Supplementary Information

Dehydrative allylation of P-H species under metal-free conditions

Xiaobo Yang,^a Bowen Li,^a Huicong Xing,^a Ju Qiu,^a Teck-Peng Loh,^{ab} and Peizhong Xie^a*

^a School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

^b Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

E-mail: peizhongxie@njtech.edu.cn

Contents

1.	General information	S1
2.	General procedure	S1
	2.1 General procedure for preparation of 3a-3ak	S1
	2.2 Procedure for gram scale reactions	S1
	2.3 Preliminary protocol applications.	S2
3.	Control experiments	S3
	3.1 The interaction between P-H species and $B(C_6F_5)_3$	S3
	3.2 The interaction between allylic alcohol and B(C ₆ H ₅) ₃	S4
4.	Analytical data for all new compounds	S4
5.	References	S20
6.	NMR spectra for new compounds	

1. General information

Unless otherwise noted, all commercially available compounds were used as received. All solvents were purified according to standard procedures. The ¹H NMR was recorded at 400MHz, ¹³C NMR was recorded at 101 MHz, ³¹P NMR was recorded at 162 MHz. ¹H, ¹³C NMR chemical shifts were calibrated to *tetra*-methylsilane as an external reference. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet); coupling constants (*J*) are in Hertz (Hz). IR spectra were recorded on a Thermo Scientific Nicolet iS-5 FT-IR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). HRMS were obtained on an IonSpec FT-ICR mass spectrometer with ESI resource. Melting points were measured on a RY-I apparatus and are reported uncorrected. The starting materials allylic alcohols **1** and P-H species **2** were readily prepared according to the related literatures.^{1,2} The catalyst B(C₆F₅)₃ was purchased from *Energy Chemical Ltd* (Shanghai).

2. General procedure

2.1 General procedure for preparation of 3a-3ak

Allyl alcohols **1** (0.2 mmol) and P-H species **2** (0.3 mmol) was added to dried Schlenk tube (10 mL), B(C₆F₅)₃ (5 mol%) was then added subsequently. The reaction was stirred under Ar atmosphere at 60 °C-120 °C (oil bath) for 2-24 h. After complete conversion, products was purified *via* PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) to afford the corresponding products **3a-3ak**.

2.2 Procedure for gram scale reactions

Procedure for synthesis of 3a in gram scale: (E)-1,3-diphenylprop-2-en-1-ol 1a (10.0 mmol), diphenylphosphine oxide **2a** (15.0 mmol) was added to round-bottomed flask (100 mL), and $B(C_6F_5)_3$ (0.5 mmol) was then added subsequently. The reaction was stirred under Ar atmosphere at 100 °C (oil bath) for 12 h. After complete conversion, product was purified via column chromatography

(Petroleum ether (bp: 60-90 °C)/ethyl acetate = 3/1) to afford the corresponding product **3a** (3.61 g, 91 % yield).

Procedure for synthesis of 3ab in gram scale: (*E*)-1,3-diphenylprop-2-en-1-ol **1a** (10.0 mmol), diethyl phosphite **2ab** (40.0 mmol) was added into round-bottomed flask (100 mL), and $B(C_6F_5)_3$ (0.5 mmol) was then added subsequently. The reaction was stirred under Ar atmosphere at 100 °C (sand bath) for 12 h. After complete conversion, products was purified *via* column chromatography (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 3/1) to afford the corresponding product **3ab** (2.84 g, 86 % yield).

2.3 Preliminary protocol applications.

Procedure for synthesis of **4**: Allylic phosphorus compound **3a** (0.2 mmol) and *m*-CPBA (0.4 mmol) was dissolved in CH₂Cl₂ (2.0 mL) in Schlenk tube (10 mL). The reaction was stirred at room temperature for 36 h. After complete conversion, the residue was purified by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) to afford the corresponding product **4** in 57 % yield.

Procedure for synthesis of 5 (known compound ⁶): Allylic phosphorus compound 3a (0.2 mmol), HSiCl₃ (4.0 mmol), and NEt₃ (2.0 mmol) was dissolved in toluene (2.0 mL) in Schlenk tube (10 mL). The reaction was stirred at 120 °C (sand bath) for 3 h. After filtration, the product was washed with MeOH (10 mL) and dried under vacuum to afford the corresponding product 5 (78 % yield).

Procedure for synthesis of **6**: Allylic phosphorus compound **3a** (0.2 mmol), dibenzo[b,d]furan-4-yl boronic acid (4.0 equiv.), Pd(PPh₃)₄ (10 mol%), and CsF (5.0 equiv) was dissolved in xylene (2.0 mL) in Schlenk tube (10 mL) under N₂ atmosphere. The reaction was stirred at 60 °C (oil bath) for 12 h. After complete conversion, the solvent was removed under vacuum. Then, the residue was purified by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) to afford the corresponding product **6** (96 %

yield).

3. Control experiments.

3.1 The interaction between P-H species and B(C₆F₅)₃

3.2 The interaction between allylic alcohol and B(C₆H₅)₃

3.3 The reaction in the presence of dehydrating agents

4. Analytical data for all new compounds

(E)-(1,3-diphenylallyl)diphenylphosphine oxide (3a)

3a was known compounds^{3, 4, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3a** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (77 mg, 98% yield), Mp: 203-205 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.80 (m, 2H), 7.61 – 7.55 (m, 2H), 7.48 – 7.39 (m, 3H), 7.38 – 7.32 (m, 3H), 7.31 – 7.26 (m, 2H), 7.23 – 7.13 (m, 8H), 6.59 (ddd, *J* = 15.8, 9.1, 7.1 Hz, 1H), 6.32 (dd, *J* = 15.8, 3.8 Hz, 1H), 4.38 (t, *J* = 9.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.8, 136.8, 136.0 (d, *J*_{C-P} = 6.0 Hz), 134.6, 134. 4, 132.2 (d, *J*_{C-P} = 31.3 Hz), 131.9 (d, *J*_{C-P} = 2.9 Hz), 131.8, 131.8, 131.6 (d, *J*_{C-P} = 2.7 Hz), 131.5, 131.4, 131.2 (d, *J*_{C-P} = 31.6 Hz), 129.6, 129.5, 128.7, 128.6, 128.5, 128.5, 128.4, 128.2, 127.7, 127.2 (d, *J*_{C-P} = 2.4 Hz), 126.5 (d, *J*_{C-P} = 1.8 Hz), 124.7 (d, *J*_{C-P} = 7.2 Hz), 52.4 (d, *J*_{C-P} = 65.0 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.06. IR (KBr): 3057.30, 2909.00, 1597.06, 1492.77, 1437.23, 1170.76, 1118.33, 1101.29, 1029.07, 972.24, 719.89, 691.76 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₄OP 395.1565, found 395.1559.

(E)-(1,3-di-o-tolylallyl)diphenylphosphine oxide (3b)

3b was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3b** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (84 mg, 99% yield), Mp: 203-205 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.85 (m, 3H), 7.57 – 7.44 (m, 5H), 7.42 – 7.34 (m, 1H), 7.27 (s, 3H), 7.20 (t, *J* = 7.3 Hz, 1H), 7.15 – 6.99 (m, 5H), 6.54 – 6.43 (m, 1H), 6.34 (dt, *J* = 15.3, 7.9 Hz, 1H), 4.64 (t, *J* = 9.4 Hz, 1H), 2.14 (s, 3H), 2.00 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.0 (d, *J*_{C-P} = 1.9 Hz), 135.9 (d, *J*_{C-P} = 7.6 Hz), 135.2, 134.5 (d, *J*_{C-P} = 5.4 Hz), 132.9, 132.6, 132. 4, 132.0, 132.0, 131.9 (d, *J*_{C-P} = 3.4 Hz), 131.6 (d, *J*_{C-P} = 2.7 Hz), 131.2, 131.0, 130.5, 130.0, 129.5 (d, *J*_{C-P} = 4.5 Hz), 128.6, 128.5, 128.3, 128.2, 127.6, 127.2, 126.6, 126.1, 126.0, 47.9 (d, *J*_{C-P} = 66.3 Hz), 19.8, 19.6. ³¹P NMR (162 MHz, Chloroform-*d*) δ 32.58. IR (KBr): 3055.20, 2924.95, 1484.92, 1460.07, 1437.11, 1185.50, 1117.12, 1070.62, 1070.62, 964.09, 720.25, 695.62 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₈OP 423.1878, found 423.1879.

(E)-(1,3-di-m-tolylallyl)diphenylphosphine oxide(3c)

3c was known compounds^{3, 4, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3c** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (71 mg, 84% yield), Mp: 168-169 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.80 (m, 2H),

7.61 – 7.54 (m, 2H), 7.52 – 7.42 (m, 3H), 7.38 (td, J = 7.3, 1.4 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.17 – 7.04 (m, 5H), 6.99 (t, J = 7.6 Hz, 3H), 6.58 (ddd, J = 16.0, 9.2, 7.3 Hz, 1H), 6.29 (dd, J = 15.7, 3.7 Hz, 1H), 4.33 (t, J = 9.4 Hz, 1H), 2.27 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.2, 138.1, 136.7, 135.9 (d, $J_{C-P} = 6.0$ Hz), 134.5 (d, $J_{C-P} = 11.4$ Hz), 132.3 (d, $J_{C-P} = 35.6$ Hz), 131.9, 131.8, 131.6, 131.5, 131.4, 131.1, 130.3 (d, $J_{C-P} = 5.7$ Hz), 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 127.1, 126.5 (d, $J_{C-P} = 5.8$ Hz), 124.5 (d, $J_{C-P} = 7.4$ Hz), 123.8, 52.4 (d, $J_{C-P} = 65.2$ Hz), 21.5, 21.5. ³¹P NMR (162 MHz, Chloroform-d) δ 31.99. IR (KBr): 3051.61, 2920.57, 2854.29, 1603.31, 1586.27, 1486.48, 1437.44, 1175.49, 1116.43, 1071.01, 963.48, 781.25, 718.76, 703.55 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₈OP 423.1878, found 423.1880.

