Quantitative analysis of resveratrol derivatives in seed coats of tree peonies and their hypoglycemic activities in *vitro/vivo*

Weidong Wang^a, Zenggen Liu^{a*}, Fan Kong^b, Lixia He^c, Linghao Fang^d, Qingyan Shu^{b*}

^a Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS, Xining 810001, China

^b Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, CAS, Beijing 100093, China

^c Forestry Sci-tech Extension Station of Gansu Province, Lanzhou 730046, China

^d Ruilaiyin (Beijing) Biotechnology Co., Ltd, Beijing 100094, China

^{*} Corresponding authors. Tel/Fax: +86 971 6143282, E-mail address: lzg@nwipb.ac.cn (ZG Liu), shuqy@ibcas.ac.cn (QY Shu). Addresses for other authors: wangweidong315@mails.ucas.ac.cn (WD Wang), kongfankfkf@163.com (F Kong), 2205352850@qq.com (LX He), cocozm13811669708@126.com (LH Fang).

Species	RD	PF	SA	SB	VF	VT	AD
P. ostii	$0.20{\pm}0.07$	0.55±0.23	18.52±2.17	184.29±22.71	39.25±3.54	1.38±0.29	176.64±15.80
P. ludlowii	12.84±1.14	$0.09{\pm}0.05$	0.03 ± 0.01	0.10 ± 0.04	0.91±0.25	1.44 ± 0.68	$142.21{\pm}10.97$
P. delavayi	8.11±1.20	$0.05 {\pm} 0.01$	6.55±0.84	33.27±2.76	11.52±1.05	0.85±0.10	98.60±8.72
P. rockii	0.56±0.11	1.24 ± 0.42	27.27±2.16	145.62±19.58	1.01 ± 0.29	0.16±0.08	31.66±2.50
P. qiui	0.09 ± 0.02	0.24 ± 0.07	12.04±1.36	69.64±8.95	3.57±1.17	0.19±0.05	19.06±3.18
P. decomposita	0.02 ± 0.01	0.92 ± 0.30	10.67±1.37	54.30±7.28	0.57 ± 0.22	0.02 ± 0.00	2.19±0.55
P. potaninii	0.26 ± 0.08	0.65±0.22	8.58±2.55	50.03±7.20	0.34±0.11	0.23±0.10	34.38±3.66
P. lutea	2.14±0.43	0.51±0.24	3.15±0.82	15.31±3.31	0.21 ± 0.06	0.20 ± 0.08	28.65±4.59

Table S1 Phytochemical composition and content (mg/g) in seed coats of tree peonies.

RD: (E)-resveratrol 3,5-*O*-β-diglucoside, PF: paeoniflorin, SA: suffruticosol A, SB: suffruticosol B, VF: trans-ε-viniferin, VT: vateriferol, AD: ampelopsin D.

Figure S1. PBG-lowering effect of acarbose and different doses of trans- ε -viniferin (VF) in starch-loaded normal mice (a and c) and diabetic mice (b and d). The data exhibit the mean \pm SEM (n = 9; *, P < 0.05, **, P < 0.01, and ***, P < 0.001, compared to the vehicle group). And α -glucosidase inhibition effects of VT, VF and acarbose at different concentrations were fitted with a logistic function to count the IC₅₀ value (e).

Figure S2. Effects of vateriferol (A) and trans- ε -viniferin (B) on the body weight of mice. Mice were randomly divided into 7 groups (7/group), and the body weight of the mice was measured once a week. The doses of the two compounds were 1, 5, 15, 30, and 100 mg/kg. Data were expressed as mean \pm SEM (n = 7/group). Statistical analysis: two-way repeated measures ANOVA, followed by Holm-Sidak multiple comparison test. Vehicle (0.9% saline) and acarbose (4 mg/kg) groups were designated as negative and positive control group, respectively. Difference in body weight between vehicle and acarbose groups at week 3 was statistically significant (*P < 0.05).

Figure S3. Molecular docking of vateriferol (A), trans- ε -viniferin (B) and acarbose (C and D) in the region of the active site of the protein (PDB: 2QMJ).

Supplementary data

The NMR spectrums of the phytochemicals (1-7) isolated from *POSC* are as follows.

The ¹³C NMR (151 MHz, MeOD) spectrum of 1

The ¹³C NMR (151 MHz, MeOD) spectrum of 2

The ¹³C NMR (151 MHz, MeOD) spectrum of **3**

The ¹³C NMR (151 MHz, MeOD) spectrum of 4

The ¹³C NMR (151 MHz, MeOD) spectrum of 5

The ¹H NMR (600 MHz, MeOD) spectrum of **6**

The ¹³C NMR (151 MHz, MeOD) spectrum of 6

The ¹³C NMR (151 MHz, MeOD) spectrum of 7