A practical and sustainable protocol for direct amidation of unactivated esters under transition-metal-free and solvent-free conditions

Rui Zhang,^a Wei-Zhong Yao,^a Liang Qian,^a Wei Sang,^b Ye Yuan,^b Min-Chen Du,^b Hua Cheng,^{*,a} Cheng Chen,^{*,b} Xin Qin^{*,c}

^a Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China;

^b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China;

^c Medicine College of Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, China.

Corresponding authors:

Dr. Hua Cheng

Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China. E-mail: <u>cch510@126.com</u>

Dr. Cheng Chen

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China. Email: <u>chengchen@whut.edu.cn</u>

Dr. Xin Qin

Medicine College of Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, China.

Email: <u>543755712@qq.com</u>

Contents:

1. Comparison of representative reported methods with this work	S2-S5
2. Green metrics of all the target compounds	S6-S7
3. Yield-time relationship with different amounts of methyl benzoate (2a)	S8
4. Supplementary results for computational calculation	S 9-S16
5. Characterization data for compounds 3a-3ay	S17-S34
6. Original ¹ H-NMR, ¹³ C-NMR and HRMS spectra for 3a-3ay	. S 35- S 131

1. Comparison of representative reported methods with this work

 Table S1
 Comparison of representative reported methods with this work

13 ^a	2019	Ma ¹³	DMAc	Mg (5.0 equiv.)/ TMSCl (1.0 equiv.)	120	16	41-90	Chromatography	12.5-26.4
14 ^a	2021	Kobayashi ¹⁴	diglyme	ZrO ₂ (50 mg/mmol)	140	6-16	19-98	Chromatography	6.4-32.9
15ª	2021	Niu ¹⁵	toluene	Mn-complex (1 mol%)/ NaOtBu (20 mol%)	120	18	44-96	Chromatography	7.5-12.9
16 ^b	2007	Mioskowski ¹⁶	-	TBD (30 mol%)	rt-75	12	60-94	Chromatography	0.9-2.2
17 ^b	2009	Birman ¹⁷	MeCN	1,2,4-triazole anion (10 mol%) DBU (10 mol%)	rt-95	10	62-98	Chromatography	1.0-2.0
18 ^b	2009	Vaidyanathan ¹⁸	2-Me-THF	DBU (50 mol%)	40	0.3-6.0	87-95	Chromatography	2.0-4.1
19 ^b	2013	Jamieson ¹⁹	MeCN	BEMP (10 mol%)	rt	15	40-100	Chromatography	0.4-6.5
20 ^b	2015	Jamieson ²⁰	THF	CF ₃ CH ₂ OH (20 mol%) K ₃ PO ₄ (1.0 equiv.)	90	22	41-95	Chromatography	2.6-8.6
21 ^b	2017	Williams ²¹	EtOAc	AcOH (10 mol%)	80	20	70-97	Chromatography	2.7-3.6
22°	2005	Movassaghi ²²	THF	IMes/LiCl (5 mol%)	23	1.5-24.0	31-100	Chromatography	4.7-17.3
23°	2015	Du ²³	toluene	IMes HCl (6 mol%)/ <i>t</i> BuOK (5 mol%)	60	14-42	51-87	Chromatography	13.3-20.9
24 ^d	2011	Neto ²⁴	[BMIM]NTf ₂	BF ₃ •Et ₂ O or SnCl ₂ or CdO in [BMIM]NTf ₂	135	3-24	67-99	Chromatography	4.5-9.8
25 ^d	2015	Wang ²⁵	-	[PyPS] ₃ PW ₁₂ O ₄₀ (2 mol %)	70-140	0.17-1.0	51-97	Chromatography	1.0-1.8
26 ^e	2005	Gupta ²⁶	THF/DMF	Zn	70	6-26	64-82	Chromatography	5.2-11.3
27°	2011	Verkade ²⁷	THF	Merrifield resin-supported N ₃ @P(MeNCH ₂ CH ₂) ₃ N (6.7 mol%)	rt	24-36	34-93	Chromatography	9.3-20.7
28 ^e	2015	Shimizu ²⁸	-	Nb ₂ O ₅	140	30	62-95	Chromatography	1.7-3.1
29 ^e	2018	Yao ²⁹	-	Lanthanide–Sodium Alkoxides (0.5 mol%)	80	6	20-99	Chromatography	1.2-12.4

30 ^f	2009	Quaedflieg ³⁰	THF/MTBE	Alcalase-CLEA	50	16	54-94	Extraction and trituration	21.7-49.1
31 ^f	2012	Vadivel ³¹	Hexane/DIPE	Immobilized Candida antarctica	45	2-24	41-98	Chromatography	12.8-31.6
32 ^f	2017	Hernández ³²	-	Papain/Na ₂ CO ₃ •10H ₂ O (Ball milling)	rt	2	33-98	Filtration and trituration	2.1-8.1
33 ^g	1977	Weinreb ³³	DCM	Me ₂ AlNH ₂	25-41	24-26	80-83	Recrystallization	67.5-96.6
34 ^g	1992	Roskamp ³⁴	Hexane	Sn[N(TMS) ₂] ₂	rt	12	30-94	Chromatography	40.8- 128.7
35 ^g	1996	Yamamoto ³⁵	toluene	Sb(OEt) ₃ (1.21 equiv.)	80	9	90	Chromatography	84.3
36 ^g	1999	Varma ³⁶	-	KO <i>t</i> Bu	MW	0.75-7 min	55-91	Extraction and trituration	0.9-2.3
37 ^g	1999	Maruoka ³⁷	THF	nBuLi	-78	1	80-98	Chromatography	5.9-6.7
38 ^g	2001	Guo ³⁸	THF	MgX ₂ (50-110 mol%)	rt	1-24	78-99	HPLC	20.0-24.3
39 ^g	2003	Ranu ³⁹	-	InI ₃ (20 mol%)	110-120	5.5-9.0	83-93	Recrystallization (ether/PE)	99-10.2
40 ^g	2006	Woodward ⁴⁰	THF	DABAl-Me ₃	40	19	69-99	Chromatography	43.4-76.6
41 ^g	2008	Seeberger ⁴¹	toluene/THF	AlMe ₃	100-130	2-5 min	37-98	Chromatography	47.6- 133.1
42 ^g	2010	Woodward ⁴²	toluene	Al ₂ Ph ₃ I ₃ (67 mol%)	80	3	56-98	Chromatography	29.0-51.0
43 ^g	2011	Campbell ⁴³	THF	Sm(HMDS) ₃ (1.0 equiv.)	0	16	78-99	Chromatography	16.8-21.2
44 ^g	2012	Alcázar ⁴⁴	THF	<i>i</i> -PrMgCl•LiCl (3.0 equiv.)	rt	0.3	61-95	Chromatography	57.6-81.6
45 ^g	2012	Ohshima ⁴⁵	toluene	NaOMe (5-10 mol%)	50	20-120	7-99	Chromatography	0.35- 129.1

46 ^g 47 ^g	2012 2013	Yoon ⁴⁰ Jamieson ⁴⁷	THF <i>i</i> -PrOH	KOtBu K_3PO_4 (30 mol%)	rt 60	0.17-1	53-94 42-100	Chromatography	52.3-63.4 2.9-8.8
48 ^g	2019	Szostak ⁴⁸	toluene	LiHMDS	rt	15	70-98	Chromatography	22.6-48.8
49 ^g	Т	his work	-	NaOtBu (1.5 equiv.)	rt	1	70-99	Filtration and water washing	0.9-1.8

^a Transition-metal-based homogeneous catalysts. ^b Organocatalysts. ^c NHCs as catalysts. ^d Ionic liquids as catalysts. ^e Heterogeneous catalysts. ^f Enzymatic systems. ^g Metal salts or bases as promotors.

