Supporting Information

Alcohol Promoted N-methylation of Anilines with CO₂/H₂ over Cobalt

Catalyst under Mild Conditions

Zhengang Ke,^a Yanfei Zhao^{a, b}, Ruipeng Li^{a, b}, Huan Wang^{a, b}, Wei Zeng^{a, b}, Minhao Tang^{a, b}, Buxing Han^{a, b},

and Zhimin Liu*a, b

a Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

b University of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: liuzm@iccas.ac.cn

Table of the contents

	3
2. Reaction conditions optimization	
3. The interaction of Sn(OTf) ₂ and N-methyl formanilide.	7
4. Mechanism investigation	9
5. ¹ H and ¹³ C NMR and HR-MS (ESI) data of products	12
6. ¹ H and ¹³ C NMR spectra of products	14
7. GC-MS spectra of products	22
8. References	25

1. Analysis of reported catalytic systems of N-methylation of N-methylaniline with CO_2/H_2 .

	H N N	+ CO ₂	+ H ₂ —		\bigcirc	CH ₃ .N				
Catalyst	Additive	Solvent	CO ₂ (MPa)	H ₂ (MPa)	T (°C)	t (h)	Yield (%)	TON	TOF	Ref
[Ru(triphos)(tmm)] (2.5 mol%)	HNTf ₂ (5 mol%)	THF	2	6	140	22	97	38.8	1.76	[1]
Ru(acac)₃/triphos (1 mol%)	MSA (1.5 mol%)	THF	2	6	140	24	80	80	3.33	[2]
Pd/CuZrO _x (0.75 mol%)	-	octane	1	2.5	150	30	71	94.7	3.16	[3]
Pt-MoO _x /TiO ₂ (2 mol%)	-	none	1	4	200	24	85	42.5	1.77	[4]
CuAlO _x (44 mol%)	-	hexane	3	7	160	24	86	1.95	0.08	[5]
Au/Al ₂ O ₃ (0.5 mol%)	-	hexane	2	6	140	7	96	192	27.43	[6]
Re/TiO ₂ (2 mol%)	-	dodecane	1	5	200	24	98	49	2.04	[7]
Cu/CeO ₂ (3.9 mol%)	-	toluene	1	7	150	4	2.5	0.64	0.16	[8]
Pd-ZnO/TiO ₂ (2.8 mol%)	-	toluene	1.5	4.5	180	24	87	31.07	1.29	[9]
Co(OAc) ₂ ·4H ₂ O/triphos (5 mol%)	Sn(OTf) ₂ (30 mol%)	EtOH	2	7	125	24	82	16.4	0.68	This work

Table S1. Comparison of catalytic performance of Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂ to reported catalytic systems for N-methylation of N-methylaniline with CO₂/H₂.

ĊH₃

2. Reaction conditions optimization

la la	¦+	со ₂ + H ₂ —	<mark>obalt salt (5 mol%)</mark> <u>triphos (10 mol%)</u> HNTf ₂ (0.3 equiv.) THF, 125 °C, 24h	Me N 1b t 1c	CHO
	Entry	Cobalt salt	Yield of 1b (%)	Yield of 1c (%)	
	1	-	<1	<1	
	2 ^{<i>b</i>}	Co(OAc) ₂ ·4H ₂ C) <1	<1	
	3	CoF ₃	1	<1	
	4	Co(acac)₃	35	<1	
	5	K ₃ [Co(CN) ₆]	<1	<1	
	6	CoF ₂	2	2	
	7	Co(ClO ₄) ₂ ·6H ₂ C) 3	<1	
	8	Co(BF₄)₂·6H₂C	9 19	<1	
	9	$Co(acac)_2 \cdot 2H_2C$	20	<1	
	10	Co(OAc) ₂ ·4H ₂ C	52	<1	

Table S2. Optimization of cobalt salts

Reaction condition: N-methylaniline (1a) (1.0 mmol), cobalt salt (5 mol %), triphos (10 mol %), HNTf₂ (0.3 equiv.), THF (2 mL), CO₂ (2.0 MPa), H₂ (7.0 MPa), 125 °C, 24 h. The yield of products was determined by GC, calibrated using *n*-dodecane as the internal standard. ^b no triphos.

