J = 2.5 Hz, H-14'); ¹³C NMR (151 MHz, MeOD) $\delta_{\rm C}$: 134.5 (C-1), 131.1 (C-2,6), 116.1 (C-3, 5), 159.2 (C-4), 42.7 (C-7), 55.2 (C-8), 140.2 (C-9), 119.4 (C-10), 155.4 (C-11), 96.8 (C-12), 152.7 (C-13), 125.8 (C-14), 135.4 (C-1"), 132.4 (C-2",6"), 115.5 (C-3",5"), 156.9 (C-4"), 63.4 (C-7"), 59.6 (C-8"), 147.5 (C-9"), 107.7 (C-10",14"), 158.8 (C-11",13"), 101.5 (C-12"), 123.9 (C-1'), 130.7 (C-2',6'), 116.5 (C-3', 5'), 157.8 (C-4'), 152.6 (C-7'), 116.7 (C-8'), 134.3 (C-9'), 124.9 (C-10'), 156.2 (C-11'), 102.6 (C-12'), 155.6 (C-13'), 110.2 (C-14').

(9) 4-Hydroxybenzoic acid

ESI-MS m/z 139 [M+H]⁺ (C₇H₆O₃). ¹H NMR (600 MHz, MeOD) δ_{H} : 7.85 (2H, d, J = 8.5 Hz, H-2, 6), 6.79 (2H, d, J = 8.5 Hz, H-3, 5). ¹³C NMR (151 MHz, MeOD) δ_{C} : 170.2 (C-7), 163.3 (C-4), 133.0 (C-2, 6), 122.9 (C-1), 116.0 (C-3, 5).

(10) 4-Hydroxybenzal-dehyde

ESI-MS m/z 123 [M+H]⁺ (C₇H₆O₂). ¹H NMR (600 MHz, MeOD) $\delta_{\rm H}$: 9.73 (1H, s, H-7), 7.74 (2H, d, J = 8.5 Hz, H-2, 6), 6.88 (2H, d, J = 8.5 Hz, H-3, 5); ¹³C NMR (151 MHz, MeOD) $\delta_{\rm C}$: 192.8 (C-7), 165.4 (C-4), 130.2 (C-1), 133.5 (C-2, 6), 116.9 (C-3, 5).

The NMR spectra (¹H NMR and ¹³C NMR) of these compounds were as follows.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