2. Green metrics of all the target compounds

R ³ NH ⁺ R ⁴	$R^1 O R^2$	various reaction conditions solvents, temp.	R^1 N R^4 R^3	+	R ² OH
1	2		3		
R ¹ = alkyl	, (hetero)aryl				
R ² = alkyl					

Table S2Th	ne calculated g	green metrics for	compounds 3a-3ay .
------------	-----------------	-------------------	---------------------------

Ref.	No.	AE (%)	E-factor (kg/kg)	CE (%)	RME (%)	MI (kg/kg)	MP (%)
This work	3a	86.0	1.4	68.2	62.6	2.4	42.2
Szostak et al48	3a	86.0	30.6	79.7	74.1	31.6	3.2
Newman et al ¹⁰	3a	86.0	28.3	69.4	64.6	29.3	3.4
This work	3b	86.8	1.3	70.5	64.8	2.3	44.3
Yoon et al ⁴⁶	3 b	82.1	57.7	79.4	74.5	58.7	1.7
This work	3c	87.6	1.4	64.4	60.6	2.4	42.0
Szostak et al48	3c	87.6	25.9	81.9	76.8	26.9	3.7
Newman et al ¹⁰	3c	87.6	25.6	66.7	62.5	26.6	3.8
This work	3d	88.7	1.0	75.3	69.8	2.0	49.6
This work	3e	87.0	1.5	61.0	57.5	2.5	39.5
This work	3f	87.8	1.4	62.6	60.3	2.4	42.0
Yoon et al ⁴⁶	3f	83.4	55.7	74.5	71.6	56.7	1.8
This work	3g	89.5	1.3	58.7	59.3	2.3	42.9
This work	3h	89.7	1.1	67.1	67.1	2.1	48.7
This work	3i	89.2	0.9	73.1	71.9	1.9	51.5
Szostak et al48	3i	89.2	22.7	80.2	75.6	23.7	4.2
This work	3j	87.4	1.1	72.6	67.8	2.1	46.9
This work	3k	86.8	1.4	65.0	59.7	2.4	40.8
This work	31	86.8	1.2	71.6	65.7	2.2	44.9
Newman et al ¹⁰	31	86.8	26.8	68.3	63.9	27.8	3.6
This work	3m	90.0	0.9	73.6	73.9	1.9	54.0
This work	3n	90.0	0.9	71.2	71.5	1.9	52.2
This work	30	89.5	1.3	64.2	59.3	2.3	42.8
Szostak et al48	30	89.5	22.6	78.0	74.1	23.6	4.2
Newman et al ¹⁰	30	89.5	28.1	50.9	48.4	29.1	3.4
This work	3p	90.0	0.9	77.8	72.9	1.9	53.2
This work	3q	90.0	1.0	71.6	67.1	2.0	48.9
This work	3r	88.6	1.6	57.2	53.5	2.6	37.8
Szostak et al ⁴⁸	3r	88.6	22.6	78.0	74.1	23.6	4.2
This work	3 s	86.1	1.6	59.7	56.1	2.6	37.8
This work	3t	86.1	1.6	59.7	56.1	2.6	37.8
This work	3u	86.1	2.0	51.7	49.9	3.0	33.7

TT1 ' 1	2	060	1.0	(0, 2)	() 7	2.2	12.0
This work	3v	86.8	1.3	68.3	62.7	2.3	42.9
Newman et al ¹⁰	3v	86.8	29.0	63.3	59.1	30.0	3.3
Yoon et al ⁴⁶	3v	82.1	63.4	72.3	67.9	64.4	1.6
This work	3w	87.5	1.1	73.6	67.9	2.1	47.0
Newman et al ¹⁰	3w	87.5	22.8	75.2	70.5	23.8	4.2
Yoon et al ⁴⁶	3w	83.0	52.3	82.8	77.9	53.3	1.9
This work	3x	86.2	1.8	56.5	53.4	2.8	36.1
This work	3у	86.5	1.1	73.8	68.5	2.1	46.6
Newman et al ¹⁰	3у	86.5	23.4	80.3	74.8	24.4	4.1
This work	3z	89.2	1.7	51.7	50.8	2.7	36.4
This work	3aa	90.5	1.4	58.8	57.2	2.4	42.2
This work	3ab	88.8	1.7	54.8	52.4	2.7	37.3
This work	3ac	88.2	3.6	33.0	31.0	4.6	21.8
This work	3ad	85.5	1.5	65.6	60.8	2.5	40.6
This work	3ae	85.6	1.4	64.6	61.7	2.4	41.3
This work	3af	87.5	1.5	61.5	56.8	2.5	39.3
This work	3ag	86.8	7.6	18.4	17.0	8.6	11.6
This work	3ah	87.5	2.8	41.3	38.1	3.8	26.4
This work	3aj	86.8	1.3	69.8	64.4	2.3	44.4
Szostak et al ⁴⁸	3aj	86.8	28.8	80.2	74.9	29.8	3.4
This work	3ak	87.6	1.8	54.5	50.3	2.8	35.4
Szostak et al48	3ak	87.6	35.8	60.5	57.2	36.8	2.7
This work	3al	89.2	1.1	71.3	65.8	2.1	48.4
Szostak et al48	3al	89.2	25.6	72.1	70.0	26.6	3.8
This work	3am	89.6	1.7	55.0	50.4	2.7	37.4
This work	3an	86.8	1.4	66.0	60.9	2.4	41.9
This work	3 ao	86.8	2.0	52.3	48.2	3.0	33.2
Szostak et al ⁴⁸	3 ao	86.8	29.4	78.6	73.4	30.4	3.3
This work	3ap	86.1	1.3	71.8	65.4	2.3	44.1
This work	3aq	86.1	1.5	66.2	59.8	2.5	40.4
This work	3ar	85.4	1.4	69.7	63.0	2.4	41.7
This work	3as	83.4	2.3	53.7	48.0	3.3	30.1
This work	3at	86.4	1.8	57.9	53.1	2.8	36.1
Szostak et al ⁴⁸	3at	86.4	30.8	77.1	72.1	31.8	3.1
This work	3au	74.6	1.7	66.6	59.9	2.7	46.0
Szostak et al ⁴⁸	3au	74.6	48.8	61.3	58.1	49.8	2.0
This work	3av	88.5	1.2	68.5	63.8	2.2	46.0
Szostak et al ⁴⁸	3av	88.5	27.0	74.7	70.5	28.0	3.6
This work	3aw	89.3	1.0	71.6	68.9	2.0	50.1
This work	3ax	91.0	1.3	61.5	56.5	2.3	43.6
This work	3ay	86.3	2.0	54.6	49.8	3.0	33.7

3. Yield-time relationship with different amounts of methyl benzoate (2a)

Fig. S1 Yield-time relationship of **3a** with different amounts of **2a**: (a) 1.0 equiv.; (b) 1.2 equiv.; and (c) 1.5 equiv.

4. Supplementary results for computational calculation

Cartesian coordinates of the structures

%nprocs=20 %mem=20GB # opt b3lyp/genecp freq

Intermediate 2'

С	-1.98129000	-0.27449900	-0.09328900
С	-1.10735900	-1.48308800	-0.16152800
0	-0.42019600	-1.89521300	0.92177900
0	-0.94905900	-2.13732000	-1.18607400
С	-0.26410200	-1.08279200	2.11547700
С	-1.39179700	0.99059300	0.04968900
С	-2.20547800	2.12395000	0.02681100
С	-3.58866300	1.99907000	-0.12575700
С	-4.16688700	0.73598600	-0.27659300
С	-3.36362000	-0.40420100	-0.27525300
Н	-0.00276900	-1.78866300	2.90532400
Н	-1.19682300	-0.57199400	2.36057400
Н	0.55320000	-0.38568700	1.90593800
Н	-0.30627000	1.05334300	0.13666700
Н	-1.75485700	3.10788600	0.12401200
Н	-4.21643300	2.88615500	-0.13615200
Н	-5.24131200	0.63865000	-0.40504400
Н	-3.80340500	-1.38799300	-0.41275500
Na	1.39180700	-1.97838700	-0.76968700
С	3.97127900	0.07714700	-0.86292200
С	2.83415600	0.78312800	-0.07266200
С	2.45089000	2.07811800	-0.83300000
0	1.73916700	-0.05225700	0.05264000
С	3.38129100	1.16729400	1.32539000
Н	3.61351400	-0.19160700	-1.86864900
Н	4.26885400	-0.84451200	-0.34058400
Н	4.87211700	0.69365500	-0.98735700
Н	1.67798000	2.62257200	-0.27618600
Н	2.03647700	1.82172600	-1.81621300
Н	3.30207800	2.75680600	-0.98224400
Н	3.66030200	0.25973500	1.87600800
Н	2.59867100	1.67940300	1.89871600
Н	4.25899100	1.82685700	1.27956900

C H O 0 6-31g(d) ****

Na 0 Lanl2dz ****

Na 0

Lanl2dz

Intermediate 4

С	-4.08350200	-0.44442700	-0.37195100
С	-4.03351500	0.94998100	-0.21875800
С	-2.78150100	1.55040000	-0.08241500
С	-1.61065100	0.78868900	-0.06754400
С	-1.63760400	-0.64070900	-0.18245900
С	-2.93200700	-1.21885600	-0.35900100
Ν	-0.47827700	-1.35457400	-0.06090600
Н	1.03420100	-0.65459200	0.04201700
Н	-0.64452000	-2.34463000	-0.23428100
Н	-5.04601900	-0.93561500	-0.50520300
Н	-4.94157700	1.54523200	-0.23186500
Н	-2.70494900	2.63422900	-0.00890400
Н	-0.64229700	1.29209700	-0.08343200
Н	-3.00370800	-2.29941400	-0.47666800
Na	-0.00068500	-0.15972000	1.90810100
С	3.57701700	-1.21294400	-0.58324400
С	2.91461100	0.13423400	-0.24921800
С	2.50949200	0.87138900	-1.53638100
0	1.74824100	-0.10350900	0.54579600
С	3.85077500	1.00018500	0.60012700
Н	2.89158300	-1.84280700	-1.16205000
Н	3.83602200	-1.74740100	0.33773900
Н	4.49165400	-1.07512400	-1.17226500
Н	2.03617100	1.82967600	-1.29454800
Н	1.79141300	0.27372600	-2.10903900
Н	3.37905600	1.06769300	-2.17496300
Н	4.11690100	0.47983400	1.52768600
Н	3.36179900	1.94550700	0.86289900
Н	4.77513200	1.23095100	0.05880200

