Visible Light Induced Hydrophosphinylation of Unactivated Alkenes Catalyzed by Salicylaldehyde

Zeqin Yuan, Simin Wang, Miaomiao Li, Tian Chen, Jiaye Fan, Fuying Xiong, Qianggen Li, Ping Hu, Bi-Qin Wang, Peng Cao and Yang Li*
College of Chemistry and Materials Science, Sichuan Normal University
Chengdu 610068, China
e-mail: yangli@sicnu.edu.cn
\section*{Supporting Information}
Table of contents

1. General methods 2
2. Synthesis of substrates 3
3. Screening results 4
4. General procedure for the salicylaldehyde catalyzed hydrophosphinylation and spectroscopic data of novel compounds 8
5. Computational studies 17
6. Photo of the reaction set up and spectral distribution of the blue LED light 24
7. UV-visible light absorption spectra of aldehyde catalysts and 1a 25
8. Fluorescence emission spectra and fluorescence quantum yield of salicylaldehyde 28
9. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra of novel compounds 29

1. General methods

NMR spectra were acquired on a Bruker Ascend 600 spectrometer or a Varian 400 spectrometer, running at 600 MHz for ${ }^{1} \mathrm{H}, 150 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 162$ or 243 MHz for ${ }^{31} \mathrm{P}$ and 376 or 564 MHz for ${ }^{19} \mathrm{~F}$. Chemical shifts (δ) are reported in ppm relative to internal standard signals (tetramethylsilane TMS, 0.00 ppm for ${ }^{1} \mathrm{H}$ NMR; chloroform $\mathrm{CDCl}_{3}, 77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR; phosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}, 0.00$ ppm for ${ }^{31} \mathrm{P} \mathrm{NMR}$). The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet; bs, broad signal. ${ }^{13} \mathrm{C}$ NMR spectra were acquired in a broad band decoupled mode. For characterization of isomeric mixtures, *denotes minor isomer, ${ }^{+}$denotes overlap of signals from both isomers. Electrospray ionization high-resolution mass spectra (ESI-HRMS) were recorded on a Bruke P-SIMSGly FT-ICR mass spectrometer. Analytical thin layer chromatography (TLC) was performed using silica gel ($\mathrm{SiO}_{2}, 8 \pm 2$ um $\geq 80 \%$) visualized by ultraviolet irradiation or KMnO_{4} dip. For flash chromatography (FC) silica gel ($\mathrm{SiO}_{2}, 200-300$ mesh) was used. For high performance thin layer chromatography (HPTLC) silica gel (SiO_{2}, 10-40 um) was used. Unless otherwise noted, commercially available reagents were used without further purification.

2. Synthesis of substrates

Numbering of starting materials

Secondary phosphine oxide (1):

1 a

1 b

$1 f$

1c

1d

$1 e$

1 g

1h

$1 i$

1j

1k

Secondary phosphine oxide $\mathbf{1 a} \mathbf{1 d}$ and $\mathbf{1 i}$ are commercially available. Secondary phosphine oxide $\mathbf{1 b} \mathbf{b}$ and $\mathbf{1 e} \mathbf{e h}$ were prepared according to the procedure reported. ${ }^{1}$ Secondary phosphine oxide $\mathbf{1 j}$ was prepared according to known procedure. ${ }^{2}$ Secondary phosphine oxide $\mathbf{1 k}$ was prepared according to known procedure. ${ }^{3}$ All spectroscopic data are identical to those reported.

[^0]
3. Screening results

All reactions were performed using $1 \mathbf{a}$ (0.1 mmol), $\mathbf{2 a}$ (0.2 mmol), $5.0 \mathrm{~mol} \%$ cat.1, 1.5 equivalent $\mathrm{K}_{3} \mathrm{PO}_{4}$ and 0.2 mL anhydrous solvent under 30W blue LED irradiation in argon atmosphere. Yields were determined by crude ${ }^{1} \mathrm{H}$ NMR using 1,2-dichloroethane $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$ as internal standard.

6	KBr	$>59 \%$
7	KI	18%
8	KOH	60%
9	KOMe	56%
10	$\mathrm{KO}^{t} \mathrm{Bu}$	67%
11	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	79%

All reactions were performed using 1a (0.1 mmol), 2a (0.2 mmol), $5.0 \mathrm{~mol} \%$ cat. $1,1.5$ equivalent base and 0.2 mL distilled $\mathrm{H}_{2} \mathrm{O}$ under 30W blue LED irradiation in air atmosphere. Yields were determined by crude ${ }^{1} \mathrm{H}$ NMR using 1,2-dichloroethane ($\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$) as internal standard.

All reactions were performed using 1a (0.1 mmol), 2a (0.2 mmol), $5.0 \mathrm{~mol} \% \mathrm{cat} .1,1.5$ equivalent base and 0.2 mL distilled $\mathrm{H}_{2} \mathrm{O}$ under 30W blue LED irradiation in air atmosphere. Yields were determined by crude ${ }^{1} \mathrm{H}$ NMR using 1,2-dichloroethane $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$ as internal standard.

All reactions were performed using 1a (0.1 mmol), 2a (0.2 mmol), $5.0 \mathrm{~mol} \%$ cat. $1, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and 0.2 mL distilled $\mathrm{H}_{2} \mathrm{O}$ under 30W blue LED irradiation in air atmosphere. Yields were determined by crude ${ }^{1} \mathrm{H}$ NMR using 1,2-dichloroethane $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$ as internal standard.

cat. a

cat. b

cat. c

cat. d

cat. e

cat. f

cat. g

cat. h

Entry	catalyst	NMR yield
1	Cat. a	31%
2	Cat. b	$<5 \%$
3	Cat. c	56%
4	Cat. d	23%
7	Cat. e	68%
7	Cat. f	44%
8	Cat. g	80%
	Cat. \mathbf{h}	50%

All reactions were performed using $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.2 \mathrm{mmol}), 5.0 \mathrm{~mol} \%$ catalyst, 2.0 equivalent $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 0.2 mL distilled $\mathrm{H}_{2} \mathrm{O}$ under 30W blue LED irradiation in air atmosphere. Yields were determined by crude ${ }^{1} \mathrm{H}$ NMR using 1,2-dichloroethane $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$ as internal standard.

Entry	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{H}_{2} \mathrm{O}$	NMR yield
1	2.0 equiv	0.5 M	89%
2	2.5 equiv	0.5 M	90%
3	2.5 equiv	1.0 M	95%
4	2.5 equiv	0.33 M	86%
5	2.5 equiv	0.25 M	88%

All reactions were performed using $\mathbf{1 a}(0.1 \mathrm{mmol})$, $\mathbf{2 a}(0.2 \mathrm{mmol}), 2.5 \mathrm{~mol} \%$ cat.1, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and distilled $\mathrm{H}_{2} \mathrm{O}$ under 30W blue LED irradiation in air atmosphere. Yields were determined by crude ${ }^{1} \mathrm{H}$ NMR using 1,2dichloroethane $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$ as internal standard.

4. General procedure for the salicylaldehyde catalyzed hydrophosphinylation and spectroscopic data of novel compounds

In a screw cap glass vial equipped with a magnetic stirring bar, secondary phosphine oxide $\mathbf{1}$ (0.2 mmol), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (0.5 mmol), distilled water (0.2 mL), alkene $\mathbf{2}$ or alkyne $\mathbf{4}(0.4 \mathrm{mmol})$ and catalyst $\mathbf{1}(0.005 \mathrm{mmol})$ was added. The two phase solution was stirred under the irradiation of 30 W blue LED for noted time. After full conversion of 1 , the reaction was extracted with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by FC or HPTLC.