(E)-(1,3-di-p-tolylallyl)diphenylphosphine oxide (3d)

3d was known compounds^{3, 4, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3d** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (84 mg, 99% yield), Mp: 182-183 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.75 (m, 2H), 7.64 – 7.56 (m, 2H), 7.52 – 7.37 (m, 4H), 7.35 – 7.28 (m, 2H), 7.22 (dd, *J* = 8.1, 1.9 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 4H), 6.49 (ddd, *J* = 16.0, 9.1, 7.0 Hz, 1H), 6.25 (dd, *J* = 15.7, 3.9 Hz, 1H), 4.32 (t, *J* = 9.6 Hz, 1H), 2.28 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.5 (d, *J*_{C-P} = 0.9 Hz), 136.8 (d, *J*_{C-P} = 2.4 Hz), 134.2, 134.1, 134.1, 133.0, 132.9, 132.4 (d, *J*_{C-P} = 30.4 Hz), 131.9, 131.8, 131.7 (d, *J*_{C-P} = 16.9 Hz), 131.6 (d, *J*_{C-P} = 2.9 Hz), 131.5, 131.4, 131.3, 129.4, 129.4, 129.4, 129.2, 128.5, 128.4, 128.3, 128.2, 126.4, 126.4, 123.8 (d, *J*_{C-P} = 7.1 Hz), 52.0 (d, *J*_{C-P} = 65.5 Hz), 21.3, 21.2. ³¹P NMR (162 MHz, Chloroform-d) δ = 31.99. IR (KBr): 3051.67, 3024.73, 2920.68, 2854.24, 1511.13, 1437.44, 1180.59, 1117.79, 1102.92, 1070.87, 968.82, 824.41, 801.93, 728.68, 718.45, 694.90 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₈OP 423.1878, found 423.1872.

(E)-(1,3-bis(4-methoxyphenyl)allyl)diphenylphosphine oxide(3e)

3e was known compounds³. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3e** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (82 mg, 90% yield), Mp: 137-139 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.80 (m, 2H), 7.63 – 7.56 (m, 2H), 7.48 – 7.39 (m, 3H), 7.38 – 7.32 (m, 1H), 7.31 – 7.26 (m, 4H), 7.16 – 7.10 (m, 2H), 6.76 (d, *J* = 2.9 Hz, 2H), 6.73 (d, *J* = 3.0 Hz, 2H), 6.41 (ddd, *J* = 15.8, 8.9, 7.0 Hz, 1H), 6.25 (dd, *J* = 15.8, 3.7 Hz, 1H), 4.34 (t, *J* = 9.4 Hz, 1H), 3.70 (s, 3H), 3.68 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.3, 158.7 (d, *J*_{C-P} = 2.3 Hz), 133.8, 133.7, 132.5 (d, *J*_{C-P} = 29.6 Hz), 131.8, 131.8 (d, *J*_{C-P} = 2.9 Hz), 131.7, 131.7, 131.6 (d, *J*_{C-P} = 5.9 Hz), 127.6, 127.6, 122.6 (d, *J*_{C-P} = 7.0 Hz), 114.1, 113.9, 55.3, 55.3, 51.3 (d, *J*_{C-P} = 66.0 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.24. IR (KBr): 3055.39, 3031.19, 3005.95, 2956.04, 2933.66, 2907.62, 2835.50, 1608.06, 1577.13, 1510.50, 1484.94, 1462.70, 1437.74, 1293.30, 1251.21, 1174.48, 1118.77, 968.80, 864.91, 828.96, 811.65,

734.36, 719.08, 710.32, 694.26. HRMS (ESI/[M+H]⁺) Calcd. for: $C_{29}H_{28}O_3P$ 455.1776, found 455.1771.

(E)-(1,3-bis(4-(tert-butyl)phenyl)allyl)diphenylphosphine oxide (3f)

3f was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3f** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (41 mg, 40% yield), Mp: 257-258 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.81 (m, 2H), 7.58 – 7.51 (m, 2H), 7.51 – 7.42 (m, 3H), 7.39 (td, *J* = 7.3, 1.1 Hz, 1H), 7.29 (td, *J* = 6.7, 5.8, 1.9 Hz, 2H), 7.29 – 7.21 (m, 2H), 7.21 (s, 4H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.55 (ddd, *J* = 16.1, 9.3, 7.3 Hz, 1H), 6.33 (dd, *J* = 15.7, 3.7 Hz, 1H), 4.35 (t, *J* = 9.6 Hz, 1H), 1.27(s, 9H), 1.25 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.7 (d, *J*_{C-P} = 0.9 Hz), 150.0 (d, *J*_{C-P} = 2.5 Hz), 134.1 (d, *J*_{C-P} = 2.3 Hz), 134.1 (d, *J*_{C-P} = 11.3 Hz), 132.9, 132.8, 132.7, 132.0, 131.9, 131.9, 131.8 (d, *J*_{C-P} = 2.7 Hz), 131.7, 131.5, 131.5, 131.4, 131.1, 129.1 (d, *J*_{C-P} = 5.7 Hz), 128.5, 128.4, 128.2, 128.1, 126.2, 126.2, 125.5 (d, *J*_{C-P} = 1.5 Hz), 125.4, 124.0 (d, *J*_{C-P} = 6.9 Hz), 51.9 (d, *J*_{C-P} = 65.1 Hz), 34.6, 34.5, 31.4, 31.3. ³¹P NMR (162 MHz, Chloroform-d) δ = 32.16. IR (KBr): 3055.47, 2963.47, 1509.51, 1436.69, 1364.81, 1181.77, 1171.09, 1117.57, 781.57, 693.11 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₃₅H₄₀OP 507.2817, found 507.2823. **(E)-(1,3-bis(3,5-dimethylphenyl)allyl)diphenylphosphine oxide (3g)**

3g was known compounds³. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3g** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (46 mg, 51% yield), Mp: 194-195 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.80 (m, 2H), 7.59 – 7.54 (m, 2H), 7.51 – 7.43 (m, 3H), 7.41 – 7.36 (m, 1H), 7.33 – 7.28 (m, 2H), 6.88 (d, *J* = 19.6 Hz, 4H), 6.80 (d, *J* = 8.6 Hz, 2H), 6.55 (ddd, *J* = 15.8, 9.4, 7.2 Hz, 1H), 6.24 (dd, *J* = 15.8, 3.8 Hz, 1H), 4.27 (t, *J* = 9.6 Hz, 1H), 2.24 (s, 6H), 2.19 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.0, 137.9, 136.8 (d, *J*_{C-P} = 1.7 Hz), 135.9 (d, *J*_{C-P} = 5.9 Hz), 134.4 (d, *J*_{C-P} = 11.5 Hz), 132.4 (d, *J*_{C-P} = 37.4 Hz), 131.9, 131.8, 131.8 (d, *J*_{C-P} = 65.4 Hz), 21.4, 21.3. ³¹P NMR (162 MHz, Chloroform-d) δ = 32.12. IR (KBr): 3054.47, 3024.56, 2916.86, 1599.53, 1437.54, 1176.57, 1117.89, 1102.86, 965.14, 852.47, 837.77, 749.53, 722.66, 704.54 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₃₁H₃₂OP 451.2191, found 451.2187.

(E)-(1,3-bis(4-(tert-butyl)phenyl)allyl)diphenylphosphine oxide (3h)

3h was known compounds³. Following the general procedure, the reaction was stirred at 120 °C (oil bath) for 12h. **3h** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white

solid (35 mg, 41% yield), Mp: 180-182 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.87 (m, 3H), 7.66 – 7.61 (m, 2H), 7.52 – 7.46 (m, 3H), 7.40 – 7.28 (m, 4H), 7.16 – 7.08 (m, 3H), 7.00 (td, *J* = 7.6, 0.9 Hz, 1H), 6.95 – 6.82 (m, 2H), 6.62 (ddd, *J* = 15.5, 9.0, 6.3 Hz, 1H), 6.51 (dd, *J* = 16.0, 3.6 Hz, 1H), 4.90 (t, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5 (d, *J*_{C-F} = 250.48 Hz), 159.8 (dd, *J*_{C-F, C-P} = 245.43, 6.7Hz), 132.0 (d, *J*_{C-P} = 2.0 Hz), 131.8 (d, *J*_{C-P} = 2.5 Hz), 131.6, 131.6, 131.0, 131.0, 130.8 (d, *J*_{C-F, C-P} = 5.4, 4.5 Hz), 125.9 (dd, *J*_{C-F, C-P} = 7.1, 4.3 Hz), 124.6, 124.4 (d, d, *J*_{C-P} = 11.9 Hz), 124.1, 123.3 (dd, *J*_{C-F, C-P} = 14.5, 5.5 Hz), 115.7, 115.5, 115.3, 115.1, 43.2 (d, d, *J*_{C-P} = 66.5 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.53. ¹⁹F NMR (376 MHz, Chloroform-d) δ -118.30, -118.47. IR (KBr): 3057.51, 2925.29, 1488.34, 1455.53, 1437.75, 1231.50, 1192.29, 1117.55, 1103.38, 966.50, 805.08, 721.23, 706.71, 695.45 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₂F₂OP 431.1376, found 431.1377.

