Supporting Information

Sulfide-oxidation-assisted electrochemical water splitting for H₂ production on a bifunctional Cu₂S/nickel foam catalyst

Yuhou Pei,^a Jiong Cheng,^a Heng Zhong,^{*a,b,c} Zhenfeng Pi,^a Yu Zhao^d and Fangming Jin^{a,b,c}

^a School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

^b Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China

^c Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China

^d School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,

Shanghai 200240, P.R. China

*Corresponding: zhong.h@sjtu.edu.cn

Experimental Section

Chemicals.

Metal nitrates (Cu(NO₃)₂·3H₂O (99.0%), Ni(NO₃)₂·6H₂O (98.0%), Co(NO₃)₂·6H₂O (98.5%), and Fe(NO₃)₃·9H₂O (98.5%)), urea (99.0%), and NaOH (96.0%) were purchased from Sinopharm Chemical Reagent Co,. Ltd. Na₂S·9H₂O (98.0%) was purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd. The Pt/C (20 wt%) was purchased from Innochem Chemical Reagent Co. Ltd. All chemicals employed in this work were used directly without any further purification.

Material characterization.

Morphology and elemental dispersion of the electrode materials were observed by a field-emission scanning electronic microscopy (SEM, Zeiss, Sigma 500, 10 kV) with an energy dispersion X-ray spectroscopy (EDX) and a transmission electronic microscopy (TEM, JEOL, JEM 2100F, 200 kV). Crystal phases of electrode materials were measured by a Bruker D8 advance X-ray diffraction (XRD) instrument (Cu Ka radiation, $\lambda = 1.5406$ Å) with a scanning rate of 2° min⁻¹ from 10° to 80° (2θ). X-ray photoelectron spectroscopy (XPS) was conducted on a ThermoFisher 250Xi XPS analyzer (Al Ka, 1486.6 eV). The binding energies of XPS results were calibrated by C1s peak at 284.6 eV. UV-visible (MAPADA UV-3100PC) spectrum was employed to test the anodic products of polysulfides. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES, Thermo Scientific, iCAP7600) was used for element analysis.

Hydrogen production analysis.

Hydrogen production was analyzed by a gas chromatography equipped with a thermal conductivity detector (GC-TCD, Agilent, 7890A). Ar gas was continuously purged into cathodic electrolyte (1 mol L⁻¹ NaOH) at a rate of 5 sccm, and the gas products were collected by a water-gas replacing method. The Faradaic efficiency of H_2 production was calculated based on the following equation (1):

$$FE(\%) = \frac{2Fn}{lt} \times 100\%,$$
 (1)

where *F* is Faradaic constant (96485 C mol⁻¹), *n* is the amount of produced hydrogen gas (mol), *I* is the current (A), and *t* is the time (s) of electrolysis.

Recovery of elementary S by acidification.

Anodic electrolyte after the SOR reaction was placed into an ice bath and was added with concentrated sulfuric acid dropwise until the pH changed to 1.0 to form yellow precipitates. The solid yellow products were then collected by filtration, washed by DI water, and dried at 50 °C in the oven for further analysis.

Calculation details

The theoretical calculations were performed using Vienna Ab-initio Simulation Package (VASP).^[S1-3] The projector-augmented-wave (PAW) method was adopted for the pseudopotentials,^[S4] and cut-off energy was set to 400 eV. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional within the generalized gradient approximation (GGA) was used to describe the exchange-correlation energy.^[S5] The convergence force and energy were set as 0.05 eV/Å and 0.001 eV, respectively. The spin-polarization was considered during the calculations. The monoclinic Cu₂S slabs were established as the calculation models.^[S6-8] The free energies of SOR steps were calculated by the equation: $\Delta G = \Delta E_{DFT} + \Delta E_{ZPE} - T\Delta S$, where ΔE_{DFT} is the DFT energy difference, the ΔE_{ZPE} and ΔS are obtained by the zero-point energy correction and analysis of the variation of entropy, respectively.