H N 1a	+ CO ₂	$\frac{Co(OA)}{H_2} + H_2 = \frac{Tri}{H_1}$	$(c)_2 \cdot 4H_2O (5 mol\%)$ phos (10 mol%) NTf ₂ (0.3 equiv.) vent, 125 °C, 24h	Me N 1b	CHO N 1c
	Entry	Solvent	Yield of 1b (%)	Yield of 1c (%)	
	1	<i>n</i> -heptane	12	<1	
	2	toluene	19	<1	
	3	1,4-dioxane	49	<1	
	4	EtOH	70	2	
	5	THF	52	<1	
	6	CH₃CN	2	<1	
	7	DMF	19	10	

Table S3. Optimization of solvents

Reaction condition: 1a (1.0 mmol), Co(OAc)₂·4H₂O (5 mol %), triphos (10 mol %), HNTf₂ (0.3 equiv.), solvent (2 mL), CO₂ (2.0 MPa), H₂ (7.0 MPa), 125 °C, 24 h. The yield of products was determined by GC, calibrated using *n*-dodecane as the internal standard.

Table S4. (Optimization	of additive
-------------	--------------	-------------

H N 1a	` + C	$O_2 + H_2 = \frac{Co(OAc)_2}{Co_2 + H_2}$	2 [•] 4H ₂ O (5 mol%) os (10 mol%) additive I, 125 °C, 24h	Me N 1b + 1c	CHO N
	Entry	Additive (equiv.)	Yield of 1b (%)	Yield of 1c (%)	
	1	-	<1	<1	
	2	MSA/0.3	6	3	
	3	TMA/0.3	58	3	
	4	HNTf ₂ /0.3	70	2	
	5	AI(OTf) ₂ /0.3	68	<1	
	6	Yb(OTf) ₂ /0.3	76	<1	
	7	Sn(OTf) ₂ /0.3	82	1	
	8	K ₂ CO ₃ /0.3	<1	<1	
	9	Sn(OTf) ₂ /0.1	37	<1	
	10	Sn(OTf) ₂ /0.2	70	5	
	11	Sn(OTf) ₂ /0.4	75	<1	
	13	Sn(OTf) ₂ /0.5	67	<1	
	14	Sn(OTf) ₂ /0.7	50	<1	

Reaction condition: 1a (1.0 mmol), Co(OAc)₂·4H₂O (10 mol %), triphos (10 mol %), additive, EtOH (2.0 mL), CO₂ (2.0 MPa), H₂ (7.0 MPa), 125 °C, 24 h. The yield of products was determined by GC, calibrated using *n*-dodecane as the internal standard.

Table S5. Optimization of pressure						
la la	H N +	CO ₂ + H ₂ -	Co(OAc) ₂ · 4 triphos Sn(OTf) ₂ EtOH, 12	H ₂ O (5 mol%) (<u>10 mol%)</u> (0.3 equiv.) 25 °C , 24h	CH ₃ N + 1 1b 1c	CHO N
	Entry	CO ₂ (MPa)	H ₂ (MPa)	Yield of 1b (%)	Yield of 1c (%)	
	1	2	7	82	1	
	2	1	7	40	<1	
	3	2	3	50	3	

Reaction condition: 1a (1.0 mmol), Co(OAc)₂·4H₂O (10 mol %), triphos (10 mol %), Sn(OTf)₂ (0.3 equiv.), EtOH (2.0 mL), CO₂, H₂, 125 °C, 24 h. The yield of products was determined by GC, calibrated using *n*-dodecane as the internal standard.

Table S6. Optimization of reaction temperature

H N 1a	+ co	$H_2 + H_2 = \frac{Co(OAc)}{Sn(O^2)}$ EtOH, te	2 [•] 4H ₂ O (5 mol%) os (10 mol%) [f) ₂ (0.3 equiv.) emperature , 24h	Ne N 1b t 1c	<mark>сно</mark>
	Entry	temperature (°C)	Yield of 1b (%)	Yield of 1c (%)	
	1	95	18	8	
	2	105	31	7	
	3	115	51	6	
	4	125	82	1	
	5	135	76	<1	
	6	145	73	<1	
	7	155	59	<1	
	8	165	39	<1	

Reaction condition: 1a (1.0 mmol), Co(OAc)₂·4H₂O (10 mol %), triphos (10 mol %), Sn(OTf)₂ (0.3 equiv.), EtOH (2.0 mL), CO₂ (2.0 MPa), H₂ (7.0 MPa), 24 h. The yield of products was determined by GC, calibrated using n-dodecane as the internal standard.