(E)-(1,3-bis(3-fluorophenyl)allyl)diphenylphosphine oxide(3i)

3i was known compounds^{3, 4}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3i** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (39 mg, 45% yield), Mp: 188-191 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.83 (m, 2H), 7.62 – 7.57 (m, 2H), 7.54 – 7.45 (m, 3H), 7.43 – 7.39 (m, 1H), 7.35 – 7.31 (m, 2H), 7.21 – 7.09 (m, 4H), 6.97 (d, *J* = 7.7 Hz, 1H), 6.91 – 6.85 (m, 3H), 6.54 (ddd, *J* = 16.0, 9.1, 7.1 Hz, 1H), 6.27 (dd, *J* = 15.7, 3.8 Hz, 1H), 4.36 (t, *J* = 9.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.0 (d, *J*_{C-F} = 246.4 Hz), 162.7 (d, *J*_{C-F} = 247.5 Hz), 138.8 (dd, *J*_{C-F,C-P} = 7.6, 1.7 Hz), 138.2 (dd, *J*_{C-F,C-P} = 6.6 Hz), 133.7 (dd, *J*_{C-F,C-P} = 10.9, 1.8 Hz), 132.1 (d, *J*_{C-F,C-P} = 7.6, 1.7 Hz), 138.2 (dd, *J*_{C-F,C-P} = 6.6 Hz), 131.3, 130.7 (d, *J*_{C-P} = 19.4 Hz), 130.1 (dd, *J*_{C-F,C-P} = 12.1, 8.3 Hz), 128.7, 128.6, 128.5, 128.4, 125.6 (d, *J*_{C-P} = 7.3 Hz), 125.2 (dd, *J*_{C-F,C-P} = 5.3, 3.0 Hz), 122.3, 116.6 (d, *J*_{C-P} = 5.8 Hz), 116.4 (d, *J*_{C-P} = 64.6 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.86. ¹⁹F NMR (376 MHz, Chloroform-d) δ = -112.22, -113.35. IR (KBr): 3057.01, 2917.62, 1609.67, 1584.94, 1486.34, 1447.49, 1437.53, 1253.42, 1173.94, 1118.12, 962.62, 780.96, 718.85, 699.85 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₂F₂OP 431.1376, found 431.1374.

(E)-(1,3-bis(4-fluorophenyl)allyl)diphenylphosphine oxide(3j)

3j was known compounds^{3, 4, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3j** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (83 mg, 96% yield), Mp: 167-168 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.84 (m, 2H), 7.60 – 7.55 (m, 2H), 7.51 – 7.44 (m, 3H), 7.41 – 7.29 (m, 5H), 7.17 – 7.14 (m, 2H), 6.91 (ddd, *J* = 8.7, 5.1, 2.8 Hz, 4H), 6.45 (ddd, *J* = 15.8, 8.8, 7.0 Hz, 1H), 6.27 (dd, *J* = 15.9, 3.7 Hz, 1H), 4.36 (t, *J* = 9.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4 (d, *J*_{C-F} = 248.5 Hz), 162.0 (d, *J*_{C-F} = 246.4 Hz), 133.4 (d, *J*_{C-F} = 11.2 Hz), 132.8, 132.0 (d, *J*_{C-F} = 22.2 Hz), 132.0 (d, *J*_{C-F} = 2.3 Hz), 131.8 (d, *J*_{C-F} = 2.4

Hz), 131.7, 131.6, 131.3, 131.2, 131.1, 131.1, 131.0, 130.9, 128.7, 128.6, 128.5, 128.4, 128.0, 128.0, 124.2 (d, $J_{C-P} = 6.8$ Hz), 115.7, 115.6, 115.5, 115.4, 51.3 (d, $J_{C-P} = 65.1$ Hz). ³¹P NMR (162 MHz, Chloroform-d) $\delta = 32.12$. ¹⁹F NMR (376 MHz, Chloroform-d) $\delta = -113.93$, -114.95. IR (KBr): 3056.68, 2907.52, 1600.28, 1508.36, 1437.36, 1244.90, 1184.16, 1159.33, 1117.74, 1101.40, 968.44, 843.97, 819.72, 767.64, 734.17, 705.12 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₂F₂OP 431.1376, found 431.1376.

(E)-(1,3-bis(4-chlorophenyl)allyl)diphenylphosphine oxide (3k)

3k was known compounds^{4, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3k** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (83 mg, 90% yield), Mp: 188-189 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.80 (m, 2H), 7.61 – 7.54 (m, 2H), 7.53 – 7.41 (m, 4H), 7.36 – 7.32 (m, 6H), 7.25 – 7.22 (m, 2H), 7.05 (d, *J* = 8.5Hz, 2H), 6.48 (ddd, *J* = 15.8, 8.9, 6.9 Hz, 1H), 6.20 (dd, *J* = 15.8, 3.8 Hz, 1H), 4.29 (t, *J* = 9.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.0, 134.4 (d, *J*_{C-P} = 6.3 Hz), 133.6, 133.5, 133.5, 133.3, 132.1, 131.9, 131.7, 131.6, 131.6 (d, *J*_{C-P} = 82.8 Hz),131.3, 131.2, 130.8, 130.8, 128.9, 128.7, 128.6, 128.5, 128.4, 127.7, 124.9 (d, *J*_{C-P} = 7.0 Hz), 51.6 (d, *J*_{C-P} = 64.6 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.86. IR (KBr): 3055.07, 2915.95, 1489.64, 1437.48, 1186.91, 1117.63, 1092.65, 1014.18, 966.73, 821.86, 797.78, 723.40, 702.49 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₂Cl₂OP 463.0785, found 463.0788.

(E)-(1,3-bis(4-bromophenyl)allyl)diphenylphosphine oxide (31)

31 was known compounds^{3, 4, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **31** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (104 mg, 94% yield), Mp: 203-205 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.80 (m, 2H), 7.62 – 7.55 (m, 2H), 7.54 – 7.40 (m, 4H), 7.39 – 7.30 (m, 6H), 7.24 (dd, *J* = 8.4, 1.7 Hz, 2H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.49 (ddd, *J* = 16.0, 9.0, 7.0 Hz, 1H), 6.21 (dd, *J* = 15.8, 3.8 Hz, 1H), 4.30 (t, *J* = 9.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.4, 134.9 (d, *J*_{C-P} = 6.3 Hz), 133.6, 133.5, 132.1, 131.9, 131.8, 131.7, 131.6, 131.3, 131.2, 131.2, 131.1, 130.8 (d, *J*_{C-P} = 14.1 Hz), 128.7, 128.6, 128.6, 128.4, 128.0, 124.9 (d, *J*_{C-P} = 7.3 Hz), 121.7, 121.4, 51.7 (d, *J*_{C-P} = 64.6 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.73. IR (KBr): 3054.04, 2912.51, 1647.38, 1486.10, 1436.71, 1187.88, 1170.30, 1118.30, 1102.70, 1109.91, 971.13, 815.86, 793.13, 748.85, 721.72, 692.53 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₂Br₂OP 550.9775, found 550.9775.

(E)-(1,3-di(naphthalen-2-yl)allyl)diphenylphosphine oxide (3m)

3m was known compounds^{4, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3m** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (64 mg, 65% yield), Mp: 235-236 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.85 (m, 3H), 7.78 – 7.67 (m, 6H), 7.67 – 7.60 (m, 2H), 7.57 – 7.52 (m, 2H), 7.52 – 7.38 (m, 8H), 7.38 – 7.32 (m, 1H), 7.31 – 7.23 (m, 2H), 6.79 (ddd, *J* = 16.0, 9.1, 7.0 Hz, 1H), 6.48 (dd, *J* = 15.8, 3.8 Hz, 1H), 4.59 (t, *J* = 9.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 134.7 (d, *J*_{C-P} = 11.4 Hz), 134.2, 133.6 (d, *J*_{C-P} = 6.4 Hz), 133.5, 133.0, 132.5, 132.2 (d, *J*_{C-P} = 7.1 Hz), 132.00, 1319, 131.8, 131.7, 131.5, 131.4, 131.2 (d, *J*_{C-P} = 7.0 Hz), 128.7, 128.6, 128.6, 128.4, 128.4, 128.3, 128.2, 128.0, 127.7, 127.6 (d, *J*_{C-P} = 4.9 Hz), 126.4, 126.3, 126.2, 126.0, 125.0 (d, *J*_{C-P} = 7.3 Hz), 123.7, 52.6 (d, *J*_{C-P} = 65.3 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.07. IR (KBr): 3005.79, 2989.41, 1596.64, 1437.01, 1275.39, 1260.44, 1180.15, 1116.76, 961.42, 841.29, 764.18, 749.63, 697.48 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₃₅H₂₈OP 495.1878, found 495.1873.

(E)-(2-methyl-1,3-diphenylallyl)diphenylphosphine oxide (3n)

3n was known compounds³. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3n** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (53 mg, 65% yield), Mp: 227-228 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.83 (m, 2H), 7.64 – 7.55 (m, 2H), 7.55 – 7.42 (m, 5H), 7.41 – 7.34 (m, 1H), 7.33 – 7.27 (m, 2H), 7.26 – 7.18 (m, 5H), 7.14 (t, *J* = 7.3 Hz, 1H), 6.95 (d, *J* = 7.3 Hz, 2H), 6.69 (s, 1H), 4.23 (d, *J* = 8.8 Hz, 1H), 1.90 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.8, 135.7 (d, *J*_{C-P} = 4.8 Hz), 134.6 (d, *J*_{C-P} = 6.1 Hz), 133.4 (d, *J*_{C-P} = 26.3 Hz), 132.5, 131.6, 131.4, 131.3, 131.3, 131.2, 130.9, 130.8, 130.3, 130.2, 128.9, 128.5, 128.5, 128.4, 128.3, 128.0, 127.2, 126.4, 56.5 (d, *J*_{C-P} = 66.7 Hz), 18.2 (d, *J*_{C-P} = 4.9 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.31. IR (KBr): 3055.39, 3023.91, 2921.66, 1598.29, 1491.48, 1437.24, 1174.73, 1116.82, 1071.44, 920.47, 720.40, 699.48 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₈H₂₆OP 409.1721, found 409.1725.