C H O N 0 6-31g(d) **** Na 0

Lanl2dz

Na 0 Lanl2dz The frequency of intermediate 2' mode# frequency 1 4.92 2 33.23 3 42.17 4 56.22 5 66.57 81.95 6 7 93.68 8 127.41 9 133.00 10 198.69 208.26 11 12 230.03 13 237.55 14 244.44 15 283.13 16 285.31 17 290.01 18 298.96 19 339.39 20 365.83 21 373.12 22 415.68 23 422.67 24 443.05 25 478.07 26 509.38 27 583.71 28 629.12 29 635.14 30 717.76 31 740.16 32 744.20 33 760.40 34 798.30 35 870.21 36 878.72 37 879.14 38 946.31 39 949.71 40 992.95 41 1012.18 42 1018.32

43	1024.12
44	1041.85
45	1044.25
46	1054.53
47	1063.60
48	1114.57
49	1135.62
50	1195.46
51	1198.69
52	1220.81
53	1223.28
54	1236.81
55	1240.55
56	1255.44
57	1320.96
58	1343.28
59	1381.91
60	1394.06
61	1402.99
62	1426.33
63	1477.45
64	1492.44
65	1502.85
66	1509.04
67	1510.58
68	1512.93
69	1522.92
70	1526.72
71	1537.71
72	1543.73
73	1556.73
74	1635.65
75	1662.24
76	1756.93
77	2997.12
78	3018.74
79	3027.35
80	3055.45
81	3061.13
82	3073.12
83	3083.22
84	3092.43
85	3095.32
86	3099.49

87 3144.35
88 3164.62
89 3178.24
90 3187.40
91 3197.29
92 3206.27

- 93 3214.59

The frequency of intermediate 4

mode# frequency

- 1 18.86 2 25.40
- 3 42.20
- 4 65.69
- 5 84.83
- 6 118.99
- 7 160.03
- 8 209.79
- 9 219.02
- 10 229.44
- 11 269.80
- 12 277.78
- 13 305.44
- 14 339.26
- 15 352.45
- 16 428.21
- 17 433.29
- 18 464.17
- 19 473.48
- 20 513.67
- 21 527.31
- 22 543.92
- 22 0 10 10 1
- 23 633.35
- 24 644.54
- 25 716.75
- 26 751.49
- 27 757.90
- 28 823.23
- 29 832.57
- 30 849.94
- 31 916.18
- 31 910.1032 928.11
- 52 926.11
- 33 946.07
- 34 965.23

35	967.38
36	970.44
37	992.66
38	1042.68
39	1051.18
40	1057.88
41	1064.40
42	1099.83
43	1182.02
44	1205.44
45	1212.40
46	1252.57
47	1268.68
48	1270.33
49	1342.74
50	1363.66
51	1372.56
52	1421.94
53	1424.68
54	1448.67
55	1495.46
56	1504.25
57	1513.80
58	1515.34
59	1516.93
60	1527.83
61	1529.87
62	1544.55
63	1559.26
64	1602.31
65	1657.85
66	2630.75
67	3042.40
68	3043.37
69	3051.93
70	3110.28
71	3112.60
72	3114.33
73	3118.36
74	3122.35
75	3123.66
76	3132.47
77	3152.22
78	3166.48

79	3173.68
80	3205.00

81 3491.67

А	В	С	$\Delta G (eV) = = (Col(C)-Col(B)-Col(A))*27.2$
NaO <i>t</i> Bu	2	2'	
-233.18959	-460.01908	-693.20156	0.19323
NaO <i>t</i> Bu	1	4	
-233.18959	-287.51352	-520.70664	-0.0961

Table S3 The ΔG values for the transformation of 1 to 4 and 2 to 2'

5. Characterization data for compounds 3a-3ay

N-Phenylbenzamide (3a)⁴¹

White solid, 96% yield, m.p. 162.2-163.5°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.92 – 7.81 (m, 3H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.16

(t, J = 7.4 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.8, 137.9, 135.0, 131.9, 129.1, 128.8, 127.0, 124.6, 120.2. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₃H₁₂NO⁺: 198.09134; found: 198.09088.

N-(p-Tolyl)benzamide (3b)⁴⁸

white solid, 96% yield, m.p. 159.9-161.4°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 7.4 Hz, 2H), 7.81 (s, 1H), 7.55-7.51 (m, 3H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H).

¹³C-NMR (126 MHz, CDCl₃) δ 165.7, 135.4, 135.0, 134.1, 131.6, 129.5, 128.6, 127.0, 120.4, 20.8. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₄H₁₄NO⁺: 212.10699; found: 212.10654.

N-(4-Methoxyphenyl)benzamide (3c)⁴⁸

Off-white solid, 87% yield, m.p. 159.5-160.8°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.87-7.80 (m, 3H), 7.55-7.50 (m, 3H), 7.46 (t, J = 7.5 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H). ¹³C-

NMR (126 MHz, CDCl₃) δ 165.7, 156.7, 135.1, 131.7, 131.0, 128.7, 127.0, 122.2, 114.3, 55.5. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₄H₁₄NO₂⁺: 228.10191; found: 228.10138.

N-(4-(tert-Butyl)phenyl)benzamide (3d)⁴⁹

White solid, 97% yield, m.p. 141.1-141.6°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.5 Hz, 2H), 7.78 (s, 1H), 7.58-7.52 (m, 3H), 7.49 (t, J = 7.4 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 1.33 (s, 9H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.6, 147.6, 135.3,

135.1, 131.7, 128.8, 127.0, 125.9, 120.0, 34.4, 31.4. HRMS (ESI): *m*/*z* [M+H]⁺ calcd. for C₁₇H₂₀NO ⁺: 254.15394; found: 254.15341.

N-(4-Fluorophenyl)benzamide (3e)⁵⁰

white solid, 84% yield, m.p. 187.3-188.0°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.80 (s, 1H), 7.63-7.58 (m, 2H), 7.56 (d, *J* = 6.5, 1H), 7.52-7.46 (m, 2H), 7.11-7.03 (m, 2H).

¹³C-NMR (126 MHz, DMSO-*d*₆) δ 165.9, 158.8 (d, *J* = 240.7 Hz), 136.0 (d, *J* = 2.6 Hz), 135.3, 132.1, 128.9, 128.1, 122.6 (d, *J* = 7.6 Hz), 115.6 (d, *J* = 22.7 Hz). HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₃H₁₁FNO⁺: 216.08192; found: 216.08162.

N-(4-Chlorophenyl)benzamide (3f)⁵¹

white solid, 86% yield, m.p. 195.6-197.0°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.1 Hz, 2H), 7.81 (s, 1H), 7.60 (d, J = 7.2 Hz, 2H), 7.56 (d, J = 6.1 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H),

7.34 (d, *J* = 7.1 Hz, 2H). ¹³C-NMR (126 MHz, DMSO-*d*₆) δ 166.1, 138.6, 135.2, 132.2, 129.0, 128.9, 128.2, 127.7, 122.3. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₃H₁₁ClNO⁺: 232.05237; found: 232.05200.

N-(4-Bromophenyl)benzamide (3g)⁵²

White solid, 81% yield, m.p. 206.0-206.5°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 7.8 Hz, 2H), 7.79 (s, 1H), 7.60 – 7.53 (m, 3H), 7.52 – 7.46 (m, 4H). ¹³C-NMR (126 MHz, CDCl₃) δ

165.7, 137.0, 134.6, 132.1, 128.9, 127.0, 121.7, 117.2. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₃H₁₁BrNO⁺: 276.00185; found: 276.00137.

N-(4-(Trifluoromethoxy)phenyl)benzamide (3h)⁵³

White solid, 91% yield, m.p. 185.8-186.7°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.8 Hz, 2H), 7.85 (s, 1H), 7.68 (d, J = 8.8 Hz, 2H), 7.58 (t, J = 7.7 Hz, 1H), 7.54 – 7.48 (m, 2H),

7.24 (d, J = 8.6 Hz, 2H). ¹³C-NMR (126 MHz, DMSO- d_6) δ 166.2, 144.3 (q, J = 12.6 Hz), 138.9, 135.1, 132.2, 128.9, 128.2, 122.1, 121.9, 120.7 (q, J = 252.0 Hz). HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₄H₁₁F₃NO₂⁺: 282.07364; found: 282.07300.