H N 1a	$\begin{array}{rl} & & Co(OAc)_2 \cdot 4H_2 \\ & & triphos (10 \\ CO_2 \ + \ H_2 \ & & \underbrace{Sn(OTf)_2 (0 \\ EIOH (125\ ^{\circ}C) \\ & & 125\ ^{\circ}C \\ & & \\ & \\ & & $	O (5 mol%)) mol%) 3. equiv.) mL) , 24h ading
Entry	Water (equiv.)	Yield of 1b (%)
1	500 mg 4Å	16
2	0	82
3	1	80
4	5	70

Table S7. The effect of water to the cobalt catalyzed N-methylation reduction

Reaction condition: 1a (1.0 mmol), Co(OAc)₂·4H₂O (10 mol %), triphos (10 mol %), Sn(OTf)₂ (0.3 equiv.), EtOH (2.0 mL), CO₂ (2.0 MPa), H₂ (7.0 MPa), 24 h. The yield of products was determined by GC, calibrated using *n*-dodecane as the internal standard.

Table S8. The effect of Sn(OTf)₂ to the cobalt catalyzed N-formamide reduction reaction

CHO ,N_ + +	$\frac{\text{Co(OAc)}_2 \cdot 4\text{H}_2}{\text{triphos (10)}}$ $\frac{1}{2} \qquad \frac{\text{Sn(OT)}}{\text{EtOH, 125}}$	D (5 mol%) mol%) <mark>f)₂</mark> °C, 24h	CH ₃ N + (1 1b 1a	
Entry	Sn(OTf) ₂ (equiv.)	Con. (%)	Yield of 1b (%)	_
1	0	5	0.2	
2	0.1	76	63	
3	0.3	100	72	
8	0.5	100	52	

Reaction condition: 1c (1.0 mmol), Co(OAc)₂·4H₂O (10 mol %), triphos (10 mol %), Sn(OTf)₂, EtOH (2.0 mL), H₂ (7.0 MPa), 24 h. The yield of products was determined by GC, calibrated using *n*-dodecane as the internal standard.

Table S9. Optimization of ligands						
HN 1a	+ co;	$\frac{Co(OA}{2} + H_2 \frac{H_2}{Sn(E)}$	c)₂ • 4H₂O (5 mol ⁶ <mark>gand</mark> (10 mol%) OTf)₂ (0.3 equiv.) OH, 125 °C, 24h	$ \xrightarrow{N} 1b $	CHO N	
	entry	ligand	Con. (%)	Yield of 1b (%)		
	1	P P 3	0	0		
	2	Xantphos	0	0		
	3	PPh_3	0	0		

Reaction condition: **1a** (1.0 mmol), cobalt salt (5 mol %), ligand (10 mol %), Sn(OTf)₂ (0.3 equiv.), EtOH (2 mL), CO₂ (2.0 MPa), H₂ (7.0 MPa), 125 °C, 24 h. The yield of products was determined by GC, calibrated using *n*-dodecane as the internal standard.

3. The interaction of $Sn(OTf)_2$ and N-methyl formanilide.

Figure S1. ¹H NMR spectra of 1c and the mixture of Sn(OTf)₂ and 1c.

Figure S2. ^{13}C NMR spectra of 1c and the mixture of $\text{Sn}(\text{OTf})_2$ and 1c.

Figure S3. FTIR spectra of $\mathbf{1c}$ and the mixture of $Sn(OTf)_2$ and $\mathbf{1c}.$

4. Mechanism investigation

4.1 ¹³C isotope experiment of cobalt catalyzed hydrogenation of CO₂

Typical procedures: $Co(OAc)_2 \cdot 4H_2O$ (0.05 mmol), triphos (0.01 mmol), $Sn(OTf)_2$ (0.3 mmol), and EtOH (2 mL) were loaded into a stainless steel autoclave with a Teflon tube (16 mL inner volume) under N₂ atmosphere. The reactor was charged with ¹³CO₂ up to 1.0 MPa and then with H₂ until the total pressure reached 9.0 MPa at room temperature. The autoclave was moved to an oil bath of 125 °C, and magnetically stirred for 24 h. After reaction, the autoclave was cooled down to room temperature, and the reaction product was analyzed by GC, GC-MS and NMR.

Figure S5. MS spectrum of ¹³CH₃OH in reaction I, Scheme 2.

Figure S7. MS spectrum of EtO¹³CH₂OEt in reaction I, Scheme 2.