(E)-(1,3-di(thiophen-2-yl)allyl)diphenylphosphine oxide (30)

3o was known compounds³. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3o** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (76 mg, 94% yield), Mp: 192-193 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.76 (m, 2H), 7.73 – 7.66 (m, 2H), 7.54 – 7.41 (m, 4H), 7.40 – 7.33 (m, 2H), 7.11 (dd, *J* = 13.4, 5.1 Hz, 2H), 7.04 (t, *J* = 2.6 Hz, 1H), 6.88 (ddd, *J* = 6.1, 5.2, 3.6 Hz, 2H), 6.80 (d, *J* = 3.5 Hz, 1H), 6.48 (dd, *J* = 15.6, 3.8 Hz, 1H), 6.27 (ddd, *J* = 15.4, 8.6, 6.4 Hz, 1H), 4.67 (dd, *J* = 12.3, 8.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.5 (d, *J*_{C-P} = 3.0 Hz), 136.9 (d, *J*_{C-P} = 5.9 Hz), 132.1 (d, *J*_{C-P} = 2.8 Hz), 131.9, 131.8, 131.6, 131.5, 130.8 (d, *J*_{C-P} = 30.1 Hz), 128.7, 128.6, 128.5, 128.4, 127.8 (d, *J*_{C-P} = 10.8 Hz), 127.4, 127.3 (d, *J*_{C-P} = 5.9 Hz), 127.2 (d, *J*_{C-P} = 2.4 Hz), 126.0, 125.1 (d, *J*_{C-P} = 2.7 Hz), 124.7, 123.5 (d, *J*_{C-P} = 6.7 Hz), 47.2 (d, *J*_{C-P} = 66.3 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.10. IR (KBr): 3054.71, 2909.16, 1486.96, 1275.02, 1260.85, 1179.22, 1118.22, 953.99, 763.24, 749.15,

721.37, 694.51 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₃H₂₀OPS₂ 407.0693, found 407.0695. **(E)-(1-(benzo[d][1,3]dioxol-5-yl)-4,4-dimethylpent-1-en-3-yl)diphenylphosphine oxide (3p)**

3p was known compounds³. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3p** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (59 mg, 71% yield), Mp: 248-251 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.77 (m, 2H), 7.66 – 7.57 (m, 2H), 7.54 – 7.38 (m, 4H), 7.38 – 7.30 (m, 2H), 6.90, 6.75 – 6.59 (m, 1H), 5.90, 5.70 – 5.59 (m, 2H), 5.34 (dd, *J* = 15.5, 3.9 Hz, 2H), 4.04 (t, *J* = 9.3 Hz, 1H), 0.78 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.6, 147.0, 146.9, 146.6, 132.4 (d, *J*_{C-P} = 43.8 Hz), 131.9, 131.8, 131.7, 131.6, 131.4, 131.3, 130.1 (d, *J*_{C-P} = 6.0 Hz), 128.4, 128.2, 122.6 (d, *J*_{C-P} = 6.8 Hz), 119.4 (d, *J*_{C-P} = 6.6 Hz), 109.8 (d, *J*_{C-P} = 5.5 Hz), 108.3, 101.0, 51.8 (d, *J*_{C-P} = 65.6 Hz), 33.3, 29.2. ³¹P NMR (162 MHz, Chloroform-d) δ = 32.44. IR (KBr): 3054.84, 2956.76, 1501.97, 1501.97, 1486.64, 1437.90, 1363.27, 1249.76, 1175.66, 1116.40, 1039.79, 970.82, 931.36, 718.70, 698.45 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₆H₂₈O₃P 419.1776, found 419.1774.

(E)-(3-(4-bromophenyl)-1-phenylallyl)diphenylphosphine oxide (3q) and (E)-(1-(4-bromophenyl)-3-phenylallyl)diphenylphosphine oxide (3q')

3q and 3q' was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3q** and **3q**' was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (62 mg, 65% yield), Mp: 178-179 °C. ¹H NMR (400 MHz, Chloroform-d, 3q+3q') δ 7.88 - 7.81 (m, 4H), 7.63 - 7.53 (m, 4H), 7.51 - 7.42 (m, 6H), 7.42 - 7.28 (m, 12H), 7.25 - 7.14 (m, 10H), 7.05 (d, J = 8.4 Hz, 2H), 6.63 – 6.46 (m, 2H), 6.30 (dd, J = 15.8, 3.7 Hz, 1H), 6.23 (dd, J = 15.8, 3.8 Hz, 1H), 4.36 (t, J = 9.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d, 3q+3q') δ 136.6 (d, $J_{C-P} =$ 2.4 Hz), 135.7 (d, $J_{C-P} = 5.8$ Hz), 135.7 (d, $J_{C-P} = 2.4$ Hz), 135.2 (d, $J_{C-P} = 5.8$ Hz), 134.9, 134.8, 133.3, 133.2, 132.0 (d, J_{CP} = 3.0 Hz), 132.0 (d, J_{CP} = 2.8 Hz), 131.8 (d, J_{CP} = 2.8 Hz), 131.8, 13 131.8, 131.7, 131.7, 131.6, 131.4, 131.4, 131.3, 131.3, 131.2, 131.2, 129.6, 129.5, 128.7, 128.7, 128.69, 128.6, 128.6, 128.5, 128.4, 128.4, 128.3, 128.0, 128.0, 127.9, 127.3 (d, $J_{CP} = 2.3$ Hz), 126.5 (d, $J_{CP} = 2.3$ Hz) 1.7 Hz), 125.6 (d, $J_{C-P} = 7.3$ Hz), 124.1 (d, $J_{C-P} = 7.1$ Hz), 121.5 (d, $J_{C-P} = 1.2$ Hz), 121.3 (d, $J_{C-P} = 2.9$ Hz), 52.4 (d, $J_{C-P} = 64.7$ Hz), 51.7 (d, $J_{C-P} = 64.8$ Hz). ³¹P NMR (162 MHz, Chloroform-d, 3q+3q') $\delta =$ 32.06, 31.66. ¹H NMR (401 MHz, Chloroform-d) δ 7.88 – 7.81 (m, 2H), 7.63 – 7.56 (m, 2H), 7.54 – J = 15.8, 3.7 Hz, 1H), 4.35 (d, J = 9.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 136.5 (d, $J_{CP} =$ 2.3 Hz), 135.2 (d, *J*_{C-P} = 6.2 Hz), 134.9, 134.8, 132.1, 132.0, 131.8 (d, *J*_{C-P} = 2.9 Hz), 131.8, 131.7, 131.7, 131.4, 131.3, 131.2, 131.1, 130.9 (d, *J_{C-P}* = 30.3 Hz), 128.7, 128.6, 128.5, 127.9, 126.5, 126.5, 124.0 (d, J_{C-P} = 7.2 Hz), 121.3, 51.7 (d, J_{C-P} = 64.6 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.68. IR (KBr): 3056.34, 3025.71, 2920.53, 2850.08, 1484.22, 1437.12, 1169.07, 1117.96, 1011.21, 965.62, 825.08, 721.51, 692.18 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₃BrOP 473.0670, found 473.0680. (E)-(1,3-diphenylallyl)di-p-tolylphosphine oxide (3t)

3t was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3t** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (61 mg, 72% yield), Mp: 210-211 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (dd, *J* = 10.6, 8.1 Hz, 2H), 7.44 (dd, *J* = 10.9, 8.1 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.27 – 7.19 (m, 8H), 7.19 – 7.13 (m, 2H), 7.09 (dd, *J* = 7.9, 2.8 Hz, 2H), 6.59 (ddd, *J* = 16.0, 9.1, 7.0 Hz, 1H), 6.33 (dd, *J* = 15.7, 3.7 Hz, 1H), 4.34 (t, *J* = 9.6 Hz, 1H), 2.36 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.2 (d, *J*_{C-P} = 2.5 Hz), 141.9 (d, *J*_{C-P} = 2.5 Hz), 136.9 (d, *J*_{C-P} = 1.9 Hz), 136.3 (d, *J*_{C-P} = 5.8 Hz), 134.3 (d, *J*_{C-P} = 11.4 Hz), 131.8, 131.5, 131.4, 129.6, 129.6, 129.3, 129.2, 129.1, 128.9, 128.6, 128.5, 128.1 (d, *J*_{C-P} = 39.1 Hz), 127.6, 127.1, 126.5, 125.1 (d, *J*_{C-P} = 7.0 Hz), 52.5 (d, *J*_{C-P} = 65.1 Hz), 21.7, 21.6. ³¹P NMR (162 MHz, Chloroform-d) δ = 32.41. IR (KBr): 3023.73, 2918.33, 1600.14, 1439.64, 1452.82, 1275.46, 1260.49, 1171.46, 1115.48, 964.99. 764.24, 749.21, 700.54, 660.11 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₈OP 423.1878, found 423.1873.