N-(4-(Trifluoromethyl)phenyl)benzamide (3i)⁴⁸

White solid, 99% yield, m.p. 203.5-204.5°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.97 (s, 1H), 7.88 (d, *J* = 7.7 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 2H), 7.59 (t, J = 7.4 Hz, 2H), 7

1H), 7.52 (t, J = 7.5 Hz, 2H). ¹³C-NMR (126 MHz, DMSO- d_6) δ 166.5, 143.3, 135.0, 132.4, 128.9, 128.3, 126.3 (q, J = 3.8 Hz), 125.1 (q, J = 224.5 Hz), 123.9 (q, J = 15.0 Hz), 120.6. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₄H₁₁F₃NO ⁺: 266.07873; found: 266.07806.

N-(4-Cyanophenyl)benzamide (3j)54

White solid, 98% yield, m.p. 172.1-173.5°C. ¹H-NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.87 (d, *J* = 7.7 Hz, 2H), 7.80 (d, *J* = 8.3 Hz, 2H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.60 (t, *J* = 7.4 Hz,

1H), 7.51 (t, J = 7.6 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.8, 142.0, 134.1, 133.3, 132.5, 129.0, 127.1, 119.9, 118.8, 107.4. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₄H₁₁N₂O⁺: 223.08659; found: 223.08603.

N-(m-Tolyl)benzamide (3k)⁵⁰

White solid, 88% yield, m.p. 126.0-127.4°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 7.8 Hz, 2H), 7.78 (s, 1H), 7.54 (d, J = 6.5 Hz, 1H), 7.52-7.45 (m, 3H), 7.41 (d, J = 8.1 Hz, 1H), 7.27-

7.24 (m, 1H), 6.97 (d, J = 7.6 Hz, 1H), 2.37 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.7, 139.1, 137.8, 135.1, 131.8, 128.9, 128.8, 127.0, 125.4, 120.8, 117.2, 21.5. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₄H₁₄NO ⁺: 212.10699; found: 212.10651.

N-(o-Tolyl)benzamide (31)48

White solid, 97% yield, m.p. 143.9-144.5°C. ¹H-NMR (500 MHz, $CDCl_3$) δ 7.95 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 7.6 Hz, 2H), 7.68 (s, 1H), 7.57 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.30 – 7.21

(m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 2.34 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.7, 135.8, 135.1, 131.9, 130.6, 129.2, 128.9, 127.1, 127.0, 125.4, 123.1, 17.9. HRMS (APCI): $m/z [M+H]^+$ calcd. for C₁₄H₁₄NO ⁺: 212.10699; found: 212.10649.

N-(4-Bromo-2-methylphenyl)benzamide (3m)

off-white solid, 99% yield, m.p. 177.8-178.2°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.93-7.85 (m, 3H), 7.60 (d, J = 6.6 Hz, 1H), 7.57 (d, J = 6.6 Hz, 1H), 7.54 - 7.48 (m, 2H), 7.39 (d, J = 6.1 Hz,

2H), 2.32 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.6, 134.9, 134.6, 133.2, 132.1, 131.4, 129.9, 128.9, 127.1, 124.6, 118.2, 17.7. HRMS (APCI): *m/z* [M+H]⁺ calcd. for C₁₄H₁₃BrNO⁺: 290.01750; found: 290.01688.

N-(4-Bromo-3-methylphenyl)benzamide (3n)⁵⁴

off-white solid, 96% yield, m.p. 120.7-122.1°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 7.9 Hz, 2H), 7.75 (s, 1H), 7.59 (s, 1H), 7.58 – 7.54 (m, 1H), 7.52-7.45 (m, 3H), 7.34 (d, *J* = 8.1 Hz,

1H), 2.41 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.6, 138.7, 137.1, 134.7, 132.8, 132.0, 128.9, 127.0, 122.3, 119.8, 119.1, 23.1. HRMS (APCI): *m/z* [M+H]⁺ calcd. for C₁₄H₁₃BrNO⁺: 290.01750; found: 290.01697.

N-([1,1'-Biphenyl]-2-yl)benzamide (30)⁴⁸

Yellow solid, 81% yield, m.p. 80.2-81.4°C. ¹H-NMR (500 MHz, CDCl₃) δ 8.53 (d, J = 8.3 Hz, 1H), 8.00 (s, 1H), 7.59 (d, J = 7.7 Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H), 7.48 – 7.41 (m, 5H), 7.37 (t, J = 7.6

Hz, 2H), 7.30 (d, J = 7.5 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 164.9, 138.0, 134.9, 134.8, 132.4, 131.7, 129.9, 129.3, 129.2, 128.7, 128.6, 128.1, 126.8, 124.3, 121.1. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₉H₁₆NO ⁺: 274.12264; found: 274.12195.

N-(4-Phenoxyphenyl)benzamide (3p)⁵⁰

white solid, 98% yield, m.p. 161.4-162.9°C. ¹H-NMR (500 MHz, CDCl₃) δ 10.28 (s, 1H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.80 (d, *J* = 9.4 Hz, 2H), 7.63 - 7.56 (m, 1H), 7.53 (t, *J* = 7.7 Hz,

2H), 7.41 – 7.34 (m, 2H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.05-6.99 (m, 4H). ¹³C-NMR (126 MHz, DMSO-*d*₆) δ 165.9, 157.8, 152.6, 135.5, 135.4, 132.0, 130.4, 128.8, 128.1, 123.5, 122.6, 119.7, 118.4. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₉H₁₆NO₂⁺: 290.11756; found: 290.11703.

N-(4-(Phenylamino)phenyl)benzamide (3q)⁵⁵

Brown solid, 90% yield, m.p. 167.3-167.7°C. ¹H-NMR (500 MHz, DMSO-*d*₆) δ 10.11 (s, 1H), 8.09 (s, 1H), 7.98 – 7.91 (m, 2H), 7.64 (d, *J* = 7.3 Hz, 2H), 7.58 (t, *J* = 6.5 Hz, 1H), 7.55 –

7.49 (m, 2H), 7.25 – 7.18 (m, 2H), 7.10-7.05 (m, 2H), 7.04 (d, J = 7.9 Hz, 2H), 6.78 (t, J = 7.3 Hz, 1H). ¹³C-NMR (126 MHz, DMSO- d_6) δ 165.5, 144.5, 139.8, 135.6, 132.4, 131.8, 129.6, 128.8, 128.0, 122.3, 119.6, 118.0, 116.5. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₉H₁₇N₂O⁺: 289.13354; found: 289.13287.

N-(Quinolin-8-yl)benzamide (3r)⁵⁰

Yellow solid, 75% yield, m.p. 90.6-91.1°C. ¹H-NMR (500 MHz, CDCl₃) δ 10.74 (s, 1H), 8.94 (d, J = 7.6 Hz, 1H), 8.83 (d, J = 4.2 Hz, 1H), 8.16 (d, J = 8.2 Hz, 1H), 8.09 (d, J = 7.4 Hz, 2H), 7.60-

7.50 (m, 5H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.4, 148.2, 138.7, 136.3, 135.1, 134.5, 131.8, 128.7, 127.9, 127.4, 127.2, 121.6, 116.5. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₆H₁₃N₂O⁺: 249.10224; found: 249.10167.

N-(Pyridin-2-yl)benzamide (3s)⁴⁸

White solid, 85% yield, m.p. 84.3-85.1°C. ¹H-NMR (500 MHz, CDCl₃) δ 8.62 (s, 1H), 8.40 (d, J = 8.4 Hz, 1H), 8.30 (d, J = 4.9 Hz, 1H), 7.93 (d, J = 7.9 Hz, 2H), 7.77 (t, J = 7.9 Hz, 1H), 7.58 (t, J = 100

6.7 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.08 (dd, J = 7.3, 5.0 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.7, 151.5, 147.9, 138.5, 134.3, 132.3, 128.9, 127.2, 120.0, 114.2. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₂H₁₁N₂O⁺: 199.08659; found:199.08627.

N-(Pyridin-4-yl)benzamide (3t)⁵⁶

White solid, 85% yield, m.p. 210.3-211.6°C. ¹H-NMR (500 MHz, DMSO- d_6) δ 10.59 (s, 1H), 8.48 (d, J = 5.2 Hz, 2H), 7.96 (d, J = 7.6 Hz, 2H), 7.79 (d, J = 5.3 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.56

(t, J = 7.5 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 166.1, 150.8, 145.1, 134.1, 132.6, 129.0, 127.2, 113.8. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₂H₁₁N₂O⁺: 199.08659; found:199.08623.

N-(Pyrimidin-2-yl)benzamide (3u)⁵⁷

White solid, 75% yield, m.p. 138.8-139.1°C. ¹H-NMR (500 MHz, CDCl₃) δ 8.88 (s, 1H), 8.63 (d, *J* = 4.7 Hz, 2H), 7.95 (d, *J* = 7.7 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.05 (t, *J* =

4.7 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.1, 158.3, 157.7, 134.3, 132.3, 128.7, 127.5, 116.7. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₁H₁₀N₃O⁺: 200.08184; found: 200.08150.

