Facile synthesis of food-grade and size-controlled nanocarriers based on self-

assembly of procyanidins and phycocyanin

Shanshan Tie^{abc}, Siyuan Xiang^{abc}, Yannan Chen^{abc}, Fengzhi Qiao^{abc}, Weina Cui^{abc},

Wentao Su^{abc}, and Mingqian Tan^{abc*}

^aAcademy of Food Interdisciplinary Science, School of Food Science and Technology,

Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034,

Liaoning, China

^bNational Engineering Research Center of Seafood, Dalian Polytechnic University,

Dalian 116034, Liaoning, China

^cCollaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China

*Corresponding author.

Mingqian Tan

Tel: +86-411-86318657

Fax: +86-411-86318657

E-mail: mqtan@dlpu.edu.cn

Sample name	Procyanidins (mg/mL)	Vanillin (mg/mL)	Phycocyanin (mg/mL)	Size (nm)	Polydispersity index (PDI)	
NC-1	1.00	0.57	0.20	255	0.44	
NC-2	5.00	0.57	0.20	208	0.48	
NC-3	7.50	0.57	0.20	479	0.37	
NC-4	5.00	0.19	0.20	405	0.56	
NC-5	5.00	0.29	0.20	283	0.48	
NC-6	5.00	0.76	0.20	745	0.54	
NC-7	5.00	0.57	0.10	665	0.55	
NC-8	5.00	0.57	0.50	138	0.42	

Table S1. Different concentrations of procyanidins, vanillin and phycocyanin for the fabrication of nanocarriers named NC-1~NC-8.

Figure S1. The optical images and histograms of (A) DPPH and (B) ABTS radical scavenging ability of phycocyanin (Phy). Different letters indicate significant differences (p < 0.05) within different samples at the same concentration.

Figure S2. Effect of nanocarriers on reactive oxygen species production in cells induced by H₂O₂. Fluorescent images of H₂O₂-treated (A) Caco-2 cells and (B) RAW 264.7 macrophages stained with DCFH-DA. Scale bar = 130 μ m. Relative fluorescent intensity of different treatment groups in (C) Caco-2 cells and (D) RAW 264.7 macrophages. Different letters indicate significant difference (*p* < 0.05).

Figure S3. Characterization of lutein/NC-8 nanoparticles. (A) SEM image and (B) size distribution histogram of lutein/NC-8 nanoparticles. Cell viability of (C) lutein and (D) lutein/NC-8 nanoparticles in HCEC cells evaluated by MTT assay. Different letters indicate significant difference (p < 0.05).