(E)-(1,3-diphenylallyl)bis(4-fluorophenyl)phosphine oxide (3u)

3u was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3u** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (70 mg, 81% yield), Mp: 195-197 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.78 (m, 2H), 7.54 (ddd, *J* = 10.4, 8.3, 5.5 Hz, 2H), 7.33 (d, *J* = 7.5 Hz, 2H), 7.24 – 7.12 (m, 10H), 7.03 – 6.96 (m, 2H), 6.57 (ddd, *J* = 16.1, 9.1, 7.0 Hz, 1H), 6.35 (dd, *J* = 15.9, 3.6 Hz, 1H), 4.32 (t, *J* = 9.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 166.2 (d, *J*_{C-P} = 22.5 Hz), 163.7 (d, *J*_{C-P} = 23.8 Hz), 136.5, 135.6 (d, *J*_{C-P} = 6.0 Hz), 134.9, 134.8, 134.0 (dd, *J*_{C-F,C-P} = 39.2, 18.4 Hz), 134.0 (d, *J*_{C-F,C-P} = 19.4, 10.3 Hz), 115.8 (dd, *J*_{C-F,C-P} = 19.2, 10.4 Hz), 52.7 (d, *J*_{C-P} = 66.3 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.13. ¹⁹F NMR (376 MHz, Chloroform-d) δ = -106.32, -106.56. IR (KBr): 3060.41, 3029.41, 1593.09, 1498.76, 1453.17, 1397.47, 1234.80, 1187.25, 1161.69, 1115.85, 1094.42, 965.78, 829.92, 747.26, 699.42, 663.57 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₂F₂OP 431.1376, found 431.1379. **(E)-(1,3-diphenylallyl)bis(4-methoxyphenyl)phosphine oxide (3v)**

3v was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 120 °C (oil bath) for 2h. **3v** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (64 mg, 70% yield), Mp: 224-225 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (dd, *J* = 10.2,

8.8 Hz, 2H), 7.46 (dd, J = 10.5, 8.8 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.27 – 7.14 (m, 8H), 6.95 (dd, J = 8.8, 2.2 Hz, 2H), 6.80 (dd, J = 8.8, 2.2 Hz, 2H), 6.59 (ddd, J = 16.0, 9.1, 7.1 Hz, 1H), 6.32 (dd, J = 15.7, 3.8 Hz, 1H), 4.29 (t, J = 9.8 Hz, 1H), 3.81 (s, 3H), 3.75 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.3 (d, $J_{C-P} = 2.8$ Hz), 162.1 (d, $J_{C-P} = 2.9$ Hz), 136.9, 136.4 (d, $J_{C-P} = 5.9$ Hz), 134.3, 134.1, 133.7, 133.6, 133.3, 133.2, 129.6, 129.5, 128.6, 128.5, 127.6, 127.1, 126.5, 125.1 (d, $J_{C-P} = 6.9$ Hz), 123.9, 123.3, 122.9, 122.3, 114.1, 114.0, 113.9, 113.7, 55.4, 55.3, 53.0 (d, $J_{C-P} = 65.9$ Hz). ³¹P NMR (162 MHz, Chloroform-d) $\delta = 32.16$. IR (KBr): 3025.28, 2907.17, 1596.63, 1570.61, 1501.92, 1453.00, 1292.63, 1253.68, 1178.25, 1166.68, 1119.85, 1100.45, 1025.92, 970.21, 825.83, 802.04, 746.68, 696.81 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₈O₃P 455.1776, found 455.1773.

(E)-bis(4-(tert-butyl)phenyl)(1,3-diphenylallyl)phosphine oxide (3w)

3w was known compounds³. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3w** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (92 mg, 91% yield), Mp: 248-251 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 – 7.70 (m, 2H), 7.52 – 7.44 (m, 4H), 7.35 – 7.29 (m, 4H), 7.24 – 7.16 (m, 8H), 6.57 (ddd, *J* = 16.0, 9.1, 7.0 Hz, 1H), 6.27 (dd, *J* = 15.8, 3.7 Hz, 1H), 4.33 (t, *J* = 9.7 Hz, 1H), 1.31 (s, 9H), 1.25 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.1 (d, *J*_{C-P} = 2.5 Hz), 154.9 (d, *J*_{C-P} = 2.5 Hz), 137.0, 136.4 (d, *J*_{C-P} = 5.9 Hz), 134.3, 134.2, 131.8, 131.7, 131.4, 131.3, 129.6, 129.6, 129.1 (d, *J*_{C-P} = 35.7 Hz), 128.5, 128.5, 128.1 (d, *J*_{C-P} = 35.9 Hz), 127.6, 127.0, 126.5, 125.5, 125.4, 125.3, 125.2, 52.7 (d, *J*_{C-P} = 64.7 Hz), 35.0, 35.0, 31.2, 31.1. ³¹P NMR (162 MHz, Chloroform-d) δ = 32.35. IR (KBr): 3060.08, 3026.50, 2964.24, 2904.71, 2868.32, 1599.07, 1493.86, 1454.41, 1392.95, 1363.00, 1267.38, 1185.22, 1092.89, 1017.79, 968.89, 825.80, 777.20, 747.32, 699.20 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₃₅H₄₀OP 507.2817, found 507.2820.

(E)-(1,3-diphenylallyl)bis(3-methoxyphenyl)phosphine oxide (3x)

3x was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3x** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (65 mg, 71% yield), Mp: 164-165 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (dd, *J* = 12.2, 2.5 Hz, 1H), 7.39 – 7.35 (m, 4H), 7.24 – 7.21 (m, 6H), 7.21 – 7.13 (m, 3H), 7.13 – 7.04 (m, 2H), 7.02 (dt, *J* = 6.0, 2.6 Hz, 1H), 6.93 – 6.88 (m, 1H), 6.60 (ddd, *J* = 16.0, 9.1, 7.2 Hz, 1H), 6.34 (dd, *J* = 15.7, 3.8 Hz, 1H), 4.34 (t, *J* = 9.4 Hz, 1H), 3.73 (s, 3H), 3.63 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.6 (d, *J*_{C-P} = 14.1 Hz), 159.3 (d, *J*_{C-P} = 14.3 Hz), 136.8 (d, *J*_{C-P} = 2.4 Hz), 136.1 (d, *J*_{C-P} = 5.8 Hz), 134.5 (d, *J*_{C-P} = 11.4 Hz), 133.4 (d, *J*_{C-P} = 36.0 Hz), 132.5 (d, *J*_{C-P} = 36.2 Hz), 129.7, 129.6, 129.6, 129.5, 129.3, 128.7, 128.5, 127.7, 127.2, 126.5, 124.7 (d, *J*_{C-P} = 7.1 Hz), 123.7 (d, *J*_{C-P} = 9.2 Hz), 123.4 (d, *J*_{C-P} = 8.9 Hz), 118.4, 118.3 (d, *J*_{C-P} = 2.9 Hz), 116.7 (d, *J*_{C-P} = 9.3 Hz), 116.1 (d, *J*_{C-P} = 9.0 Hz), 55.5, 55.4, 52.5 (d, *J*_{C-P} = 64.9 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.51. IR (KBr):3059.27,

3025.72, 2937.56, 2835.31, 1589.88, 1576.55, 1481.81, 1421.49, 1286.54, 1252.18, 1184.24, 1112.21, 1043.81, 965.92, 776.33, 747.80, 696.46 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: $C_{29}H_{28}O_3P$ 455.1776, found 455.1775.

(E)-(1,3-diphenylallyl)bis(2-methoxyphenyl)phosphine oxide (3y)

3y was known compounds³. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3y** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (72 mg, 79% yield), Mp: 181-182 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (ddd, *J* = 12.8, 7.6, 1.5 Hz, 1H), 7.62 (ddd, *J* = 13.1, 7.6, 1.6 Hz, 1H), 7.45 (d, *J* = 7.7 Hz, 2H), 7.39 (t, *J* = 7.7 Hz, 1H), 7.29 (t, *J* = 7.8 Hz, 1H), 7.23 (dd, *J* = 11.5, 7.3 Hz, 4H), 7.18 (d, *J* = 3.3 Hz, 1H), 7.16 – 7.12 (m, 2H), 7.07 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.88 – 6.73 (m, 3H), 6.73 – 6.66 (m, 1H), 6.46 (dd, *J* = 15.8, 3.5 Hz, 1H), 4.97 (dd, *J* = 12.4, 9.2 Hz, 1H), 3.69 (s, 3H), 3.62 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.3 (d, *J_{C-P}* = 3.5 Hz), 159.9 (d, *J_{C-P}* = 3.8 Hz), 138.0 (d, *J_{C-P}* = 5.9 Hz), 137.4, 134.6, 134.5, 134.3, 134.2, 133.3, 133.2, 132.9, 132.7, 129.5, 129.4, 128.4, 128.2, 127.3, 127.2, 127.1, 126.7, 126.4, 121.8 (d, *J_{C-P}* = 6.8 Hz), 55.5, 55.3, 51.0 (d, *J_{C-P}* = 69.3 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 33.36. IR (KBr): 3059.39, 3024.97, 2936.64, 2835.44, 1589.12, 1576.63, 1478.99, 1430.95, 1275.65, 1251.35, 1179.29, 1162.34, 1073.01, 1021.86, 964.98, 802.37, 751.50, 697.26 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₈O₃P 455.1776, found 455.1776.

(E)-(1,3-diphenylallyl)di-o-tolylphosphine oxide (3z)

3z was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3z** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (69 mg, 82% yield), Mp: 167-169 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 11.4 Hz, 1H), 7.59 (t, *J* = 8.92 Hz, 1H), 7.42 – 7.26 (m, 6H), 7.25 – 7.19 (m, 6H), 7.20 – 7.13 (m, 4H), 6.58 (dt, *J* = 16.0, 7.8 Hz, 1H), 6.31 (dd, *J* = 15.7, 3.7 Hz, 1H), 4.35 (*t*, J = 9.5 Hz, 1H), 2.33 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.4 (d, *J*_{C-P} = 11.4 Hz), 138.1 (d, *J*_{C-P} = 11.5 Hz), 136.9, 136.2 (d, *J*_{C-P} = 6.2 Hz), 134.5, 134.4, 132.7, 132.6, 132.4 (d, *J*_{C-P} = 2.0 Hz), 132.3, 132.2, 131.9, 131.1 (d, *J*_{C-P} = 29.4 Hz), 129.6, 129.6, 128.6, 128.5, 128.3 (d, *J*_{C-P} = 8.6 Hz), 128.2 (d, *J*_{C-P} = 5.6 Hz), 128.0 (d, *J*_{C-P} = 12.1 Hz), 127.6, 127.2, 126.5, 124.9 (d, *J*_{C-P} = 7.3 Hz), 52.4 (d, *J*_{C-P} = 64.6 Hz), 21.5, 21.4. ³¹P NMR (162 MHz, Chloroform-d) δ = 32.45. IR (KBr): 3057.53, 3025.25, 2925.79, 1595.19, 1492.93, 1451.70, 1283.46, 1180.49, 1137.13, 1083.49, 1030.14, 967.20, 805.91, 748.14, 694.01 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₈OP 423.1878, found 423.1873.