N-Benzylbenzamide (3v)⁵⁸

White solid, 93% yield, m.p. 105.7-107.1°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.35 (d, J = 4.3 Hz, 4H), 7.32 – 7.27 (m,

1H), 6.46 (s, 1H), 4.64 (d, J = 5.6 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 167.4, 138.3,

134.4, 131.5, 128.8, 128.6, 127.9, 127.6, 127.0, 44.1. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₄H₁₄NO⁺: 212.10699; found: 212.10661.

N-Phenethylbenzamide (3w)⁵⁹

White solid, 98% yield, m.p. 116.9-117.6°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 2H), 7.50 – 7.45 (m, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.25-7.20 (m,

3H), 6.24 (s, 1H), 3.71 (q, J = 6.6 Hz, 2H), 2.93 (t, J = 7.0 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 167.5, 138.9, 134.7, 131.4, 128.8, 128.7, 128.6, 126.8, 126.6, 41.2, 35.7. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₅H₁₆NO⁺: 226.12264; found: 226.12224.

N-(Furan-2-ylmethyl)benzamide (3x)⁶⁰

White solid, 80% yield, m.p. 103.8-105.1°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.38 (s, 1H), 6.42 (s, 1H), 6.36-6.33 (m, 1H),

6.30 (d, J = 3.2 Hz, 1H), 4.65 (d, J = 5.5 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 167.2, 151.2, 142.3, 134.2, 131.6, 128.6, 127.0, 110.5, 107.7, 37.0. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₂H₁₂NO₂+: 202.08626; found: 202.08586.

N-Hexylbenzamide (3y)⁶¹

White solid, 95% yield, m.p. 42.2-43.6°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 2H), 7.47 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 6.26 (s, 1H), 3.43 (q, J = 6.8

Hz, 2H), 1.59 (q, J = 7.4 Hz, 2H), 1.40 – 1.26 (m, 6H), 0.94 – 0.83 (m, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 167.5, 134.9, 131.2, 128.5, 126.8, 40.1, 31.5, 29.6, 26.6, 22.5, 13.9. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₃H₂₀NO⁺: 206.15394; found: 206.15349.

tert-Butyl (2-benzamidoethyl)carbamate (3z)⁶²

White solid, 70% yield, m.p. 129.8-131.2°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 7.6 Hz, 2H), 7.48 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.26 (s, 1H), 5.12 (s, 1H), 3.55 (q,

J = 5.4 Hz, 2H), 3.40 (q, J = 5.9 Hz, 2H), 1.42 (s, 9H). ¹³C-NMR (126 MHz, CDCl₃) δ 167.9, 157.5, 134.1, 131.4, 128.4, 127.0, 79.9, 41.9, 39.9, 28.3. HRMS (APCI): m/z $[M+H]^+$ calcd. for $C_{14}H_{21}N_2O_3^+$: 265.15467; found: 265.15411.

tert-Butyl 4-benzamidopiperidine-1-carboxylate (3aa)⁶³

White solid, 76% yield, m.p. 172.3-173.6°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 2H), 7.53 – 7.46 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 6.06 - 5.92 (m, 1H), 4.18 - 4.04 (m,

3H), 2.97-2.84 (m, 2H), 2.05-1.97 (m, 2H), 1.47 (s, 9H), 1.43-1.30 (m, 2H). ¹³C-NMR (126 MHz, CDCl₃) & 166.8, 154.7, 134.6, 131.5, 128.6, 126.8, 79.7, 47.3, 42.8, 32.2, 28.4. HRMS (APCI): *m*/*z* [M-H]⁻ calcd. for C₁₇H₂₃N₂O₃⁻: 303.17142; found: 303.17145.

Methyl 4-benzamidobenzoate (3ab)⁶⁴

White solid, 73% yield, m.p. 160.0-161.3°C. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 7.5 Hz, 2H), 8.01 (s, 1H), 7.88 (d, J = 6.7 Hz, 2H), 7.75 (d, J = 7.5 Hz, 2H), 7.57 (d, J = 6.5

Hz, 1H), 7.51 (d, J = 6.6 Hz, 2H), 3.92 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 165.7, 142.1, 134.5, 132.2, 130.9, 128.9, 127.0, 125.9, 119.2, 52.0. HRMS (APCI): m/z $[M+H]^+$ calcd. for C₁₅H₁₄NO₃⁺: 256.09682; found: 256.09647.

N-(4-(3-oxo-3-phenylpropanoyl)phenyl)benzamide (3ac)⁶⁵

White solid, 44% yield, m.p. 199.5-201.0°C. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 3H), 7.89 (d, J = 7.3 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 7.61 – 7.56 (m, 1H), 7.52 (t, J = 7.3 Hz, 2H), 2.60 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.9,

165.7, 142.2, 134.5, 133.2, 132.3, 129.8, 128.9, 127.1, 119.2, 26.5. HRMS (APCI): *m*/*z* S24

 $[M+H]^+$ calcd. for C₁₅H₁₄NO₂⁺: 240.10191; found: 240.10165.

Phenyl(piperidin-1-yl)methanone (3ad)⁶⁰

White solid, 93% yield, m.p. 46.5-48.0°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.38 (s, 5H), 3.71 (s, 2H), 3.33 (s, 2H), 1.70 – 1.48 (m, 6H). ¹³C-NMR (126 MHz, CDCl₃) δ 170.2, 136.5, 129.3, 128.3, 126.7, 48.7,

43.0, 26.5, 25.6, 24.5.

Morpholino(phenyl)methanone (3ae)⁶⁰

Colorless solid, 94% yield, m.p. 73.6-74.9°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.43 – 7.32 (m, 5H), 3.82 – 3.31 (m, 8H). ¹³C-NMR (126 MHz, CDCl₃) δ 170.4, 135.3, 129.9, 128.6, 127.1, 66.9, 48.2, 42.6.

N-benzyl-N-methylbenzamide (3af)⁶⁰

White solid, 82% yield, m.p. 163.7-165.1°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.42 – 7.32 (m, 6H), 7.31 – 7.26 (m, 1H), 7.17 (s, 1H), 4.82 – 4.41 (m, 2H), 3.12 – 2.77 (m, 3H).

¹³C-NMR (126 MHz, CDCl₃) δ 172.3, 171.6, 137.0, 136.6, 136.2, 129.6, 128.8, 128.4, 128.2, 127.5, 127.0, 126.8, 55.2, 50.8, 37.0, 33.1.

N-Methyl-N-phenylbenzamide (3ag)⁶⁶

Colorless oil, 25% yield. ¹H-NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 7.7 Hz, 2H), 7.26 – 7.19 (m, 3H), 7.19 – 7.11 (m, 3H), 7.03 (d, J = 7.8 Hz, 2H), 3.50 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.6,

144.9, 135.9, 129.5, 129.1, 128.7, 127.7, 126.9, 126.4, 38.4. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₄H₁₄NO⁺: 212.10699; found: 212.10667.

N-Methyl-N-(p-tolyl)benzamide (3ah)67

Colorless oil, 55% yield. ¹H-NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 7.6 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.16 (t, J = 7.5 Hz, 2H), 7.01 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 7.8 Hz, 2H), 3.46 (s, 3H),

2.26 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 142.3, 136.2, 136.0, 129.7, 129.4, 128.6, 127.6, 126.6, 38.4, 20.9. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₅H₁₆NO⁺: 226.12264; found: 226.12129.

4-Methyl-*N*-phenylbenzamide (3aj)⁵²

White solid, 97% yield, m.p. 145.5-145.6°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.80 (s, 1H), 7.77 (d, *J* = 7.1 Hz, 2H), 7.64 (d, *J* = 7.9 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.15 (t,

J = 6.9 Hz, 1H), 2.43 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.6, 142.4, 138.0, 132.1, 129.4, 129.1, 127.0, 124.4, 120.1, 21.5. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₄H₁₄NO⁺: 212.10699; found: 212.10651.

4-Methoxy-N-phenylbenzamide (3ak)⁵²

White solid, 76% yield, m.p. 172.4-173.0°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 7.2 Hz, 2H), 7.74 (s, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.14 (t, J = 7.5 Hz, 1H),

6.98 (d, J = 7.2 Hz, 2H), 3.87 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.3, 162.5, 138.1, 129.1, 128.9, 127.2, 124.4, 120.2, 114.0, 55.5. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₄H₁₄NO₂⁺: 228.10191; found: 228.10135.

N-Phenyl-4-(trifluoromethyl)benzamide (3al)⁴⁸

White solid, 99% yield, m.p. 207.5-208.2°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 7.9 Hz, 2H), 7.80 (s, 1H), 7.76 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 7.9 Hz, 2H), 7.40 (t, J = 7.8 Hz,

2H), 7.19 (t, J = 7.5 Hz, 1H). ¹³C-NMR (126 MHz, DMSO- d_6) δ 164.9, 139.3, 139.2, 131.9 (q, J = 31.8 Hz), 129.1, 129.0, 125.8 (q, J = 3.7 Hz), 124.5 (q, J = 274.9 Hz), ^{S26}

124.4, 120.9. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₄H₁₁F₃NO⁺: 266.07873; found: 266.07803.