Hexyldiphenylphosphine oxide (3aa):
Following the procedure (3h), 3aa was obtained after FC on silica gel (Petro
 ether/EtOAc 1:1-1:4) in 90\% yield (51.2 mg) as colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.77-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 6 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.43-$ $1.35(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 133.15 ($d, J=97.7 \mathrm{~Hz}, 2 \mathrm{C}$), 131.64 ($\mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, 2 \mathrm{C}$), 130.77 ($\mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, 4 \mathrm{C}$), 128.62 ($d, J=11.5 \mathrm{~Hz}, 4 \mathrm{C}$), $31.26,30.65\left(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}\right.$), $29.74(\mathrm{~d}, \mathrm{~J}=72.1 \mathrm{~Hz}), 22.40,21.39(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}), 14.00 .{ }^{31} \mathbf{p}$ NMR (243 MHz, CDCl ${ }_{3}$) $\delta 33.18$ (s). HRMS (ESI) m/z: [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OP}^{+}$287.1565; found: 287.1562.

Hexyldi-p-tolylphosphine oxide (3ba):
Following the procedure (3h), 3ba was obtained after FC on silica gel (Petro
 ether/EtOAc 1:1-1:4-EtOAc) in 94\% yield (58.5 mg) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.25-2.18$ $(\mathrm{m}, 2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.95(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 2 \mathrm{C}), 130.78$ ($\mathrm{d}, \mathrm{J}=$ $9.6 \mathrm{~Hz}, 4 \mathrm{C}), 130.06$ (d, J = $100.3 \mathrm{~Hz}, 2 \mathrm{C}$), 129.32 ($\mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, 4 \mathrm{C}$), $31.28,30.68$ ($d, J=14.3 \mathrm{~Hz}$), $29.91(\mathrm{~d}, \mathrm{~J}=72.8 \mathrm{~Hz}$), 22.41, $21.54(2 \mathrm{C}), 21.45(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz})$,
14.00. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.69$ (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OP}^{+} 315.1878$; found: 315.1880 .

Hexyldi-m-tolylphosphine oxide (3ca):
Following the procedure (overnight), 3ca was obtained after FC on silica gel
 (Petro ether/EtOAc 1:2) in 77\% yield (48.1 mg) as colorless oil. ${ }^{1} \mathrm{H} \mathbf{N M R}(\mathbf{6 0 0} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{~s}$, $6 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.21(\mathrm{~m}$, $4 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.53(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz})$, 133.16 ($\mathrm{d}, \mathrm{J}=97.1 \mathrm{~Hz}$), $132.42(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 131.40(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}), 128.48(\mathrm{~d}, \mathrm{~J}=$ 12.0 Hz), 127.68 (d, J = 9.0 Hz), $31.29,30.70(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}), 29.78$ (d, J = 71.9 Hz), $22.45,21.47(2 \mathrm{C}), 21.42(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}), 14.03 .{ }^{31} \mathrm{P}$ NMR (243 MHz, CDCl ${ }_{3}$) $\delta 33.37$ (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OP}^{+}$315.1878; found: 315.1880.

Bis(3,5-dimethylphenyl)(hexyl)phosphine oxide (3da):

Following the procedure (3h), 3da was obtained after FC on silica gel (Petro ether/EtOAc 1:1-1:4-EtOAc) in 77% yield (52.3 mg) as white solid. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 12 \mathrm{H}), 2.27-2.16(\mathrm{~m}$, 2 H), $1.66-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.23(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 4 \mathrm{C}), 133.52-132.76(\mathrm{~m}$, $4 \mathrm{C}), 128.30(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{C}), 31.26,30.68(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}), 29.69(\mathrm{~d}, \mathrm{~J}=71.8 \mathrm{~Hz})$, 22.42, 21.44 - 21.26 ($\mathrm{m}, 5 \mathrm{C}$), 14.01. ${ }^{31} \mathrm{P}$ NMR ($\mathbf{1 6 2 ~ M H z , ~ C D C l}{ }_{3}$) $\delta 33.55$ (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{OP}^{+}$343.2191; found: 343.2164 .

Hexylbis(4-methoxyphenyl)phosphine oxide (3ea):

Following the procedure (overnight), 3ea was obtained after FC on silica gel (Petro ether/EtOAc 1:2) in 86% yield (59.3 mg) as colorless oil. ${ }^{1}$ H NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.54(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 2.27$ - $2.11(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 4 \mathrm{H})$, $0.84(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.25(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}$, $2 \mathrm{C}), 132.70$ ($\mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, 4 \mathrm{C}$), 124.82 ($\mathrm{d}, \mathrm{J}=104.1 \mathrm{~Hz}, 2 \mathrm{C}$), 114.23 ($\mathrm{d}, \mathrm{J}=$ $12.4 \mathrm{~Hz}, 4 \mathrm{C}), 55.43(2 \mathrm{C}), 31.42,30.82(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}), 30.35(\mathrm{~d}, \mathrm{~J}=72.9 \mathrm{~Hz})$,
22.54, $21.65(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}), 14.12$.
${ }^{31}$ P NMR (162 MHz, CDCl_{3}) $\delta 33.40$ (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{P}^{+} 347.1776$; found: 347.1768.

Bis(4-chlorophenyl)(hexyl)phosphine oxide (3fa):

3fa

Following the procedure (overnight), 3fa was obtained after FC on silica gel (Petro ether/EtOAc 1:1-1:4-EtOAc) in 71% yield (50.0 mg) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.11$ (m, 2H), 1.56-1.45 (m, 2H), 1.38-1.27(m, 2H), 1.23-1.13(m, 4H), $0.77(\mathrm{t}, \mathrm{J}$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.57(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 2 \mathrm{C}), 132.19$ (d, $\mathrm{J}=10.0 \mathrm{~Hz}, 4 \mathrm{C}), 131.38(\mathrm{~d}, \mathrm{~J}=99.0 \mathrm{~Hz}, 2 \mathrm{C}), 129.21(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 4 \mathrm{C}), 31.30$, 30.65 ($d, J=15.0 \mathrm{~Hz}$), 29.71 ($d, J=72.8 \mathrm{~Hz}$), 22.45, 21.37 ($d, \mathrm{~J}=4.1 \mathrm{~Hz}$), 14.05.
${ }^{31}$ P NMR (162 MHz, CDCl_{3}) $\delta 32.25$ (s). HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{OP}^{+} 355.0785$, 357.0756, 359.0726; found: 359.0705, 357.0730, 355.0772.

Bis(4-fluorophenyl)(hexyl)phosphine oxide (3ga):
Following the procedure (overnight), 3ga was obtained after FC on silica gel (Petro ether/EtOAc 1:1-1:4-EtOAc) in 80% yield (51.1 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{dd}, \mathrm{J}=14.0,8.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 4 \mathrm{H})$, $2.16(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.13(\mathrm{~m}, 4 \mathrm{H}), 0.77$ ($\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.02(\mathrm{~d}, \mathrm{~J}=253.1 \mathrm{~Hz}, 2 \mathrm{C}$), 133.27 ($\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 4 \mathrm{C}$), 129.06 ($\mathrm{d}, \mathrm{J}=100.8 \mathrm{~Hz}, 2 \mathrm{C}$), 116.19 ($\mathrm{dd}, \mathrm{J}=21.6,11.9$ $\mathrm{Hz}, 4 \mathrm{C}$), 31.30, 30.65 (d, J = 14.2 Hz), 30.07 ($\mathrm{d}, \mathrm{J}=73.1 \mathrm{~Hz}$), 22.45, 21.42 ($\mathrm{d}, \mathrm{J}=$
2.5 Hz), 14.03. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.24(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($564 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.82-107.08(\mathrm{~m})$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{OP}^{+}$323.1376; found: 323.1368.