4.2 Cobalt catalyzed reductive coupling of 1a with various CO₂ hydrogenation products.

Entry	CO ₂ reduction level	Intermediates	Yield of 1b (%)
1	2e reduction	НСООН	53
2	2e reduction	HCOOEt	75
3	4e reduction	EtOCH ₂ OEt	3
4	4e reduction	НСНО	5
5	6e reduction	CH₃OH	2

 $\label{eq:stable} \textbf{Table S8.} \ Cobalt \ catalyzed \ reductive \ coupling \ of \textbf{1a} \ with \ various \ CO_2 \ hydrogenation \ products$

Reaction conditions: [a] N-methylaniline (1.0 mmol), intermediate (10 mmol), Co(OAc)₂·4H₂O (5 mol %), triphos (10 mol %), Sn(OTf)₂ (0.3 equiv.), EtOH (2.0 mL), H₂ (7.0 MPa), 125 °C, 24h.

4.3 Cobalt catalyzed N-formamide reduction reaction

Typical procedures: **1c** (1.0 mmol), $Co(OAc)_2 \cdot 4H_2O$ (0.05 mmol), Triphos (0.01 mmol), $Sn(OTf)_2$ (0.3 mmol), and EtOH (2 mL) were loaded into a stainless steel autoclave with a Teflon tube (16 mL inner volume) under N₂ atmosphere. The reactor was charged with H₂ up to 7.0 MPa at room temperature. The autoclave was moved to an oil bath of 125 °C, and magnetically stirred for 24 h. After reaction, the autoclave was cooled down to room temperature, and the reaction product was analyzed by GC.

Figure S8. GC spectrum of cobalt catalyzed N-formamide reduction reaction.

4.4 ¹³C isotope experiment of cobalt catalyzed N-methylation reaction

Typical procedures: **1a** (1.0 mmol), $Co(OAc)_2 \cdot 4H_2O$ (0.05 mmol), triphos (0.01 mmol), $Sn(OTf)_2$ (0.3 mmol), and EtOH (2 mL) were loaded into a stainless steel autoclave with a Teflon tube (16 mL inner volume) under N₂ atmosphere. The reactor was charged with ¹³CO₂ up to 1.0 MPa and then with H₂ until the total pressure reached 9.0 MPa at room temperature. The autoclave was moved to an oil bath of 125 °C, and magnetically stirred for 24 h. After reaction, the autoclave was cooled down to room temperature, and the reaction product was analyzed by GC, GC-MS.

Figure S9. GC spectrum of ¹³C isotope experiment of cobalt catalyzed N-methylation reaction.

Figure S10. MS spectrum of ¹³C isotope experiment of cobalt catalyzed N-methylation reaction.

5. ¹H and ¹³C NMR and HR-MS (ESI) data of products

N,N-dimethylaniline.¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 - 7.28 (m, 2H), 6.87 - 6.77 (m, 3H), 3.01 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.78, 129.16, 116.76, 112.79, 77.48, 77.16, 76.84, 40.69. HR-MS (ESI) calculated for C₈H₁₂N [M+H]⁺: 122.0964, found: 122.0965.

N,N,2-trimethylaniline. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 (m, 2H), 7.12 - 7.06 (m, 1H), 7.00 (m, 1H), 2.75 (s, 6H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.87, 132.25, 131.27, 126.55, 122.69, 118.49, 77.48, 77.16, 76.84, 44.35, 18.47. HR-MS (ESI) calculated for C₉H₁₄N [M+H]⁺: 136.1121, found: 136.1122.

N,N,3-trimethylaniline. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 - 7.15 (m, 1H), 6.66 - 6.59 (m, 3H), 2.98 (s, 6H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.91, 138.81, 129.05, 117.81, 113.63, 110.10, 77.48, 77.16, 76.84, 44.79, 40.80, 22.00. HR-MS (ESI) calculated for C₉H₁₄N [M+H]⁺: 136.1121, found: 136.1122.

N,N,4-trimethylaniline. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 (d, 2H), 6.80 - 6.69 (m, 2H), 2.94 (s, 6H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.97, 129.71, 126.26, 113.38, 77.48, 77.16, 76.84, 41.18, 20.36. HR-MS (ESI) calculated for C₉H₁₄N [M+H]⁺: 136.1121, found: 136.1122.

4-methoxy-N,N-dimethylaniline. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.87 - 6.80 (m, 2H), 6.79 - 6.70 (m, 2H), 3.75 (s, 3H), 2.85 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 152.17, 145.89, 115.04, 114.78, 77.48, 77.16, 76.84, 55.87, 41.93. HR-MS (ESI) calculated for C₉H₁₄NO [M+H]⁺: 152.1070, found: 152.1071.