4-Bromo-N-phenylbenzamide (3am)⁶⁸

White solid, 76% yield, m.p. 207.5-208.2°C. ¹H-NMR (500 MHz, DMSO- d_6) δ 10.31 (s, 1H), 7.92 (d, J = 7.7 Hz, 2H), 7.80-7.72 (m, 4H), 7.36 (t, J = 7.6 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H).

¹³C-NMR (126 MHz, DMSO-*d*₆) δ 165.0, 139.4, 134.5, 131.9, 130.3, 129.1, 125.8, 124.3, 120.9. HRMS (APCI): *m/z* [M+H]⁺ calcd. for C₁₃H₁₁BrNO⁺: 276.00185; found: 276.00140.

3-Methyl-N-phenylbenzamide (3an)⁵²

White solid, 92% yield, m.p. 129.2-129.5°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.78 (s, 1H), 7.69 (s, 1H), 7.64 (d, *J* = 7.7 Hz, 3H), 7.40-7.34 (m, 4H), 7.21 – 7.15 (m, 1H), 2.44 (s, 3H). ¹³C-NMR (126)

MHz, CDCl₃) δ 166.0, 138.6, 138.0, 134.9, 132.5, 129.0, 128.5, 127.8, 124.4, 123.9, 120.2, 21.3. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₄H₁₄NO ⁺: 212.10699; found: 212.10658.

2-Methyl-N-phenylbenzamide (3ao)⁴⁸

White solid, 73% yield, m.p. 127.3-127.6°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.77 (s, 1H), 7.59 (d, J = 7.9 Hz, 2H), 7.39 (d, J = 6.8 Hz, 1H), 7.37-7.30 (m, 3H), 7.27-7.17 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H),

2.44 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 168.1, 138.0, 136.4, 136.3, 131.1, 130.1, 129.0, 126.6, 125.7, 124.4, 119.9, 19.7. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₄H₁₄NO⁺: 212.10699; found: 212.10655.

N-Phenylpicolinamide (3ap)⁶⁹

White solid, 98% yield, m.p. 76.7-77.8°C. ¹H-NMR (500 MHz, CDCl₃) δ 10.03 (s, 1H), 8.62 (d, J = 4.7 Hz, 1H), 8.31 (d, J = 7.8 Hz, 1H), 7.91 (t, J = 7.7 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.52 – 7.45

(m, 1H), 7.39 (t, J = 7.3 Hz, 2H), 7.19 – 7.12 (m, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 162.0, 149.9, 148.0, 137.8, 137.7, 129.1, 126.5, 124.3, 122.4, 119.7. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₂H₁₁N₂O⁺: 199.08659; found: 199.08618.

N-Phenylpyrazine-2-carboxamide (3aq)⁷⁰

White solid, 90% yield, m.p. 126.8-128.1°C. ¹H-NMR (500 MHz, CDCl₃) δ 9.67 (s, 1H), 9.52 (s, 1H), 8.81 (s, 1H), 8.59 (s, 1H), 7.76 (d, *J* = 7.9 Hz, 2H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H).

¹³C-NMR (126 MHz, CDCl₃) δ 160.6, 147.5, 144.7, 144.4, 142.4, 137.2, 129.2, 124.9, 119.8. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₁H₁₀N₃O⁺: 200.08184; found: 200.08160.

N-Phenylfuran-2-carboxamide (3ar)⁶⁹

White solid, 95% yield, m.p. 121.8-122.6°C. ¹H-NMR (500 MHz, CDCl₃) δ 8.06 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.52 (s, 1H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.25 (d, *J* = 3.5 Hz, 1H), 7.15 (t, *J* = 7.4 Hz, 1H),

6.57 (dd, J = 3.4, 1.7 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 156.1, 147.8, 144.2, 137.4, 129.1, 124.5, 119.9, 115.3, 112.7. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₁H₁₀NO₂⁺: 188.07060; found: 188.07018.

N-Phenylcyclopropanecarboxamide (3as)⁷¹

White solid, 73% yield, m.p. 113.9-114.1°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 7.9 Hz, 2H), 7.36 (s, 1H), 7.31 (t, *J* = 7.7 Hz, 2H), 7.09 (t, *J* = 7.6 Hz, 1H), 1.49 (s, 1H), 1.09 (dq, *J* = 7.8, 4.0 Hz,

2H), 0.85 (dq, *J* = 7.4, 4.2 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 172.1, 138.1, 128.9,

124.0, 119.8, 15.7, 7.9. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₀H₁₂NO⁺: 162.09134; found: 162.09102.

N-Phenylcyclohexanecarboxamide (3at)⁷²

White solid, 80% yield, m.p. 147.0-148.4°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 7.1 Hz, 2H), 7.13 (s, 1H), 7.09 (t, J = 7.4 Hz, 1H), 2.27 - 2.17 (m, 1H), 2.00 - 1.92 (m,

2H), 1.87 – 1.79 (m, 2H), 1.74 – 1.66 (m, 1H), 1.56 – 1.49 (m, 2H), 1.36 – 1.22 (m, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 174.3, 138.1, 129.0, 124.1, 119.7, 46.6, 29.7, 25.7. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₃H₁₈NO⁺: 204.13829; found: 204.13791.

N-Phenylacetamide (3au)⁷¹

White solid, 95% yield, m.p. 114.8-116.0°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.62 – 7.45 (m, 3H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 2.16 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 168.5, 137.9,

129.0, 124.3, 120.0, 24.6. HRMS (APCI): m/z [M+H]⁺ calcd. for C₈H₁₀NO⁺: 136.07569; found: 136.07558.

N-Phenyldecanamide (3av)⁷³

White solid, 96% yield, m.p. 67.7-67.8°C. ¹H-NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.51 \text{ (d}, J = 8.0 \text{ Hz}, 2\text{H}), 7.30 \text{ (t},$

J = 7.7 Hz, 2H), 7.26 (s, 1H), 7.09 (t, J = 7.5 Hz, 1H), 2.34 (t, J = 7.6 Hz, 2H), 1.72 (q, J = 7.4 Hz, 2H), 1.40 – 1.21 (m, 12H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C-NMR (126 MHz, CDCl₃) & 171.5, 138.0, 129.0, 124.2, 119.8, 37.9, 31.9, 29.5, 29.4, 29.3, 25.7, 22.7, 14.1. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₆H₂₆NO⁺: 248.20089; found: 248.20047.

4-Chloro-N-(2-morpholinoethyl)benzamide (Moclobemide, 3aw)⁴⁸

White solid, 99% yield, m.p. 139.5-140.4°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 6.77 (s, 1H), 3.72 (t, J = 4.6 Hz, 4H), 3.53 (q, J = 5.6 Hz, 2H), 2.59 (t, J = 6.0 Hz, 2H), 2.50 (t, J = 4.8 Hz, 4H). ¹³C-NMR (126 MHz, CDCl₃) δ 166.3, 137.6, 133.0, 128.8, 128.4, 67.0, 56.8, 53.3, 36.1. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for C₁₃H₁₈ClN₂O₂⁺: 269.10513; found: 269.10458.

2-Iodo-N-phenylbenzamide (Benodanil, 3ax)⁷⁴

White solid, 85% yield, m.p. 141.8-143.1°C. ¹H-NMR (500 MHz, $CDCl_3$) δ 7.88 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.3 Hz, 3H), 7.49 (d, J = 7.6 Hz, 1H), 7.41-7.31 (m, 3H), 7.17 (t, J = 7.4 Hz, 1H), 7.12 (t,

J = 7.7 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 167.2, 142.1, 140.0, 137.5, 131.4, 129.1, 128.5, 128.3, 124.9, 120.1, 92.3. HRMS (APCI): m/z [M+H]⁺ calcd. for C₁₃H₁₁INO⁺: 323.98798; found: 323.98734.

2-Methyl-N-phenylfuran-3-carboxamide (Fenfuram, 3ay)¹⁰

White solid, 75% yield, m.p. 112.0-113.4°C. ¹H-NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 7.9 Hz, 2H), 7.48 – 7.38 (m, 1H), 7.38 – 7.32 (m, 2H), 7.30 (t, J = 2.7 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 6.54 (s, 1H), 2.64 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 162.0, 158.0, 140.6, 137.8, 129.0, 124.4, 120.2, 120.2, 115.8, 108.2, 108.1, 13.6. HRMS (APCI): *m*/*z* [M+H]⁺ calcd. for $C_{12}H_{12}NO_2^+$: 202.08626; found: 202.08583.