Bis(3,5-bis(trifluoromethyl)phenyl)(hexyl)phosphine oxide (3ha):

Following the procedure (overnight), 3ha was obtained after HPTLC (Petro ether/EtOAc 1:1) in 59% yield (65.7 mg) as white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.08(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl ${ }_{3}$) $\delta 135.63(d, J=95.2 \mathrm{~Hz}, 2 \mathrm{C}), 132.94$ (qd, $\mathrm{J}=34.0,11.4$ $\mathrm{Hz}, 4 \mathrm{C}), 130.81$ ($\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{C}$), 126.39 ($\mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}, 2 \mathrm{C}$), 122.79 ($q, \mathrm{~J}=273.3$ $\mathrm{Hz}, 2 \mathrm{C}$), 31.18, 30.44 ($\mathrm{d}, \mathrm{J}=14.6 \mathrm{~Hz}$), 29.31 ($\mathrm{d}, \mathrm{J}=73.1 \mathrm{~Hz}$), 22.39, 21.16 ($\mathrm{d}, \mathrm{J}=$ 4.2 Hz), 13.94. ${ }^{31} \mathrm{P}$ NMR ($\mathbf{1 6 2 ~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 29.26(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.10(\mathrm{~s}) . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{12} \mathrm{OP}^{+}$559.1060; found: 559.1050.

Hexyldi(naphthalen-2-yl)phosphine oxide (3ia):
Following the procedure (overnight), 3ia was obtained after FC on silica gel

$3 i a$ (Petro ether/EtOAc 1:1-1:4-EtOAc) in 85% yield (65.5 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43$ (d, J = $13.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.91 (dd, J = 14.3, 5.4 Hz , $4 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 4 \mathrm{H}), 2.44$ (dt, J = 27.0, 13.5 Hz, 2H), 1.73-1.64 (m, 2H), 1.49-1.38(m, 2H), 1.31-1.20 $(\mathrm{m}, 4 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \delta 134.69(\mathrm{~d}, \mathrm{~J}=1.8$ $\mathrm{Hz}, 2 \mathrm{C}), 132.85(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{C}), 132.70(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 2 \mathrm{C}), 130.37(\mathrm{~d}, \mathrm{~J}=98.0$ $\mathrm{Hz}, 2 \mathrm{C}$) , 128.96 (2C), 128.60 (d, J = $11.3 \mathrm{~Hz}, 2 \mathrm{C}$), 128.17 (2C), 127.91 (2C), 127.04 (2C), 125.79 (d, J = 10.6 Hz , C), 31.36, $30.80(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}), 29.70(\mathrm{~d}, \mathrm{~J}=72.2 \mathrm{~Hz}), 22.49,21.58(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 14.07 .{ }^{31} \mathbf{P} \mathbf{N M R}(\mathbf{1 6 2} \mathbf{~ M H z}$, CDCl_{3}) $\delta 33.58$ (s). HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{OP}^{+} 387.1878$; found: 387.1851.

Hexyldiphenylphosphine sulfide (3ja):
Following the procedure (overnight), 3ja was obtained after FC on silica gel (Petro

3ja ether/EtOAc 1:2) in 50% yield (30 mg) as colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.85$ $-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 6 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.34$ $(\mathrm{m}, 2 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \delta 133.12$ ($d, J=79.6 \mathrm{~Hz}, 2 \mathrm{C}$), 131.48 ($\mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, 2 \mathrm{C}$), 131.18 ($\mathrm{d}, \mathrm{J}=10.1 \mathrm{~Hz}, 4 \mathrm{C}), 128.71(\mathrm{~d}, \mathrm{~J}=$ $12.0 \mathrm{~Hz}, 4 \mathrm{C}$), $32.69\left(\mathrm{~d}, \mathrm{~J}=56.5 \mathrm{~Hz}\right.$), 31.39, $30.42\left(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}\right.$), $22.55,22.22(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 14.10 .{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 43.35$ (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{PS}^{+}$303.1336; found: 303.1316.

Hexyl(methyl)(phenyl)phosphine oxide (3ka):
Following the procedure (overnight), 3ka was obtained after HPTLC (EtOAc) in 67\%

3ka yield (49.8 mg) as colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.55$ $-7.47(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.53-$ $1.42(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.79$ (d, J = 95.6 Hz), 131.65 (d, J = 2.2 Hz), 130.08 (d, J = 8.9 Hz , $2 C), 128.72(d, J=11.1 \mathrm{~Hz}, 2 C), 31.84(d, J=70.5 \mathrm{~Hz}), 31.33,30.64(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}), 22.46,21.65(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz})$, 16.08 ($d, J=69.6 \mathrm{~Hz}$), 14.07. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 38.37(\mathrm{~s})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{OP}^{+}$225.1408; found: 225.1413.

Octyldiphenylphosphine oxide (3ab):

3ab

Following the procedure (overnight), 3ab was obtained after HPTLC (Petro ether/EtOAc 1:1) in 83% yield (52.3 mg) as white solid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.72-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 6 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.34$ $-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 8 \mathrm{H}), 0.77(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
133.21 (d, J = $97.9 \mathrm{~Hz}, 2 \mathrm{C}$), 131.67 ($\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 2 \mathrm{C}$), $130.80(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 4 \mathrm{C}), 128.65$ ($d, J=11.8 \mathrm{~Hz}, 4 \mathrm{C}$), $31.78,31.00(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}$), $29.76(\mathrm{~d}, \mathrm{~J}=72.0 \mathrm{~Hz}), 29.06,29.04,22.63,21.43(\mathrm{~d}, \mathrm{~J}=3.5$ Hz), 14.11. ${ }^{31} \mathrm{P}$ NMR ($\mathbf{1 6 2} \mathbf{M H z}, \mathrm{CDCl}_{3}$) $\delta 33.28$ (s). HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OP}^{+} 315.1878$; found: 315.1880 .
(3,3-Dimethylbutyl)diphenylphosphine oxide (3ac):
Following the procedure (overnight), 3ac was obtained after HPTLC (Petro ether/EtOAc

$1: 2$) in 77% yield (44.1 mg) as white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.64(\mathrm{~m}$, 4H), $7.46-7.36(\mathrm{~m}, 6 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.14(\mathrm{~d}, \mathrm{~J}=97.9 \mathrm{~Hz}, 2 \mathrm{C}), 131.73(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 2 \mathrm{C}), 130.84(\mathrm{~d}, \mathrm{~J}=8.9$ 3ac $\mathrm{Hz}, 4 \mathrm{C}$), 128.72 (d, J = $11.8 \mathrm{~Hz}, 4 \mathrm{C}$), 34.81 ($\mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}$), $30.60(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}$), 28.89, 25.11 ($\mathrm{d}, \mathrm{J}=72.6 \mathrm{~Hz}$). ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.23$ (s). HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OP}^{+}$ 287.1565; found: 287.1562.
(2-Cyclohexylethyl)diphenylphosphine oxide (3ad):

3ad Following the procedure (overnight), 3ad was obtained after HPTLC (Petro ether/EtOAc 1:1) in 80% yield (50.2 mg) as white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.76-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 6 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.64-$ $1.59(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.21(\mathrm{~d}, \mathrm{~J}=98.0 \mathrm{~Hz}, 2 \mathrm{C}), 131.66(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{C}), 130.80(\mathrm{~d}, \mathrm{~J}=$ $9.7 \mathrm{~Hz}, 4 \mathrm{C}), 128.65(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 4 \mathrm{C}), 38.68(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}), 32.79(2 \mathrm{C}), 28.53(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}), 27.22(\mathrm{~d}, \mathrm{~J}=$ 72.2 Hz), 26.50, 26.20 (2C). ${ }^{31} \mathrm{P}$ NMR ($\mathbf{1 6 2 ~ M H z , ~}$ CDCl $_{3}$) $\delta 33.78$ (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OP}^{+}$313.1721; found: 313.1720.