4-fluoro-N,N-dimethylaniline. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.03 - 6.87 (m, 2H), 6.70 (m, 2H), 2.91 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6 (C-F, *J*_{C-F} = 236.2 Hz), 147.7, 115.4 (C-F, *J*_{C-F} = 22.1 Hz), 114.0 (C-F, *J*_{C-F} = 7.4 Hz), 41.5. HR-MS (ESI) calculated for C₈H₁₁FN [M+H]⁺: 140.0870, found: 140.0871.

4-chloro-N,N-dimethylaniline. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 - 7.13 (m, 2H), 6.71 - 6.59 (m, 2H), 2.93 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.32, 128.94, 121.63, 113.82, 77.48, 77.16, 76.84, 40.80. HR-MS (ESI) calculated for C₈H₁₁ClN [M+H]⁺: 156.0575, found: 156.0575.

4-bromo-N,N-dimethylaniline. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 - 7.27 (m, 2H), 6.70 - 6.50 (m, 2H), 2.93 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.64, 131.81, 114.26, 108.68, 77.48, 77.16, 76.84, 40.68. HR-MS (ESI) calculated for C₈H₁₁BrN [M+H]⁺: 200.0069, found: 200.0071.

6. ¹H and ¹³C NMR spectra of products

Figure S11. ¹H NMR of N,N-dimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S13. ¹H NMR of N,N,2-trimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S14. ¹³C NMR of N,N,2-trimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S15. ¹H NMR of N,N,3-trimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S16. ¹³C NMR of N,N,3-trimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S17. ¹H NMR of N,N,4-trimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S18. ¹³C NMR of N,N,4-trimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S19. ¹H NMR of 4-methoxy-N,N-dimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S20. ¹³C NMR of 4-methoxy-N,N-dimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S21. ¹H NMR of 4-fluoro-N,N-dimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S22. ¹³C NMR of 4-fluoro-N,N-dimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S23. ¹H NMR of 4-chloro-N,N-dimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S24. ¹³C NMR of 4-chloro-N,N-dimethylaniline at 293.15 K in CDCl₃ (400 MHz).

Figure S25. ¹H NMR of 4-bromo-N,N-dimethylaniline at 293.15 K in CDCl₃ (400 MHz).

7. GC-MS spectra of products

Figure S27. N-methylation of 4-aminothioanisole with CO₂/H₂ over Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂

Figure S28. N-methylation of 4-phenoxyaniline with CO₂/H₂ over Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂

Figure S29. N-methylation of 4-aminothioanisole with CO₂/H₂ over Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂

Figure S30. N-methylation of benzocaine with CO₂/H₂ over Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂

Figure S31. N-formylation of *n*-amylamine with CO₂/H₂ over Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂

Figure S32. N-formylation of *n*-hexyl-1-hexanamine with CO₂/H₂ over Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂

Figure S33. N-formylation of piperidine with CO₂/H₂ over Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂

Figure S34. N-formylation of cyclohexylamine with CO₂/H₂ over Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂

Figure S35. N-formylation of dibenzylamine with CO₂/H₂ over Co(OAc)₂·4H₂O/triphos/Sn(OTf)₂

8. References

- [1] K. Beydoun, T. vom Stein, J. Klankermayer, W. Leitner, Angew. Chem. Int. Ed. 2013, 52, 9554-9557.
- [2] Y. Li, I. Sorribes, T. Yan, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 12156-12160.
- [3] X. Cui, Y. Zhang, Y. Deng, F. Shi, Chem. Commun. 2014, 50, 13521-13524.
- [4] K. Kon, S. M. A. H. Siddiki, W. Onodera, K.-i. Shimizu, Chem. Eur. J. 2014, 20, 6264-6267.
- [5] X. J. Cui, X. C. Dai, Y. Zhang, Y. Q. Deng, F. Shi, Chem. Sci. 2014, 5, 649-655.
- [6] X.-L. Du, G. Tang, H.-L. Bao, Z. Jiang, X.-H. Zhong, D. S. Su, J.-Q. Wang, ChemSusChem 2015, 8, 3489-3496.

[7] T. Toyao, S. M. A. H. Siddiki, Y. Morita, T. Kamachi, A. S. Touchy, W. Onodera, K. Kon, S. Furukawa, H. Ariga, K. Asakura, K. Yoshizawa, K. i. Shimizu, *Chem. Eur. J.* **2017**, *23*, 14848-14859.

- [8] M. Tamura, A. Miura, Y. Gu, Y. Nakagawa, K. Tomishige, Chem. Lett. 2017, 46, 1243-1246.
- [9] W. Lin, H. Cheng, Q. Wu, C. Zhang, M. Arai, F. Zhao, ACS Catal. 2020, 10, 3285-3296.