References:

- C. Han, J. P. Lee, E. Lobkovsky and J. A. Porco, J. Am. Chem. Soc., 2005, 127, 1. 10039-10044.
- 2. B. Gnanaprakasam and D. Milstein, J. Am. Chem. Soc., 2011, 133, 1682-1685.
- 3. J. Lee, S. Muthaiah and S. H. Hong, Adv. Synth. Catal., 2014, 356, 2653-2660.
- 4. H. Morimoto, R. Fujiwara, Y. Shimizu, K. Morisaki and T. Ohshima, Org. Lett., 2014, 16, 2018-2021.
- Q. Han, X. Xiong and S. Li, Catal. Commun., 2015, 58, 85-88. 5.
- 6. D. C. Lenstra, D. T. Nguyen and J. Mecinović, Tetrahedron, 2015, 71, 5547-5553.

- S. Sultan, M. Kumar, S. Devari, D. Mukherjee and B. Ali Shah, *ChemCatChem*, 2016, 8, 703-707.
- L. Hie, N. F. Fine Nathel, X. Hong, Y. F. Yang, K. N. Houk and N. K. Garg, Angew. Chem. Int. Ed., 2016, 55, 2810-2814.
- 9. C. W. Cheung, M. L. Ploeger and X. Hu, Nat. Commun., 2017, 8, 14878.
- T. Ben Halima, J. Masson-Makdissi and S. G. Newman, *Angew. Chem., Int. Ed.*, 2018, **57**, 12925-12929.
- 11. Y. L. Zheng and S. G. Newman, ACS Catal., 2019, 9, 4426-4433.
- 12. L. Ling, C. Chen, M. Luo and X. Zeng, Org. Lett., 2019, 21, 1912-1916.
- C. W. Cheung, N. Shen, S. P. Wang, A. Ullah, X. L. Hu and J. A. Ma, Org. Chem. Front., 2019, 6, 756-761.
- M. N. Rashed, K. Masuda, T. Ichitsuka, N. Koumura, K. Sato and S. Kobayashi, *Adv. Synth. Catal.*, 2021, DOI: 10.1002/adsc.202001496.
- 15. Z. Fu, X. Wang, S. Tao, Q. Bu, D. Wei and N. Liu, *J. Org. Chem.*, 2021, **86**, 2339-2358.
- C. Sabot, K. A. Kumar, S. Meunier and C. Mioskowski, *Tetrahedron Lett.*, 2007, 48, 3863-3866.
- 17. X. Yang and V. B. Birman, Org. Lett., 2009, 11, 1499-1502.
- K. E. Price, C. Larrivée-Aboussafy, B. M. Lillie, R. W. McLaughlin, J. Mustakis,
 K. W. Hettenbach, J. M. Hawkins and R. Vaidyanathan, *Org. Lett.*, 2009, 11, 2003-2006.
- N. Caldwell, C. Jamieson, I. Simpson and T. Tuttle, *Org. Lett.*, 2013, 15, 2506-2509.
- N. Caldwell, C. Jamieson, I. Simpson and A. J. Watson, *Chem. Commun.*, 2015, 51, 9495-9498.
- D. D. Sanz Sharley and J. M. J. Williams, *Chem. Commun.*, 2017, 53, 2020-2023.
- 22. M. Movassaghi and M. A. Schmidt, Org. Lett., 2005, 7, 2453-2456.
- 23. H. Guo, Y. Wang, G.-F. Du, B. Dai and L. He, *Tetrahedron*, 2015, **71**, 3472-3477.

- 24. V. M. de Oliveira, R. Silva de Jesus, A. F. Gomes, F. C. Gozzo, A. P. Umpierre, P. A. Z. Suarez, J. C. Rubim and B. A. D. Neto, ChemCatChem, 2011, 3, 1911-1920.
- 25. R. Fu, Y. Yang, Y. Ma, F. Yang, J. Li, W. Chai, Q. Wang and R. Yuan, Tetrahedron Lett., 2015, 56, 4527-4531.
- 26. R. Arora, S. Paul and R. Gupta, Can. J. Chem., 2005, 83, 1137-1140.
- 27. V. R. Chintareddy, H. A. Ho, A. D. Sadow and J. G. Verkade, Tetrahedron Lett., 2011, **52**, 6523-6529.
- 28. M. A. Ali, S. Siddiki, K. Kon and K. Shimizu, ChemCatChem, 2015, 7, 2705-2710.
- 29. Z. Li, C. Wang, Y. R. Wang, D. Yuan and Y. M. Yao, Asian J. Org. Chem., 2018, 7, 810-814.
- 30. T. Nuijens, C. Cusan, J. A. W. Kruijtzer, D. T. S. Rijkers, R. M. J. Liskamp and P. J. L. M. Quaedflieg, J. Org. Chem., 2009, 74, 5145-5150.
- 31. K. M. Whitten, A. Makriyannis and S. K. Vadivel, Tetrahedron Lett., 2012, 53, 5753-5755.
- 32. J. G. Hernández, K. J. Ardila-Fierro, D. Crawford, S. L. James and C. Bolm, Green Chem., 2017, 19, 2620-2625.
- 33. A. Basha, M. Lipton and S. M. Weinreb, *Tetrahedron Lett.*, 1977, 18, 4171-4172.
- 34. W. B. Wang and E. J. Roskamp, J. Org. Chem., 1992, 57, 6101-6103.
- 35. K. Ishihara, Y. Kuroki, N. Hanaki, S. Ohara and H. Yamamoto, J. Am. Chem. Soc., 1996, 118, 1569-1570.
- 36. R. S. Varma and K. P. Naicker, Tetrahedron Lett., 1999, 40, 6177-6180.
- 37. T. Ooi, E. Tayama, M. Yamada and K. Maruoka, Synlett, 1999, 6, 729-730.
- 38. Z. Guo, E. D. Dowdy, W.-S. Li, R. Polniaszek and E. Delaney, Tetrahedron Lett., 2001, 42, 1843-1845.
- 39. B. C. Ranu and P. Dutta, Synth. Commun., 2003, 33, 297-301.
- 40. A. Novak, L. D. Humphreys, M. D. Walker and S. Woodward, Tetrahedron Lett., 2006, 47, 5767-5769.
- 41. T. Gustafsson, F. Pontén and P. H. Seeberger, Chem. Commun., 2008, 1100-1102. S32

- 42. X. Tang, D. Rawson and S. Woodward, *Synlett*, 2010, **2010**, 636-638.
- 43. J. B. Campbell, R. B. Sparks and R. F. Dedinas, *Synlett*, 2011, **2011**, 357-360.
- J. D. M. Muñoz, J. Alcázar, A. de la Hoz, Á. Díaz-Ortiz and S. A. Alonso de Diego, *Green Chem.*, 2012, 14, 1335-1341.
- 45. T. Ohshima, Y. Hayashi, K. Agura, Y. Fujii, A. Yoshiyama and K. Mashima, *Chem. Commun.*, 2012, **48**, 5434-5436.
- 46. B. R. Kim, H. G. Lee, S. B. Kang, G. H. Sung, J. J. Kim, J. K. Park, S. G. Lee and Y. J. Yoon, *Synthesis*, 2012, **44**, 42-50.
- 47. N. Caldwell, C. Jamieson, I. Simpson and A. J. B. Watson, *ACS Sustainable Chem. Eng.*, 2013, 1, 1339-1344.
- 48. G. C. Li, C. L. Ji, X. Hong and M. Szostak, *J. Am. Chem. Soc.*, 2019, **141**, 11161-11172.
- 49. C. W. Cheung, J. A. Ma and X. I. Hu, J. Am. Chem. Soc., 2018, 140, 6789-6792.
- 50. J. B. Peng, D. Li, H. Q. Geng and X. F. Wu, Org. Lett., 2019, 21, 4878-4881.
- 51. A. V. Iosub and S. S. Stahl, J. Am. Chem. Soc., 2015, 137, 3454-3457.
- 52. F. Xiao, Y. Liu, C. Tang and G.-J. Deng, Org. Lett., 2012, 14, 984-987.
- 53. G. Hong, S. Wu, X. Zhu, D. Mao and L. Wang, *Tetrahedron*, 2016, **72**, 436-441.
- 54. T. T. S. Lew, D. S. W. Lim and Y. Zhang, *Green Chem.*, 2015, 17, 5140-5143.
- 55. Z. Y. Tian and C. P. Zhang, Chem. Commun., 2019, 55, 11936-11939.
- 56. Z. Zhang, X. Li, Y. Li, Y. Guo, X. Zhao, Y. Yan, K. Sun and G. Zhang, *Tetrahedron*, 2019, **75**, 3628-3635.
- Z. Chen, X. Wen, Y. Qian, P. Liang, B. Liu and M. Ye, Org. Biomol. Chem., 2018, 16, 1247-1251.
- 58. S. S. Kulkarni, X. Hu and R. Manetsch, Chem. Commun., 2013, 49, 1193-1195.
- L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang and J. Zhao, J. Am. Chem. Soc., 2016, 138, 13135-13138.
- 60. H. Cheng, M. Q. Xiong, C. X. Cheng, H. J. Wang, Q. Lu, H. F. Liu, F. B. Yao,
 C. Chen and F. Verpoort, *Chem. Asian J.*, 2018, 13, 440-448.
- 61. S. Liu, H. Wang, X. Dai and F. Shi, *Green Chem.*, 2018, 20, 3457-3462.
- 62. S. K. Mangawa, S. K. Bagh, K. Sharma and S. K. Awasthi, *Tetrahedron Lett.*, S33

2015, 56, 1960-1963.