Diphenyl(3-phenylpropyl)phosphine oxide (3ae):

$3 a e$ $=9.4 \mathrm{~Hz}, 4 \mathrm{C}), 128.77(2 \mathrm{C}), 128.65(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 4 \mathrm{C}), 128.52(2 \mathrm{C}), 126.21,36.74(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}), 29.02(\mathrm{~d}, \mathrm{~J}=$
72.0 Hz), $23.10(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.15(\mathrm{~s})$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{OP}^{+}$321.1408; found: 321.1395.

Diphenyl(3-(trimethylsilyl)propyl)phosphine oxide (3af):
Following the procedure (overnight), 3af was obtained after HPTLC (Petro

3af ether/EtOAc 1:2) in 77% yield (48.7 mg) as white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathbf{M H z}, \mathrm{CDCl}_{3}\right) \delta$ $7.74-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 6 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H})$, $0.65-0.58(\mathrm{~m}, 2 \mathrm{H}),-0.08(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.36(\mathrm{~d}, \mathrm{~J}=97.2$ $\mathrm{Hz}, 2 \mathrm{C}$), $131.72(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{C}), 130.85(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 4 \mathrm{C}), 128.72(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}$, $4 C), 33.77(d, J=69.8 \mathrm{~Hz}), 18.94(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 16.49(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}),-1.64(3 \mathrm{C}) .{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 32.65 (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{OPSi}^{+} 317.1491$; found: 317.1487.
(4-Bromobutyl)diphenylphosphine oxide (3ag):
Following the procedure ($12 \mathrm{~h}, 2.0$ equivalent extra alkene was added and reacted

3ag for additional 12h), 3ag was obtained after HPTLC (Petro ether/EtOAc 1:2) in 50\% yield (33.8 mg) as white solid. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.56$ $7.37(\mathrm{~m}, 6 \mathrm{H}), 3.30(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.89(\mathrm{~d}, \mathrm{~J}=98.4 \mathrm{~Hz}, 2 \mathrm{C}), 131.95(\mathrm{~d}, \mathrm{~J}=$ $2.2 \mathrm{~Hz}, 2 \mathrm{C}), 130.88(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 4 \mathrm{C}), 128.85(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 4 \mathrm{C}), 33.61(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}), 32.72(\mathrm{~s}), 28.92(\mathrm{~d}, \mathrm{~J}=$ 71.9 Hz), $20.48(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 32.74(\mathrm{~s})$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrOP}^{+}$337.0357, 339.0336; found: 337.0328, 339.0338.
(5-Hydroxypentyl)diphenylphosphine oxide (3ah):

3ah

Following the procedure (overnight), 3ah was obtained after HPTLC (MeOH/DCM $1: 10)$ in 69% yield (39.5 mg) as colorless liquid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68$ $7.61(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 6 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.61-$ $1.53(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.00(\mathrm{~d}, \mathrm{~J}=98.1$ $\mathrm{Hz}, 2 \mathrm{C}), 131.85(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{C}), 130.84(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 4 \mathrm{C}), 128.78(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}$, 4C), 62.27 (s), 32.18 (s), 29.63 ($d, J=71.9 \mathrm{~Hz}$), 27.12 ($d, J=13.9 \mathrm{~Hz}$), 21.30 ($d, J=4.1 \mathrm{~Hz}$). ${ }^{31}$ P NMR ($\mathbf{1 6 2 ~ M H z , ~}$ CDCl_{3}) $\delta 33.71$ (s). HRMS (ESI) m/z: [M+H] Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}^{+}$289.1357; found: 289.1355.
(3-Phenoxypropyl)diphenylphosphine oxide (3ai):

3ai Following the procedure (overnight), 3ai was obtained after HPTLC (Petro ether/EtOAc 1:2) in 74% yield (49.8 mg) as white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta$ $7.72-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 1 \mathrm{H})$, $6.81-6.73(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}{ }^{1}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.69,132.91(\mathrm{~d}, \mathrm{~J}=98.9 \mathrm{~Hz}, 2 \mathrm{C}), 131.88(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}$, $2 C), 130.86(d, J=9.0 \mathrm{~Hz}, 4 \mathrm{C}), 129.54(2 \mathrm{C}), 128.79$ ($\mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, 4 \mathrm{C}$), 120.91, 114.54 (2C), 67.51 ($\mathrm{d}, \mathrm{J}=14.2$ Hz), $26.50(\mathrm{~d}, \mathrm{~J}=72.9 \mathrm{~Hz}), 21.89(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}) .{ }^{31} \mathrm{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.17(\mathrm{~s})$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}^{+}$337.1357; found: 337.1342.
(2-Ethoxyethyl)diphenylphosphine oxide (3aj):

3aj

Following the procedure (overnight), 3aj was obtained after HPTLC (Petro ether/EtOAc 1:2) in 45% yield (23.4 mg) as colorless liquid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.70-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 6 \mathrm{H}), 3.67(\mathrm{dd}, \mathrm{J}=16.4,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{q}, \mathrm{J}=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.60-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$133.05(d, J=99.7 \mathrm{~Hz}, 2 C), 131.89(d, J=2.7 \mathrm{~Hz}, 2 C), 130.82(d, J=9.7 \mathrm{~Hz}, 4 C), 128.72(d, J=11.5 \mathrm{~Hz}, 4 C)$, 66.37, 63.89, 30.99 ($\mathrm{d}, \mathrm{J}=70.8 \mathrm{~Hz}$), 15.07. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.46$ (s). HRMS (ESI) m/z: [M+H] ${ }^{+}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{P}^{+}$275.1201; found: 275.1207.

Cyclohexyldiphenylphosphine oxide (3ak):
Following the procedure (overnight), 3ak was obtained after HPTLC (Petro ether/EtOAc 1:1)
 in 85% yield (48.0 mg) as white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.45-$ $7.36(\mathrm{~m}, 6 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.40(\mathrm{~m}$, $2 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $132.18(\mathrm{~d}, \mathrm{~J}=94.7 \mathrm{~Hz}, 2 \mathrm{C}), 131.56(\mathrm{~d}, \mathrm{~J}=$ $2.2 \mathrm{~Hz}, 2 \mathrm{C}), 131.20(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{C}), 128.66(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 4 \mathrm{C}), 37.31(\mathrm{~d}, \mathrm{~J}=73.1 \mathrm{~Hz}), 26.49$ (d, J = $13.2 \mathrm{~Hz}, 2 \mathrm{C}$), 25.89, $24.90(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 2 \mathrm{C}) .{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.11$ (s).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{OP}^{+}$285.1408; found: 285.1387.