(E)-bis(3,5-dimethylphenyl)(1,3-diphenylallyl)phosphine oxide (3aa)

3aa was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 120 °C (oil bath) for 2h. **3aa** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (37 mg, 41% yield), Mp: 210-212 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 11.1 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.23 – 7.11 (m, 10H), 7.09 (s, 1H), 6.97 (s, 1H), 6.57 (ddd, *J* = 15.9, 9.1, 6.9 Hz, 1H), 6.31 (dd, *J* = 15.8, 3.9 Hz, 1H), 4.35 (t, *J* = 9.5 Hz, 1H), 2.29 (s, 6H), 2.19(s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.1, 138.0, 137.9, 137.7, 137.0 (d, *J*_{C-P} = 2.3 Hz), 136.4 (d, *J*_{C-P} = 5.9 Hz), 134.4, 134.3, 133.5 (d, *J*_{C-P} = 2.9 Hz), 133.3 (d, *J*_{C-P} = 2.8 Hz), 131.9 (d, *J*_{C-P} = 25.0 Hz), 131.0 (d, *J*_{C-P} = 7.0 Hz), 52.4 (d, *J*_{C-P} = 64.4 Hz), 21.5, 21.3. ³¹P NMR (162 MHz, Chloroform-d) δ = 32.80. IR (KBr): 3055.77, 3024.09, 2914.61, 1598.33, 1488.99, 1452.91, 1417.99, 1273.05, 1168.37, 1124.81, 963.68, 868.21, 849.85, 765.94, 697.76 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₃₁H₃₂OP 451.2191, found 451.2185.

(E)-(1,3-diphenylallyl)di(naphthalen-2-yl)phosphine oxide (3ab)

3ab was known compounds³. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 2h. **3ab** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (40 mg, 40% yield), Mp: 213-214 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.51 (d, *J* = 12.8 Hz, 1H), 8.21 (d, *J* = 13.0 Hz, 1H), 7.95 – 7.81 (m, 4H), 7.76 (t, *J* = 8.1 Hz, 3H), 7.63 (td, *J* = 8.7, 1.5 Hz, 1H), 7.58 – 7.39 (m, 6H), 7.23 – 7.10 (m, 8H), 6.68 (ddd, *J* = 16.0, 9.1, 7.1 Hz, 1H), 6.40 (dd, *J* = 15.7, 3.8 Hz, 1H), 4.62 (t, *J* = 9.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.7 (d, *J*_{C-P} = 1.8 Hz), 136.0 (d, *J*_{C-P} = 5.9 Hz), 134.7, 134.6, 134.5 (d, *J*_{C-P} = 1.7 Hz), 134.3, 134.2, 133.8, 133.7, 132.7 (d, *J*_{C-P} = 12.6 Hz), 132.5 (d, *J*_{C-P} = 12.6 Hz), 129.7, 129.6, 129.3, 129.1, 129.0, 128.8, 128.5, 128.3, 128.2, 128.1, 128.1, 127.9, 127.9, 127.8, 127.7, 127.3, 127.0, 126.8, 126.5, 126.4, 126.3, 126.2, 124.7 (d, *J*_{C-P} = 6.9 Hz), 52.4 (d, *J*_{C-P} = 65.1 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.32. IR (KBr): 3054.29, 3022.52, 2915.90, 1590.17, 1491.22, 1453.51, 1272.69, 1169.23, 1133.87, 1087.42, 968.81, 859.29, 819.43, 745.84, 719.60 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₃₅H₂₈OP 495.1878, found 495.1877. **(E)-(1,3-diphenylallyl)di(naphthalen-1-yl)phosphine oxide (3ac)**

3ac was known compounds^{3, 5}. Following the general procedure, the reaction was stirred at 100 °C (oil

bath) for 2h. **3ac** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (44 mg, 44% yield), Mp: 235-237 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.76 (d, *J* = 8.5 Hz, 1H), 8.58 (d, *J* = 8.4 Hz, 1H), 8.13 (dd, *J* = 14.3, 7.1 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.90 – 7.78 (m, 2H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.72 (d, *J* = 8.1 Hz, 1H), 7.46 (td, *J* = 7.7, 2.6 Hz, 1H), 7.42 – 7.22 (m, 7H), 7.22 – 7.01 (m, 8H), 6.78 (dt, *J* = 15.9, 8.8 Hz, 1H), 6.38 (dd, *J* = 15.9, 3.3 Hz, 1H), 4.79 (t, *J* = 9.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.9 (d, *J*_{C-P} = 5.5 Hz), 136.8, 134.4, 134.3, 134.2, 134.0 (d, *J*_{C-P} = 5.0 Hz), 133.9, 133.7, 133.6, 133.1 (d, *J*_{C-P} = 2.4 Hz), 132.9 (d, *J*_{C-P} = 2.2 Hz), 132.2, 132.1, 130.0 (d, *J*_{C-P} = 22.8 Hz), 129.7, 129.7, 129.1 (d, *J*_{C-P} = 23.3 Hz), 128.9, 128.7, 128.5, 128.4, 127.6, 127.3, 127.1, 126.7 (d, *J*_{C-P} = 4.5 Hz), 126.5, 126.3, 126.2, 125.8 (d, *J*_{C-P} = 6.5 Hz), 124.4 (d, *J*_{C-P} = 13.7 Hz), 124.2 (d, *J*_{C-P} = 13.7 Hz), 52.1 (d, *J*_{C-P} = 66.7 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 36.77. IR (KBr): 3056.69, 1594.63, 1505.53, 1492.54, 1452.35, 1264.41, 1211.45, 1177.12, 1159.10, 1026.67, 986.49, 830.40, 800.29, 773.78, 747.24, 697.58 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₃₅H₂₈OP 495.1878, found 495.1880.

6-((E)-1,3-diphenylallyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (3ad)

3ad was known compounds³. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3ad** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (45 mg, 55% yield), Mp: 165-168 °C. Then the two isomer can be further separated by carefully PTLC(Petroleum ether (bp: 60-90 $^{\circ}$ C)/ethyl acetate = 2:1) for five times, one of the pure isomer was obtained in 6 mg and the NMR was checked and set as reference to assign picks of this two isomer. ¹H NMR (400 MHz, Chloroform-d) δ 7.96 – 7.89 (m, 2H), 7.81 – 7.74 (m, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.44 - 7.37 (m, 1H), 7.36 - 7.27 (m, 6H), 7.27 - 7.20 (m, 4H), 7.18 (d, J = 7.0 Hz, 2H), 6.98 (dt, J = 8.2, 1.9 Hz, 1H), 6.52 - 6.40 (m, 1H), 6.21 (dd, *J* = 15.7, 4.8 Hz, 1H), 4.01 (dd, *J* = 16.1, 9.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9 (d, J_{C-P} = 8.2 Hz), 136.5 (d, J_{C-P} = 3.3 Hz), 136.2 (d, J_{C-P} = 7.0 Hz), 135.3, 135.2, 134.3 (d, $J_{C-P} = 8.6$ Hz), 133.6 (d, $J_{C-P} = 2.3$ Hz), 132.5, 132.4, 130.8, 129.2, 129.1, 128.8 (d, $J_{C-P} = 2.4$ Hz), 128.5 (d, $J_{C-P} = 0.9$ Hz), 128.1 (d, $J_{C-P} = 12.3$ Hz), 127.9 (d, $J_{C-P} = 1.0$ Hz), 127.6 (d, $J_{C-P} = 2.9$ Hz), 126.5 (d, $J_{C-P} = 1.9$ Hz), 125.2, 124.6, 123.9, 123.7 (d, $J_{C-P} = 10.0$ Hz), 122.7 (d, $J_{C-P} = 13.7$ Hz), 122.5 (d, $J_{C-P} = 7.3$ Hz), 120.7 (d, $J_{C-P} = 6.6$ Hz), 51.7 (d, $J_{C-P} = 86.9$ Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 33.53. Another diastereoisomer: ¹H NMR (400 MHz, Chloroformd) δ 7.92 - 7.83 (m, 2H), 7.59 (t, J = 7.8 Hz, 1H), 7.42-7.33 (m, 2H), 7.32 - 7.27 (m, 4H), 7.26 - 7.16 (m, 9H), 6.57 (ddd, J = 15.9, 9.0, 7.0 Hz, 1H), 6.57-6.38 (m, 1H), 4.01 (dd, J = 16.1, 9.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 149.9 (d, J_{CP} = 7.9 Hz), 136.6 (d, J_{CP} = 17.5 Hz), 136.2 (d, J_{CP} = 6.8 Hz), 134.7 (d, *J*_{C-P} = 12.2 Hz), 134.2 (d, *J*_{C-P} = 5.4 Hz), 133.6 (d, *J*_{C-P} = 11.5 Hz), 131.7 (d, *J*_{C-P} = 8.6 Hz), 130.8, 129.3 (d, $J_{C-P} = 6.3$ Hz), 128.8, 128.8, 128.6 (d, $J_{C-P} = 5.2$ Hz), 128.1 (d, $J_{C-P} = 12.4$ Hz), 128.0, 127.7, 126.5 (d, J_{CP} = 12.8 Hz), 125.4, 124.7, 124.1, 123.8 (d, J_{CP} = 10.0 Hz), 122.9, 122.8, 122.7 (d J_{C-P} = 2.0 Hz), 120.7 (d, J_{C-P} = 6.6 Hz), 51.8 (d, J_{C-P} = 86.8 Hz). ³¹P NMR (162 MHz, Chloroform-d) $\delta = 34.18$. IR (KBr): 3060.19, 3026. 41, 2924.92, 1594.74, 1581.87, 1493.73, 1475.21, 1447.53, 1430.59, 1275.52, 1256.69, 1236.47, 1116.99, 912.82, 749.72, 697.48 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₂O₂P 409.1357, found 409.1355.