- 63. D. S. MacMillan, J. Murray, H. F. Sneddon, C. Jamieson and A. J. B. Watson, *Green Chem.*, 2013, **15**, 596-600.
- A. H. Dardir, P. R. Melvin, R. M. Davis, N. Hazari and M. Mohadjer Beromi, J. Org. Chem., 2018, 83, 469-477.
- Y. C. Yuan, R. Kamaraj, C. Bruneau, T. Labasque, T. Roisnel and R. Gramage-Doria, Org. Lett., 2017, 19, 6404-6407.
- J. d. M. Muñoz, J. Alcázar, A. de la Hoz, Á. Díaz-Ortiz and S.-A. Alonso de Diego, *Green Chem.*, 2012, 14, 1335-1341.
- 67. L. Ma, Y. Li and Z. Li, Sci. China: Chem., 2015, 58, 1310-1315.
- T. W. Bousfield, K. P. R. Pearce, S. B. Nyamini, A. Angelis-Dimakis and J. E. Camp, *Green Chem.*, 2019, 21, 3675-3681.
- L. Zhang, W. Wang, A. Wang, Y. Cui, X. Yang, Y. Huang, X. Liu, W. Liu, J. Y. Son, H. Oji and T. Zhang, *Green Chem.*, 2013, 15, 2680-2684.
- Q. Li, S. Y. Zhang, G. He, Z. Ai, W. A. Nack and G. Chen, *Org. Lett.*, 2014, 16, 1764-1767.
- F. Ma, X. Xie, L. Zhang, Z. Peng, L. Ding, L. Fu and Z. Zhang, J. Org. Chem., 2012, 77, 5279-5285.
- C. K. Liu, M. Y. Chen, X. X. Lin, Z. Fang and K. Guo, *Green Chem.*, 2020, 22, 6437-6443.
- R. Zhang, J. C. Zhang, W. Y. Zhang, Y. Q. He, H. Cheng, C. Chen and Y. C. Gu, Synthesis, 2020, 52, 3286-3294.
- F. Ke, Y. Xu, S. Zhu, X. Lin, C. Lin, S. Zhou and H. Su, *Green Chem.*, 2019, 21, 4329-4333.

6. Original ¹H-NMR, ¹³C-NMR and HR-MS spectra for 3a-3ay

 \rightarrow ¹H-NMR spectrum for **3a**

> ¹³C-NMR spectrum for **3a**

HRMS spectrum for 3a ۶

➢ ¹H-NMR spectrum for **3b**

> 13 C-NMR spectrum for **3b**

➢ HRMS spectrum for 3b

 \rightarrow ¹H-NMR spectrum for **3c**

➢ HRMS spectrum for 3c

 \rightarrow ¹H-NMR spectrum for **3d**

HRMS spectrum for 3d ۶

> ¹H-NMR spectrum for 3e

► HRMS spectrum for **3e**

➢ ¹H-NMR spectrum for 3f

► HRMS spectrum for **3f**

 \rightarrow ¹H-NMR spectrum for **3**g

HRMS spectrum for 3g \triangleright

➢ ¹H-NMR spectrum for **3h**

HRMS spectrum for 3h \triangleright

▶ ¹H-NMR spectrum for **3i**

> ¹³C-NMR spectrum for **3i**

HRMS spectrum for 3i ۶

➢ ¹H-NMR spectrum for 3j

HRMS spectrum for 3j ۶

 \rightarrow ¹H-NMR spectrum for **3k**

► HRMS spectrum for **3k**

 \rightarrow ¹H-NMR spectrum for **3**I

HRMS spectrum for 31 \triangleright

 \rightarrow ¹H-NMR spectrum for **3m**

➢ HRMS spectrum for 3m

 \rightarrow ¹H-NMR spectrum for **3n**

> 13 C-NMR spectrum for **3n**

HRMS spectrum for **3n** ۶

 \rightarrow ¹H-NMR spectrum for **30**

> ¹³C-NMR spectrum for **30**

HRMS spectrum for 30 \triangleright

 \rightarrow ¹H-NMR spectrum for **3p**

> 13 C-NMR spectrum for **3p**

➢ HRMS spectrum for 3p

 \rightarrow ¹H-NMR spectrum for **3**q

 \rightarrow ¹³C-NMR spectrum for **3**q

HRMS spectrum for 3q ۶

 \rightarrow ¹H-NMR spectrum for **3r**

> 13 C-NMR spectrum for **3r**

HRMS spectrum for **3r** \triangleright

 \rightarrow ¹H-NMR spectrum for **3s**

HRMS spectrum for 3s \triangleright

> ¹H-NMR spectrum for 3t

➢ HRMS spectrum for 3t

 \rightarrow ¹H-NMR spectrum for **3u**

HRMS spectrum for **3u** \triangleright

 \rightarrow ¹H-NMR spectrum for **3v**

➢ HRMS spectrum for 3v

 \succ ¹H-NMR spectrum for **3w**

➢ HRMS spectrum for 3w

 \rightarrow ¹H-NMR spectrum for **3**x

 \rightarrow ¹³C-NMR spectrum for **3**x

HRMS spectrum for 3x ۶

\rightarrow ¹H-NMR spectrum for **3**y

> ¹³C-NMR spectrum for **3**y

► HRMS spectrum for **3y**

\rightarrow ¹H-NMR spectrum for **3z**

> ¹³C-NMR spectrum for **3z**

HRMS spectrum for 3z \triangleright

\rightarrow ¹H-NMR spectrum for **3aa**

> ¹³C-NMR spectrum for **3aa**

HRMS spectrum for 3aa ۶

➢ ¹H-NMR spectrum for **3ab**

➢ HRMS spectrum for 3ab

 \rightarrow ¹H-NMR spectrum for **3ac**

➢ HRMS spectrum for 3ac

\succ ¹H-NMR spectrum for **3ad**

> ¹³C-NMR spectrum for **3ad**

> ¹H-NMR spectrum for **3ae**

▹ ¹H-NMR spectrum for **3af**

> 13 C-NMR spectrum for **3af**

➢ ¹H-NMR spectrum for **3ag**

➢ HRMS spectrum for 3ag

➢ ¹H-NMR spectrum for **3ah**

➢ HRMS spectrum for 3ah

➢ ¹H-NMR spectrum for 3aj

HRMS spectrum for 3aj \triangleright

➢ ¹H-NMR spectrum for **3ak**

HRMS spectrum for 3ak ۶

 \rightarrow ¹H-NMR spectrum for **3al**

 \rightarrow ¹³C-NMR spectrum for **3al**

HRMS spectrum for 3al ۶

\succ ¹H-NMR spectrum for **3am**

HRMS spectrum for 3am ۶

 \succ ¹H-NMR spectrum for **3an**

\rightarrow ¹³C-NMR spectrum for **3an**

HRMS spectrum for 3an \triangleright

 \succ ¹H-NMR spectrum for **3ao**

HRMS spectrum for 3ao \triangleright

➢ ¹H-NMR spectrum for **3ap**

> ¹³C-NMR spectrum for **3ap**

HRMS spectrum for 3ap ۶

 \rightarrow ¹H-NMR spectrum for **3aq**

➢ HRMS spectrum for 3aq

➢ ¹H-NMR spectrum for **3ar**

> 13 C-NMR spectrum for **3ar**

HRMS spectrum for 3ar \triangleright

\rightarrow ¹H-NMR spectrum for **3as**

\rightarrow ¹³C-NMR spectrum for **3as**

> HRMS spectrum for **3as**

➢ ¹H-NMR spectrum for **3at**

➢ ¹³C-NMR spectrum for **3at**

HRMS spectrum for 3at \triangleright

\rightarrow ¹H-NMR spectrum for **3au**

> ¹³C-NMR spectrum for **3au**

➢ HRMS spectrum for 3au

 \rightarrow ¹H-NMR spectrum for **3av**

> ¹³C-NMR spectrum for **3av**

HRMS spectrum for 3av ۶

\rightarrow ¹H-NMR spectrum for **3aw**

> ¹³C-NMR spectrum for **3aw**

HRMS spectrum for 3aw ۶

 \rightarrow ¹H-NMR spectrum for **3ax**

 \rightarrow ¹³C-NMR spectrum for **3ax**

HRMS spectrum for 3ax \triangleright

 \rightarrow ¹H-NMR spectrum for **3ay**

> ¹³C-NMR spectrum for **3ay**

HRMS spectrum for 3ay \triangleright