Bicyclo[2.2.1]heptan-2-yldiphenylphosphine oxide (3al):
Following the procedure (overnight), 3al was obtained after FC on silica gel (Petro

3al $\left.1 \mathrm{H}, 1 \mathrm{H}^{*}\right), 1.85^{+}\left(\mathrm{dt}, \mathrm{J}=9.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}^{*}\right), 1.58^{+}\left(\mathrm{ddt}, \mathrm{J}=11.1,7.6,3.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right), 1.42^{+}$ (dddd, J = 12.2, 9.6, 7.6, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}^{*}$), $1.35-1.22^{+}\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right), 1.17^{+}(\mathrm{dt}, \mathrm{J}=10.0,1.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 1 \mathrm{H}^{*}\right) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.60^{+}\left(\mathrm{dd}, \mathrm{J}=95.6,46.0 \mathrm{~Hz}, 2 \mathrm{C}, 2 \mathrm{C}^{*}\right), 131.41^{+}(\mathrm{dd}, \mathrm{J}=9.7,2.2 \mathrm{~Hz}$, $2 \mathrm{C}, 2 \mathrm{C}^{*}$), $131.12-130.82^{+}\left(\mathrm{m}, 4 \mathrm{C}, 4 \mathrm{C}^{*}\right), 128.57^{+}\left(\mathrm{dd}, \mathrm{J}=15.6,11.3 \mathrm{~Hz}, 4 \mathrm{C}, 4 \mathrm{C}^{*}\right), 40.00^{+}(\mathrm{d}, \mathrm{J}=73.0 \mathrm{~Hz}, 1 \mathrm{C}$, $\left.1 C^{*}\right), 38.20^{+}\left(1 \mathrm{C}, 1 \mathrm{C}^{*}\right), 37.35^{+}\left(1 \mathrm{C}, 1 \mathrm{C}^{*}\right), 36.48^{+}\left(\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{C}, 1 \mathrm{C}^{*}\right), 32.17^{+}\left(\mathrm{d}, \mathrm{J}=14.7 \mathrm{~Hz}, 1 \mathrm{C}, 1 \mathrm{C}^{*}\right), 31.50^{+}$ ($\mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{C}, 1 \mathrm{C}^{*}$), $28.73^{+}\left(1 \mathrm{C}, 1 \mathrm{C}^{*}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl ${ }_{3}$) $\delta 34.43^{+}\left(\mathrm{s}, 1 \mathrm{P}, 1 \mathrm{P}^{*}\right)$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{OP}^{+}$297.1408; found: 297.1386 .

Hexan-2-yldiphenylphosphine oxide + hexan-3-yldiphenylphosphine oxide (3am):

3am (mixture of 3am' and 3an) Following the procedure (overnight), 3am was obtained after FC on silica gel (Petro ether/EtOAc 1:1) as white solid. For substrate (E)-2hexene, the yield is 75% (42.7 mg), 3am':3an = 1.1:1; for substrate (Z)-2-hexene, the yield is $62 \%(35.5 \mathrm{mg}), 3 \mathrm{am}^{\prime}: 3 \mathrm{an}=1.5: 1 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.76^{+}\left(\mathrm{m}, 4 \mathrm{H}, 4 \mathrm{H}^{*}\right), 7.52-7.43^{+}(\mathrm{m}, 6 \mathrm{H}$, $\left.6 H^{*}\right), 2.39-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.16^{*}\left(\mathrm{~m}, 1 \mathrm{H}^{*}\right), 1.81$ - 1.70* (m, $\left.1 \mathrm{H}^{*}\right), 1.70-1.52^{+}\left(\mathrm{m}, 1 \mathrm{H}, 3 \mathrm{H}^{*}\right), 1.52-1.41\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}^{*}\right), 1.31-1.12$ $\left(\mathrm{m}, 6 \mathrm{H}, 1 \mathrm{H}^{*}\right), 0.94^{*}\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}^{*}\right), 0.85-0.78^{+}\left(\mathrm{m}, 3 \mathrm{H}, 3 \mathrm{H}^{*}\right) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.27^{*}(\mathrm{~d}, \mathrm{~J}=$ $93.5 \mathrm{~Hz}, 2^{*}$), 132.58 (dd, J = 94.3, $14.9 \mathrm{~Hz}, 2 \mathrm{C}$), 131.53 (dd, J = 7.6, $2.7 \mathrm{~Hz}, 2 \mathrm{C}$), $131.44^{*}\left(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{C}^{*}\right)$, 131.14 ($d d, \mathrm{~J}=8.6,1.9 \mathrm{~Hz}, 4 \mathrm{C}$), 131.03* ($\mathrm{dd}, \mathrm{J}=8.5,4.5 \mathrm{~Hz}, 4 \mathrm{C}^{*}$), $128.72-128.55^{+}\left(\mathrm{m}, 4 \mathrm{C}, 4 \mathrm{C}^{*}\right), 38.46^{*}(\mathrm{~d}, \mathrm{~J}=$ 70.9 Hz), $32.04(\mathrm{~d}, \mathrm{~J}=72.3 \mathrm{~Hz}$), $29.74(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}$), 29.17* ($\mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}$), $28.54(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}), 22.49$, 21.31*, 20.70* (d, J = 1.9 Hz), 14.25*, 13.98, 12.68* (d, J = 9.5 Hz), 12.14 ($\mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}$). ${ }^{31}$ P NMR (243 MHz , CDCl_{3}) $\delta 37.48^{*}\left(\mathrm{~s}, 1 \mathrm{P}^{*}\right)$, $36.87(\mathrm{~s}, 1 \mathrm{P})$. For substrate (E)-2-hexene: HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OP}^{+}$287.1559; found: 287.1559. For substrate (Z)-2-hexene: HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OP}^{+}$287.1559; found: 287.1559.

Hexan-3-yldiphenylphosphine oxide (3an):

3an

Following the procedure (overnight), 3an was obtained after FC on silica gel (Petro ether/EtOAc 1:1) as white solid. For substrate (E)-3-hexene, the yield is 50% (28.5 mg); for substrate (Z)-3-hexene, the yield is $72 \%(41.1 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83$ $-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 6 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.52$ $(\mathrm{m}, 3 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.20(\mathrm{~d}, \mathrm{~J}=93.7 \mathrm{~Hz}, 2 \mathrm{C}), 131.45(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 2 \mathrm{C}), 131.01(\mathrm{dd}, \mathrm{J}=8.6$, $4.4 \mathrm{~Hz}, 4 \mathrm{C}$), 128.62 ($\mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 4 \mathrm{C}$), 38.43 ($\mathrm{d}, \mathrm{J}=70.9 \mathrm{~Hz}$), $29.15(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}), 21.27(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}), 20.68$ ($d, J=1.9 \mathrm{~Hz}$), $14.24,12.67(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P} \mathbf{N M R}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.22$ (s$)$. For substrate (E)-3-hexene: HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OP}^{+}$287.1559; found: 287.1558. For substrate (Z)-3-hexene: HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OP}^{+} 287.1559$; found: 287.1561.
((4-Methyltetrahydrofuran-3-yl)methyl)diphenylphosphine oxide (3ao):
Following the procedure (4.0 equivalent of corresponding alkene was used; overnight),