dimethyl (E)-(1,3-diphenylallyl)phosphonate (3ae)

3ae was known compounds⁵. Following the general procedure, the reaction was stirred at 60 °C (oil bath) for 12h. **3ae** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as yellow liquid (34 mg, 56% yield) (94% yield, in case 4.0 equiv. dimethyl phosphonate was introduced). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.43 (m, 2H), 7.40 – 7.33 (m, 4H), 7.30 (t, *J* = 7.4 Hz, 3H), 7.22 (t, *J* = 7.2 Hz, 1H), 6.64 – 6.47 (m, 2H), 4.03 (dd, *J* = 24.9, 7.9 Hz, 1H), 3.73 (d, *J* = 10.8 Hz, 3H), 3.55 (d, *J* = 10.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.7 (d, *J*_{C-P} = 2.9 Hz), 135.7 (d, *J*_{C-P} = 7.4 Hz), 134.0, 133.9, 129.1, 129.0, 128.9 (d, *J*_{C-P} = 1.6 Hz), 128.6, 127.9, 127.5 (d, *J*_{C-P} = 2.9 Hz), 126.6, 124.3 (d, *J*_{C-P} = 9.7 Hz), 53.7, 53.6, 49.1 (d, *J*_{C-P} = 137.5 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 27.74. IR (KBr): 3026.51, 2951.96, 2849.82, 1598.71, 1494.14, 1453.33, 1274.96, 1258.33, 1182.57, 1028.37, 966.21, 824.73, 764.40, 749.19, 698.20 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₁₇H₂₀O₃P 303.1150, found 303.1148.

diethyl (E)-(1,3-diphenylallyl)phosphonate (3af)

3af was known compounds⁵. Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3af** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as yellow liquid (37 mg, 56% yield) (86% yield, in case 4.0 equiv. diethyl phosphonate was introduced). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.43 (m, 2H), 7.35 (q, *J* = 7.6 Hz, 4H), 7.31 – 7.23 (m, 3H), 7.21 (t, *J* = 7.3 Hz, 1H), 6.61 – 6.48 (m, 2H), 4.08 (pd, *J* = 7.0, 1.5 Hz, 2H), 4.04 – 3.90 (m, 2H), 3.86 – 3.74 (m, 1H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.8 (d, *J*_{C-P} = 2.9 Hz), 136.1 (d, *J*_{C-P} = 7.0 Hz), 133.8, 133.7, 129.2, 129.1, 128.8, 128.6, 127.8, 127.4 (d, *J*_{C-P} = 136.9 Hz), 16.6 (d, *J*_{C-P} = 5.8 Hz), 16.4 (d, *J*_{C-P} = 5.7 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 25.44. IR (KBr): 3059.36, 3027.22, 2980.70, 2929.15, 2905.49, 1598.64, 1494.34, 1452.85, 1390.39, 1247.58, 1163.17, 1051.42, 1025.90, 963.45, 794.98, 747.34, 697.74 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₁₉H₂₄O₃P 331.1463, found 331.1457.

diethyl (E)-(1,3-di-o-tolylallyl)phosphonate (3ag)

Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3ag** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as yellow liquid (61 mg, 85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 7.7 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.24 – 7.08 (m, 6H), 6.79 (dd, *J* = 15.6, 4.8 Hz, 1H), 6.36 (dt, *J* = 15.6, 8.5 Hz, 1H), 4.30 (dd, *J* = 25.6, 8.7 Hz, 1H), 4.11 (p, *J* = 7.1 Hz, 2H), 3.95 (dp, *J* = 10.1, 7.1 Hz, 1H), 3.84 – 3.72 (m, 1H), 2.42 (s, 3H), 2.30 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.3 (d, *J*_{C-P} = 8.9

Hz), 136.1 (d, $J_{C-P} = 2.8$ Hz), 135.4 (d, $J_{C-P} = 1.3$ Hz), 134.4 (d, $J_{C-P} = 6.7$ Hz), 131.7 (d, $J_{C-P} = 13.6$ Hz), 130.7, 130.3, 128.9 (d, $J_{C-P} = 5.0$ Hz), 127.7, 127.2 (d, $J_{C-P} = 3.0$ Hz), 126.4 (d, $J_{C-P} = 2.8$ Hz), 126.3 (d, $J_{C-P} = 9.7$ Hz), 126.2, 125.9 (d, $J_{C-P} = 1.4$ Hz), 62.9 (d, $J_{C-P} = 6.9$ Hz), 62.6 (d, $J_{C-P} = 7.4$ Hz), 45.0 (d, $J_{C-P} = 137.9$ Hz), 20.1, 19.9, 16.6 (d, $J_{C-P} = 6.0$ Hz), 16.4 (d, $J_{C-P} = 5.8$ Hz). ³¹P NMR (162 MHz, Chloroform-d) $\delta = 26.27$. IR (KBr): 3019.79, 2979.71, 2928.74, 1490.59, 1461.36, 1390.20, 1248.76, 1163.36, 1097.05, 1050.88, 1025.85, 963.49, 751.68 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₁H₂₈O₃P 359.1776, found 359.1770.

diethyl (E)-(1,3-bis(4-bromophenyl)allyl)phosphonate (3ah)

Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3ah** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as yellow liquid (70 mg, 72% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.32 (dd, *J* = 8.5, 2.1 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.53 – 6.38 (m, 2H), 4.14 – 4.03 (m, 2H), 4.03 – 3.88 (m, 2H), 3.87 – 3.79 (m, 1H), 1.26 (t, *J* = 7.0 Hz, 3H), 1.15 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.5 (d, *J*_{*C*-*P*} = 2.8 Hz), 134.9, 134.9, 133.0, 132.9, 131.9, 131.8, 130.8, 130.8, 128.0, 125.0, 124.9, 121.7, 121.5 (d, *J*_{*C*-*P*} = 3.8 Hz), 63.0 (d, *J*_{*C*-*P*} = 7.5 Hz), 62.9 (d, *J*_{*C*-*P*</sup> = 7.6 Hz), 48.8 (d, *J*_{*C*-*P*</sup> = 137.9 Hz), 16.6 (d, *J*_{*C*-*P*} = 5.7 Hz), 16.4 (d, *J*_{*C*-*P*} = 5.7 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 24.44. IR (KBr): 3027.76, 2980.16, 2928.69, 2905.17, 1486.28, 1391.21, 1246.63, 1163.14, 1071.31, 1050.27, 1024.57, 964.54, 795.54, 746.17 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₁₉H₂₂Br₂O₃P 486.9673, found 486.9670.}}

diethyl (E)-(1,3-bis(4-fluorophenyl)allyl)phosphonate (3ai)

Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 14h. **3ai** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as yellow liquid (48 mg, 65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (ddd, *J* = 7.7, 5.2, 2.2 Hz, 2H), 7.34 (dd, *J* = 8.6, 5.5 Hz, 2H), 7.02 (dt, *J* = 24.2, 8.6 Hz, 4H), 6.52 (dd, *J* = 15.8, 4.1 Hz, 1H), 6.40 (dt, *J* = 15.9, 8.2 Hz, 1H), 4.15 – 4.03 (m, 2H), 4.02 – 3.90 (m, 2H), 3.89 – 3.78 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.5 (d, *J*_{C-F} = 34.8 Hz), 161.1 (d, *J*_{C-F} = 32.1 Hz), 132.8, 132.7 (d, *J*_{C-P} = 14.1 Hz), 131.7 (dd, *J*_{C-F} = 7.3, 3.0 Hz), 130.7, 130.7 (d, *J*_{C-P} = 14.14 Hz), 128.1, 128.0, 124.2 (d, *J*_{C-P} = 9.7 Hz), 115.8, 115.7, 115.6, 115.5, 62.9 (d, *J*_{C-P} = 7.0 Hz), 62.8 (d, *J*_{C-P} = 7.2 Hz), 48.5 (d, *J*_{C-P} = 138.5 Hz), 16.5 (d, *J*_{C-F} = 5.8 Hz), 16.4 (d, *J*_{C-P} = 5.8 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 25.07. ¹⁹F NMR (376 MHz, Chloroform-d) δ -113.96, -115.02. IR (KBr): 2982.77, 2930.15, 1601.01, 1508.56, 1227.81, 1159.10, 1097.06, 1051.31, 1025.95, 965.14, 845.81, 787.30, 748.45 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₁₉H₂₂F₂O₃P 367.1275, found 367.1273.

diethyl (E)-(1,3-bis(4-methoxyphenyl)allyl)phosphonate (3aj)

Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 12h. **3aj** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as yellow liquid (41 mg, 53% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.34 (m, 2H), 7.31 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 6.86 – 6.80 (m, 2H), 6.49 (dd, J = 15.8, 4.2 Hz, 1H), 6.40 – 6.31 (m, 1H), 4.14 – 4.03 (m, 2H), 4.02 – 3.85 (m, 2H), 3.85 – 3.80 (m, 1H), 3.79 (s, 3H), 3.79 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.3, 158.8 (d, $J_{C-P} = 2.8$ Hz), 133.0, 132.9, 130.2, 130.1, 129.7 (d, $J_{C-P} = 2.7$ Hz), 128.1, 128.1, 127.7, 122.6, 122.5, 114.2, 114.0, 62.8 (d, $J_{C-P} = 7.1$ Hz), 62.7 (d, $J_{C-P} = 7.7$ Hz), 55.4, 48.5 (d, $J_{C-P} = 137.8$ Hz), 16.6 (d, $J_{C-P} = 5.8$ Hz), 16.4 (d, $J_{C-P} = 5.8$ Hz). ³¹P NMR (162 MHz, Chloroform-d) $\delta = 26.01$. IR (KBr): 2979.40, 2931.54, 1607.38, 1510.42, 1463.19, 1290.93, 1249.30, 1175.64, 1627.83, 963.42, 829.84, 776.03, 746.48, 697.88 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₁H₂₈O₅P 391.1674, found 391.1681.

diethyl (E)-(1,3-bis(3,5-dimethylphenyl)allyl)phosphonate (3ak)

Following the general procedure, the reaction was stirred at 100 °C (oil bath) for 14h. **3ak** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as yellow liquid (15 mg, 20% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.05 (s, 2H), 7.00 (s, 2H), 6.89 (s, 1H), 6.87 (s, 1H), 6.54 – 6.42 (m, 2H), 4.14 – 4.03 (m, 2H), 4.03 – 3.85 (m, 2H), 3.85 – 3.76 (m, 1H), 2.31 (s, 6H), 2.29 (s, 6H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.2 (d, *J*_{C-P} = 1.7 Hz), 138.0, 136.8 (d, *J*_{C-P} = 2.2 Hz), 135.9 (d, *J*_{C-P} = 7.2 Hz), 133.8, 133.6, 129.4, 129.0 (d, *J*_{C-P} = 3.2 Hz), 126.9, 126.8, 124.5, 124.4, 62.8 (d, *J*_{C-P} = 5.5 Hz), 62.7 (d, *J*_{C-P} = 5.4 Hz), 49.5 (d, *J*_{C-P} = 136.8 Hz), 21.4, 21.3, 16.6 (d, *J*_{C-P} = 5.9 Hz), 16.4 (d, *J*_{C-P} = 5.9 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 25.80. IR (KBr): 2980.17, 2919.13, 1600.83, 1508.29, 1454.71, 1390.52, 1247.22, 1160.68, 1052.91, 1026.04, 962.62, 786.89, 748.93, 698.60 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₃H₃₂O₃P 387.2089, found 387.2081.

diphenyl(phenyl(3-phenyloxiran-2-yl)methyl)phosphine oxide (4)

4 was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (47 mg, 57% yield), Mp: 149-151 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.84 (m, 2H), 7.63 – 7.51 (m, 5H), 7.46 (dd, *J* = 11.1, 8.3 Hz, 2H), 7.33 – 7.17 (m, 11H), 4.39 (t, *J* = 8.0 Hz, 1H), 4.23 (d, *J* = 8.0 Hz, 1H), 4.13 (d, *J* = 9.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.6, 132.7 (d, *J*_{C-P} = 3.9 Hz), 132.2 (d, *J*_{C-P} = 2.8 Hz), 131.7 (d, *J*_{C-P} = 4.7 Hz), 131.6, 131.3, 131.2, 130.9, 130.8, 129.1, 129.0, 128.4, 128.3, 128.3 (d, *J*_{C-P} = 1.4 Hz), 128.1 (d, *J*_{C-P} = 4.2 Hz), 127.3 (d, *J*_{C-P} = 1.9 Hz), 127.0, 74.4 (d, *J*_{C-P} = 10.9 Hz), 74.3 (d, *J*_{C-P} = 3.3 Hz), 46.1 (d, *J*_{C-P} = 68.9 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 39.00. IR (KBr): 3059.55, 3029.90, 2915.81, 1708.78, 1493.89, 1437.61, 1275.42, 1260.96, 1154.22, 1117.66,

750.44, 698.80 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₄O₂P 411.1514, found 411.1515.

(E)-(1,3-diphenylallyl)diphenylphosphane (5)

5 was white solid (59 mg, 78% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.49 (m, 3H), 7.29 – 7.10 (m, 17H), 6.38 (dq, *J* = 11.5, 5.9, 4.3 Hz, 1H), 6.20 (dd, *J* = 15.7, 3.3 Hz, 1H), 4.31 (dd, *J* = 8.6, 5.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.8 (d, *J*_{C-P} = 2.5 Hz), 136.0 (d, *J*_{C-P} = 6.1 Hz), 134.5 (d, *J*_{C-P} = 11.2 Hz), 131.9 (d, *J*_{C-P} = 2.5 Hz), 131.8, 131.8, 131.7 (d, *J*_{C-P} = 128.7 Hz), 131.6 (d, *J*_{C-P} = 2.9 Hz), 131.5, 131.4, 129.6, 129.5, 128.7, 128.6, 128.6, 128.5, 128.5, 128.3, 128.2, 127.7 (d, *J*_{C-P} = 0.8 Hz), 127.2 (d, *J*_{C-P} = 2.4 Hz), 126.5, 126.5, 124.7 (d, *J*_{C-P} = 7.3 Hz), 52.4 (d, *J*_{C-P} = 65.0 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = -0.84. IR (KBr): 3056.55, 3025.25, 2922.63, 1493.54, 1437.38, 1275.39, 1260.69, 1172.96, 1117.25, 764.20, 749.42, 721.55, 698.48 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₄P 379.1616, found 379.1610.

(E)-(1,3-bis(4-(dibenzo[b,d]furan-4-yl)phenyl)allyl)diphenylphosphine oxide (6)

6 was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1/1) as white solid (140 mg, 96% yield), Mp: 228-230 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (dd, J = 7.7, 0.7 Hz, 2H), 7.94 – 7.89 (m, 4H), 7.84 (dd, J = 8.1, 1.4 Hz, 4H), 7.72 – 7.65 (m, 2H), 7.62 – 7.50 (m, 10H), 7.49 – 7.33 (m, 12H), 6.76 (ddd, J = 16.2, 9.2, 7.2 Hz, 1H), 6.49 (dd, J = 15.7, 3.7 Hz, 1H), 4.53 (t, J = 9.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.2, 153.4 (d, J_{C-P} = 1.5 Hz), 136.2 (d, J_{C-P} = 2.5 Hz), 135.8, 135.4 (d, J_{C-P} = 6.3 Hz), 135.3 (d, J_{C-P} = 2.6 Hz), 134.3 (d, J_{C-P} = 11.3 Hz), 131.9 (d, J_{C-P} = 8.5 Hz), 131.6 (d, J_{C-P} = 141.7 Hz), 131.5 (d, J_{C-P} = 8.7 Hz), 129.8 (d, J_{C-P} = 1.4 Hz), 129.0 (d, J_{C-P} = 8.7 Hz), 125.4 (d, J_{C-P} = 5.3 Hz), 125.0, 124.2, 123.3 (d, J_{C-P} = 3.4 Hz), 122.9 (d, J_{C-P} = 2.5 Hz), 120.8, 119.8 (d, J_{C-P} = 2.4 Hz), 112.0, 52.4 (d, J_{C-P} = 65.0 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.15. IR (KBr): 3054.19, 2923.67, 1512.06, 1450.72, 1438.23, 1396.11, 1275.20, 1259.77, 1190.23, 1173.12, 1117.21, 1099.51, 1028.15, 969.93, 749.77, 701.21 cm⁻¹. HRMS (ESI/[M+H]⁺) Calcd. for: C₅₁H₃₆O₃P 727.2402, found 727.2393.

5. References

(1) X-D. Li, L.-J. Xie, D.-L. Kong, L. Liu, and L Cheng. *Tetrahedron*, 2016, **72**, 1873-1880.
 (2) C. C. Chen and J. Waser, *Chem. Commun.*, 2014, **50**, 12923-12926.

(3) X.-Y. Wo, P.-Z. Xie, W.-S. Fu, C.-Q. Gao, Y.- N. Liu, Z.-L. Sun and T.-P. Loh, *Chem. Commun.*, 2018, **54**, 11132-11135.

(4) L. Zhang, W. Liu, X.-M. Zhao, Eur. J. Org. Chem., 2014, 6846-6849.

(5) Q. Chen, C.-X. Wen, X.-F. Wang, G.-D. Yu, C. OuYang, Y.-P. Huo and K. Zhang, *Adv. Synth. Catal.*, 2018, **360**, 3590-3594.

(6) P. Butti, R. Rochat, A. D. Sadow and A. Tongi, Angew. Chem. Int. Ed., 2008, 47, 4878-4881.

6. NMR spectra for new compounds

7.1.28
7.1.28
7.1.28
7.1.28
7.1.28
7.1.28
7.1.28
7.1.28
7.1.28
7.1.29
7.1.29
7.1.29
7.1.20
7.1.20
7.1.20
7.1.20
7.1.20
7.1.20
7.1.21
7.1.21
7.1.21
7.1.22
7.1.23
7.1.24
6.0.31
6.0.31
7.1.26
6.0.31
6.0.31
6.0.31
6.0.31
6.0.31
6.0.31
7.1.24
7.1.27
7.1.27
7.1.28
7.1.20
7.1.20
7.1.20
7.1.20
7.1.20
7.1.21
7.1.21
7.1.21
7.1.22
7.1.24
6.0.31
6.0.31
6.0.31
6.0.31
6.0.31
6.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
9.0.31
<p

S37

S74

S75

S76