$3 a 0$ 3am was obtained after HPTLC (DCM/MeOH 10:1) in 40% yield (24.1 mg) and $4.7: 1 \mathrm{dr}$ as white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.65^{+}\left(\mathrm{m}, 4 \mathrm{H}, 4 \mathrm{H}^{*}\right), 7.48-7.37^{+}(\mathrm{m}, 6 \mathrm{H}$, $\left.6 \mathrm{H}^{*}\right), 3.90-3.80^{*}\left(\mathrm{~m}, 2 \mathrm{H}^{*}\right), 3.76$ (ddd, J = 25.2, 8.5, 6.7 Hz, 2H), 3.40-3.35 (m, 2H), 3.33 - 3.29* (m, 1H*), 3.17* (t, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}^{*}$), $2.51^{+}(\mathrm{ddtt}, \mathrm{J}=15.0,11.3,7.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $1 H^{*}$), 2.35 (ddd, J = 15.8, 11.8, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 ($\mathrm{hd}, \mathrm{J}=6.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.14^{+}(dtd, J = $15.1,10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.1 H^{*}\right), 2.01-1.95^{*}\left(m, 1 H^{*}\right), 1.91^{*}\left(p, J=7.3 \mathrm{~Hz}, 1 H^{*}\right), 0.92^{*}\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}^{*}\right), 0.89(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.62-132.59^{+}\left(\mathrm{m}, 2 \mathrm{C}, 2 \mathrm{C}^{*}\right), 132.05-131.90^{+}\left(\mathrm{m}, 2 \mathrm{C}, 2 \mathrm{C}^{*}\right), 130.94-130.71^{+}(\mathrm{m}$, $4 C, 4 C^{*}$), $128.94-128.73^{+}$(m, 4C, 4C*), 74.64, 74.24*, 73.80* (d, J = 4.1 Hz), 71.90 ($d, J=4.7 \mathrm{~Hz}$), 41.62* (d, J $=12.5 \mathrm{~Hz}$), 41.03* ($\mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}$), $36.74\left(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}\right.$), $36.37\left(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}\right.$), $32.78^{*}(\mathrm{~d}, \mathrm{~J}=71.0 \mathrm{~Hz}), 28.14(\mathrm{~d}, \mathrm{~J}$ $=72.8 \mathrm{~Hz}$), 15.82*, 13.56. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.83$ (s), $31.01^{*}(\mathrm{~s})$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}^{+}$301.0357; found: 301.1367.
(Z)-hex-1-en-1-yldiphenylphosphine oxide (5aa):

5aa

Following the procedure (overnight), 5aa was obtained after HPTLC (Petro ether/EtOAc $1: 1$) in 47% yield (26.6 mg) as white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.63(\mathrm{~m}$, 4 H), $7.44-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.61$ (ddt, J = 40.5, 12.9, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.03(\mathrm{dd}, \mathrm{J}=25.6,12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.72(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.23,134.66(\mathrm{~d}, \mathrm{~J}=103.7 \mathrm{~Hz}, 2 \mathrm{C}), 131.58(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, $2 C), 131.01(d, J=9.8 \mathrm{~Hz}, 4 C), 128.61(d, J=11.9 \mathrm{~Hz}, 4 C), 121.37(d, J=100.8 \mathrm{~Hz}), 31.04(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}), 30.77$ ($d, \mathrm{~J}=7.8 \mathrm{~Hz}$), 22.33, 13.90. ${ }^{31} \mathrm{P}$ NMR ($\mathbf{1 6 2 ~ M H z , ~ C D C l}{ }_{3}$) $\delta 21.60(\mathrm{~s})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{OP}^{+}$285.1408; found: 285.1387.
(E)-hex-1-en-1-yldiphenylphosphine oxide (5aa'):

Following the procedure (overnight), 5aa' was obtained after HPTLC (Petro

5a' ether/EtOAc 1:1) in 16% yield (9.2 mg) as white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65$ $-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 4 \mathrm{H}), 6.66$ (ddt, J=19.5, 17.1, 6.5 Hz, $1 \mathrm{H}), 6.16$ (dd, J = 24.6, $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.24$ ($\mathrm{m}, 2 \mathrm{H}$) , $0.83(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.13,133.33(\mathrm{~d}, \mathrm{~J}=$ $104.7 \mathrm{~Hz}, 2 \mathrm{C}), 131.81(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 2 \mathrm{C}), 131.44(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 4 \mathrm{C}), 128.64(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 4 \mathrm{C}), 121.64(\mathrm{~d}, \mathrm{~J}=$ 103.2 Hz), $34.38\left(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}\right.$), $30.15,22.39,13.97 .{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl $_{3}$) $\delta 24.13(\mathrm{~s})$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{OP}^{+}$285.1408; found: 285.1387.
(Z)-(5-chloropent-1-en-1-yl)diphenylphosphine oxide (5ab):

5ab

Following the procedure (48h), 5ab was obtained after HPTLC (Petro ether/EtOAc 1:2) in 44% yield (27.1 mg) as white solid. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.70$ (m, 4H), $7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{ddt}, \mathrm{J}=39.7,12.8,7.7 \mathrm{~Hz}$, 1 H), 6.18 (ddd, J = 25.4, $12.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.45(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.70(\mathrm{~m}, 2 \mathrm{H})$, $1.87(\mathrm{p}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.76,134.32(\mathrm{~d}, \mathrm{~J}=104.3 \mathrm{~Hz}$, 2C), 131.79 ($d, J=2.8 \mathrm{~Hz}, 2 \mathrm{C}$), $130.98(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 4 \mathrm{C}), 128.73(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 4 \mathrm{C}), 122.89$ ($\mathrm{d}, \mathrm{J}=99.6 \mathrm{~Hz}$), $44.23,32.04,28.40(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl $_{3}$) $\delta 21.81$ (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClOP}^{+}$305.0862, 307.0833; found: 305.0865, 307.0836.
(E)-(5-chloropent-1-en-1-yl)diphenylphosphine oxide (5ab'):

Following the procedure (48h), 5ab' was obtained after HPTLC (Petro

5ab' ether/EtOAc 1:2) in 19% yield (11.3 mg) as white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 4 \mathrm{H}), 6.73(\mathrm{ddt}, \mathrm{J}=19.2$, $17.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.32 (dd, J = 24.4, 17.0 Hz, 1H), $3.55(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-$ $2.46(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{p}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 150.57,133.07$ ($\mathrm{d}, \mathrm{J}=104.9 \mathrm{~Hz}, 2 \mathrm{C}$), $131.96(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{C}), 131.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 4 \mathrm{C}), 128.72(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 4 \mathrm{C}), 123.39(\mathrm{~d}$, $\mathrm{J}=102.3 \mathrm{~Hz}$), $44.17,31.64(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}), 30.72 .{ }^{31} \mathrm{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 23.62$ (s$)$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClOP}^{+}$305.0862, 307.0833; found: 305.0865, 307.0836.
(Z)-(4-hydroxybut-1-en-1-yl)diphenylphosphine oxide (5ac):

Following the procedure (48h), 5ac was obtained after HPTLC (DCM/MeOH 20:1) in

5ac 66% yield and $5: 1 \mathrm{dr}\left(36.1 \mathrm{mg}\right.$, mixture of Z - and E-configuration) as white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 4 \mathrm{H})$, 6.85 (ddt, J = 39.9, 12.7, 8.5 Hz, 1H), 6.31 (dd, J = 26.9, $12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (bs, 1H), 3.76 ($\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.84-2.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.39$ (s$), 133.64$ ($d, J=105.1 \mathrm{~Hz}, 2 \mathrm{C}$), $132.02(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{C}), 131.13(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 4 \mathrm{C}), 128.83(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 4 \mathrm{C}), 124.54$ (d , $\mathrm{J}=99.0 \mathrm{~Hz}$), $60.35(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 33.91(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.65(\mathrm{~s})$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{P}^{+}$273.1044; found: 273.1054.
(E)-(3,3-dimethylbut-1-en-1-yl)diphenylphosphine oxide (5ad):

Following the procedure (48h), 5ad was obtained after HPTLC (Petro ether/EtOAc 1:2) in 47% yield (26.7 mg) as white solid. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.47$ $-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{dd}, \mathrm{J}=20.4,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, \mathrm{J}=24.4,17.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.45,133.44(\mathrm{~d}, \mathrm{~J}=104.6 \mathrm{~Hz}, 2 \mathrm{C})$,
5ad 131.75 (d, J = $2.8 \mathrm{~Hz}, 2 \mathrm{C}$), 131.39 (d, J = $9.8 \mathrm{~Hz}, 4 \mathrm{C}$), 128.60 (d, J = $12.0 \mathrm{~Hz}, 4 \mathrm{C}$), 116.50 (d, J $=103.5 \mathrm{~Hz}$), 35.37 ($\mathrm{d}, \mathrm{J}=15.2 \mathrm{~Hz}$), $28.73(3 \mathrm{C}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.75$ (s$) . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{OP}^{+}$285.1408; found: 285.1387.
(Z)-(3,3-dimethylbut-1-en-1-yl)diphenylphosphine oxide (5ad'):

Following the procedure (48h), 5ad' was obtained after HPTLC (Petro ether/EtOAc 1:2) in

5ad' 24% yield (13.5 mg) as white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.43-$ $7.33(\mathrm{~m}, 6 \mathrm{H}), 6.61$ (dd, J = $43.5,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, \mathrm{J}=22.3,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl ${ }_{3}$) $\delta 164.70,135.81(\mathrm{~d}, \mathrm{~J}=105.2 \mathrm{~Hz}, 2 \mathrm{C}), 131.41(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{C})$, 130.97 ($\mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}, 4 \mathrm{C}$), 128.59 ($\mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, 4 \mathrm{C}$), 119.37 ($\mathrm{d}, \mathrm{J}=98.8 \mathrm{~Hz}$), $35.60(\mathrm{~d}, \mathrm{~J}=5.5$ Hz), 30.38 (3C). ${ }^{31}$ P NMR (162 MHz, CDCl $_{3}$) $\delta 20.18$ (s). HRMS (ESI) m/z: [M+H] Calcd for
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{OP}^{+}$285.1408; found: 285.1387.

5. Computational studies

All calculations were performed with the Gaussian 09 package. ${ }^{4}$ All species were fully optimized without symmetry constraints with $M 062 X^{5}$ method in combination with $6-311+G(d, p)$ basis sets in solvent water (ε $=78.355$) by using PCM model. ${ }^{6}$ Harmonic vibration frequency calculations were carried out for all the stationary points to confirm each structure being either a minimum (no imaginary frequency) or a transition structure (one imaginary frequency). The reported relative energies are electronic energies in water (ΔE, $\mathrm{kcal} / \mathrm{mol})$ at the M062X/6-311+G(d,p) level of theory without ZPVE corrections.

S1. Relative electronic energies in water at the M062X/6-311+G(d,p) level of theory.

Species	E (a.u.)	$\Delta E(\mathrm{kcl} / \mathrm{mol})$
cat.1	-420.284183	0.0
cat.1*	-420.197010	54.7
1a	-880.402182	0.0
1a*	-880.266790	85.0
1a'	-880.400352	0.0
1a'*	-880.295853	65.6
1a	-880.402182	0.0
1a'	-880.400352	1.1

The acyl-H bond dissociating energy of cat.1* was about $41.2 \mathrm{kcal} / \mathrm{mol}$.

[^1]

The $\mathrm{P}-\mathrm{H}$ bond dissociating energy of 1 a was about $87.7 \mathrm{kcal} / \mathrm{mol}$.

The O-H bond dissociating energy of $1 \mathbf{a}^{\prime}$ was about $86.5 \mathrm{kcal} / \mathrm{mol}$.

The cat.1* interacts with a ground state molecule of cat. 1 furnishing two radicals: the benzoyl radical cat.1' and the hydroxybenzyl radical cat.1". This radical-pair mechanism has been reported in $1970{ }^{7}$

S2. Calculated Cartesian coordinates of the stationary points

Cat. 1

6	0	1.758623	0.756578	0.000027
6	0	0.349318	1.082372	-0.000541
6	0	-0.536435	-0.061800	-0.000218
6	0	-0.031872	-1.378260	-0.000124
6	0	1.319059	-1.638034	-0.000070

[^2]| 6 | 0 | 2.211103 | -0.538643 | 0.000103 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 2.457460 | 1.587045 | 0.000293 |
| 1 | 0 | -0.751616 | -2.191448 | -0.000064 |
| 1 | 0 | 1.696377 | -2.652859 | 0.000018 |
| 1 | 0 | 3.281086 | -0.725383 | 0.000331 |
| 6 | 0 | -1.966592 | 0.156694 | -0.000038 |
| 1 | 0 | -2.273297 | 1.215263 | 0.000023 |
| 8 | 0 | -2.826662 | -0.720353 | 0.000288 |
| 8 | 0 | -0.051992 | 2.282095 | 0.000283 |

Cat.1*

6	0	1.786807	0.750676	0.000038
6	0	0.393035	1.053916	0.000022
6	0	-0.585726	-0.065722	-0.000081
6	0	-0.067474	-1.373467	-0.000049
6	0	1.319476	-1.603913	0.000036
6	0	2.257291	-0.566354	0.000061
1	0	2.467227	1.595560	0.000031
1	0	-0.755445	-2.209331	-0.000090
1	0	1.673024	-2.630661	0.000049
1	0	3.317815	-0.780396	0.000091
6	0	-1.985066	0.206912	-0.000171
1	0	-2.278567	1.263404	0.000130
8	0	-2.872494	-0.701579	0.000172
8	0	-0.019269	2.245221	-0.000092

Cat.1'

6	0	1.740617	0.730954	-0.000005
6	0	0.337352	1.091154	-0.000161
6	0	-0.567202	-0.037511	-0.000053
6	0	-0.092906	-1.371796	-0.000018
6	0	1.250805	-1.655567	-0.000020
6	0	2.164713	-0.571865	0.000011
1	0	2.456420	1.546544	0.000072

1	0	-0.826501	-2.172590	0.000017
1	0	1.608622	-2.677419	0.000006
1	0	3.230575	-0.780391	0.000061
6	0	-1.989121	0.195443	0.000006
8	0	-2.909388	-0.570535	0.000073
8	0	-0.032445	2.295409	0.000088

Cat.1"

6	0	-1.837431	0.703583	0.000048
6	0	-0.467769	1.083949	-0.000024
6	0	0.502216	-0.019779	0.000130
6	0	0.041823	-1.365169	0.000067
6	0	-1.311269	-1.668914	-0.000042
6	0	-2.250685	-0.627149	-0.000030
1	0	-2.570642	1.505034	0.000130
1	0	0.778912	-2.161339	0.000142
1	0	-1.639501	-2.702363	-0.000054
1	0	-3.311566	-0.857306	-0.000006
6	0	1.855807	0.300453	0.000193
1	0	2.212613	1.320105	-0.000138
8	0	2.790066	-0.703351	-0.000358
8	0	-0.082120	2.300007	-0.000095
1	0	3.670468	-0.319225	0.001505

1a

15	0	0.017417	1.386404	-0.423544
1	0	-0.092062	1.622820	-1.808069
8	0	0.148720	2.630212	0.409767
6	0	-1.441337	0.367948	-0.095558
6	0	-2.405195	0.162300	-1.082520
6	0	-1.595630	-0.212437	1.167372
6	0	-3.521093	-0.625165	-0.808635
1	0	-2.287908	0.610022	-2.063878
6	0	-2.711516	-0.993199	1.437889

1	0	-0.841594	-0.059387	1.933389
6	0	-3.672749	-1.200256	0.448611
1	0	-4.268628	-0.787001	-1.575832
1	0	-2.832326	-1.444268	2.415488
1	0	-4.540908	-1.812750	0.661778
6	0	1.433153	0.270932	-0.236993
6	0	1.435226	-0.988004	-0.842068
6	0	2.521960	0.686196	0.527508
6	0	2.531179	-1.827099	-0.684744
1	0	0.581887	-1.314430	-1.429069
6	0	3.615815	-0.161023	0.688043
1	0	2.503850	1.664586	0.994563
6	0	3.619791	-1.413136	0.082120
1	0	2.536145	-2.803859	-1.153110
1	0	4.461994	0.156119	1.285785
1	0	4.470899	-2.071963	0.207829
1a*				
15	0	0.769894	1.517434	-0.499166
1	0	0.856325	1.713109	-1.891474
8	0	1.016462	2.732071	0.350045
6	0	-0.849732	0.751918	-0.268747
6	0	-1.463595	0.052695	-1.310400
6	0	-1.425587	0.769821	1.003460
6	0	-2.647932	-0.637062	-1.073882
1	0	-1.020610	0.043306	-2.301056
6	0	-2.609516	0.078304	1.234411
1	0	-0.945003	1.319201	1.805981
6	0	-3.215777	-0.628709	0.198170
1	0	-3.128423	-1.178076	-1.880311
1	0	-3.058429	0.089713	2.220359
1	0	-4.137954	-1.167799	0.380726
6	0	1.968163	0.178813	-0.192021
6	0	1.983698	-0.905283	-1.197775

6	0	2.032036	-0.238292	1.227056
6	0	1.322084	-2.038888	-0.854482
1	0	2.422237	-0.757317	-2.177879
6	0	1.364050	-1.379396	1.537983
1	0	2.507113	0.386067	1.973945
6	0	0.880509	-2.236000	0.497030
1	0	1.189193	-2.839490	-1.574011
1	0	1.261027	-1.695096	2.570495
1	0	0.344004	-3.139212	0.755531
1	0	0	-	-0

1	0	4.374449	0.130212	1.300245
1	0	4.373151	-2.113010	0.248369
1				
15	0	0.047453	1.221119	-0.594791
8	0	0.103831	2.600482	0.016304
6	0	-1.472695	0.316191	-0.220146
6	0	-1.863389	-0.771435	-1.007264
6	0	-2.280567	0.748493	0.834825
6	0	-3.042185	-1.447079	-0.714170
1	0	-1.255324	-1.085230	-1.849660
6	0	-3.460993	0.070227	1.118538
1	0	-1.980480	1.605926	1.426463
6	0	-3.838824	-1.027407	0.348664
1	0	-3.342988	-2.293360	-1.319733
1	0	-4.085785	0.398019	1.940683
1	0	-4.759467	-1.552730	0.573054
6	0	1.478532	0.193886	-0.166287
6	0	1.395568	-1.192599	-0.008306
6	0	2.712151	0.841111	-0.034488
6	0	2.541537	-1.921884	0.290984
1	0	0.444282	-1.703336	-0.098072
6	0	3.851521	0.104966	0.266137
1	0	2.772959	1.916692	-0.157793
6	0	3.767458	-1.276350	0.427338
1	0	2.474080	-2.994955	0.423958
1	0	4.804543	0.608393	0.375819
1	0	4.657049	-1.848774	0.661757

6. Photo of the reaction set up and spectral distribution of the blue LED light

A photo of the blue LEDs $(3 \times 10 \mathrm{~W})$ and reaction set up is shown below.

The spectral irradiance for the blue LED was measured at National Institute of Measurement and Testing Technology (No. 10, Yushuang Road, Chengdu, 610021, China), and the spectral distribution is shown blow.

7. UV-visible light absorption spectra of aldehyde catalysts and 1a

UV-visible light absorption spectra were measured by PerkinElmer Lambda 950 UV/VIS/NIR Spectrometer.

Sample (left): catalyst ($10^{-4} \mathrm{~mol} / \mathrm{L}$) in distilled water.
Sample (right): catalyst ($10^{-4} \mathrm{~mol} / \mathrm{L}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(10^{-2} \mathrm{~mol} / \mathrm{L}\right)$ in distilled water.

Sample (left): $1 \mathbf{a}\left(10^{-4} \mathrm{~mol} / \mathrm{L}\right)$ in distilled water.
Sample (right): $1 \mathrm{a}\left(10^{-4} \mathrm{~mol} / \mathrm{L}\right)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(2.5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right)$ in distilled water.

8. Fluorescence emission spectra and fluorescence quantum yield of salicylaldehyde

Fluorescence emission spectra of salicylaldehyde were measured by Horiba FluoroMax-4 Spectrofluorometer under excitation at $376 \mathrm{~nm}, 400 \mathrm{~nm}, 417 \mathrm{~nm}$ and 425 nm (slit 2 nm).

Sample: salicylaldehyde cat. $1\left(10^{-4} \mathrm{~mol} / \mathrm{L}\right)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(10^{-2} \mathrm{~mol} / \mathrm{L}\right)$ in distilled water.

The absolute fluorescence quantum yield of salicylaldehyde was measured by Horiba Quanta- φ Spectrometer at 417nm: 2.10 (abs error ± 0.136, relative error ± 0.06488).

Sample: salicylaldehyde cat. $1\left(10^{-4} \mathrm{~mol} / \mathrm{L}\right)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(10^{-2} \mathrm{~mol} / \mathrm{L}\right)$ in distilled water.

9. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra of novel compounds

(1000

3da

(

(

(

5aa

5ad

[^0]: ${ }^{1}$ W. Huang, J. Byun, I. Rörich, C. Ramanan, P. W. M. Blom, H. Lu, D. Wang, L. C. Silva, R. Li, L. Wang, K. Landfester, K. A. I. Zhang, Angew. Chem., Int. Ed., 2018, 57, 8316.
 ${ }^{2}$ G. Peters, J. Am. Chem. Soc. 1960, 82, 4751.
 ${ }^{3}$ (a) Y. Bai, N. Liu, S. Wang, S. Wang, S. Ning, L. Shi, L. Cui, Z. Zhang, J. Xiang, Org. Lett., 2019, 21, 6835; (b) Q. Xu, C.-Q. Zhao, L.-B. Han, J. Am. Chem. Soc., 2008, 130, 12648.

[^1]: ${ }^{4}$ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson et al. , Gaussian 09, Revision A0; Gaussian, Inc., Wallingford CT, 2009.
 ${ }^{5}$ Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
 ${ }^{6}$ J. Tomasi, M. Persico, Chem. Rev., 1994, 94, 2027.

[^2]: ${ }^{7}$ (a) M. Cocivera, A. M. Trozzolo, J. Am. Chem. Soc., 1970, 6, 1772-1774; (b) G. L. Closs, D. R. Paulson, J. Am. Chem. Soc., 1970, 24, 7229-7231.