Tuble of federa potentials of fedated substances in this work.				
Potential (V vs. SHE)				
-0.08				
-0.26				
-0.56				
-0.73				

Table S1 Redox potentials of related substances in this work.[S9]1

Figure S1 Photograph of metal (hydr-)oxides before (upper row) and after sulfurization (lower row) (the electrodes were fabricated via a hydrothermal step followed by a sulfurization step at room temperature).

1			
(Hydr-)oxides	K _{sp}	Sulfides	K _{sp}
Cu ₂ O	$2.0 imes 10^{-15}$	Cu ₂ S	$2.5 imes 10^{-48}$
Ni(OH) ₂	5.9×10^{-16}	NiS	1.0×10^{-24}
$Co(OH)_2$	5.9×10^{-15}	CoS	2.0×10^{-25}
Fe(OH) ₃	2.8×10^{-39}	Fe_2S_3	$1.0 imes 10^{-88}$

Table S2 K_{sp} values of metal (hydr-)oxides and corresponding sulfides. ^{[S9-S13]1-5}

Figure S2 XRD patterns of the Cu_2O/NF and Cu_2S/NF electrodes at the full scale of intensity (partial magnified image can be found in Fig. 1b of the main text).

Figure S3 Crystal structure of monoclinic $Cu_{31}S_{16}$ from the view along **a** and **c**-axis. Space group P21/n, a=26.897 Å, b=15.745 Å, c=13.465 Å.

Figure S4 XRD patterns of Ni(OH)₂/NF, Co(OH)₂/NF, Fe(OH)₃/NF, and corresponding Ni-S/NF, Co-S/NF, and Fe-S/NF electrodes after sulfurization.

Figure S5 SEM images of nickel foam.

Figure S6 SEM images of sulfurized Ni-S/NF (a, b), Co-S/NF (c, d), and Fe-S/NF (e, f) catalysts.

Figure S7 Wide scan XPS spectra of the Cu₂S/NF electrode.

Figure S8 XPS spectrum of O1s for the Cu₂S/NF electrode.

Figure S9 XPS spectrum of Ni $2p_{3/2}$ for the Cu₂S/NF electrode.

Figure S10 Relationship between *p*H value (0-14) and concentrations of H₂S and HS⁻ at a concentration of 1 mol L⁻¹ total S species based on $pKa_1 = 7.04$ and $pKa_2 = 17.10$.^[S14,S15]

	2			2	
	NaOH	Na_2S		NaOH	Na_2S
	(wt%)	(wt%)		(wt%)	(wt%)
Al	0.000	0.001	Mn	0.000	0.000
As	0.000	0.000	Na	48.841	18.549
В	0.000	0.000	Ni	0.000	0.000
Be	0.000	0.000	Р	0.000	0.000
Ba	0.000	0.000	Pb	0.000	0.000
Bi	0.001	0.002	Se	0.001	0.001
Ca	0.000	0.004	Sr	0.000	0.000
Cd	0.000	0.000	V	0.000	0.000
Со	0.000	0.000	Zn	0.000	0.000
Cr	0.000	0.000	Mo	0.000	0.000
Cu	0.000	0.000	Pd	0.000	0.000
Fe	0.000	0.000	Re	0.000	0.000
Κ	0.023	0.004	S	0.000	9.226
Li	0.000	0.000	Sb	0.000	0.000
Mg	0.000	0.000	Si	0.000	0.000
Ti	0.000	0.000	W	0.000	0.000

Table S3 ICP analysis of NaOH and Na₂S used in electrolyte.

Figure S11 LSV reproducibility test of the fabricated **a** Cu_2S/NF , **b** Co-S/NF, **c** Ni-S/NF, and **d** Fe-S/NF electrodes for the SOR (each experiment was repeated three independent times, including electrode fabrication and electrochemical test).

Figure S12 (a) LSV curves of Cu₂S/NF electrode in 1 mol L⁻¹ NaOH + 1 mol L⁻¹ Na₂S electrolyte at a scan rate of 5 mV s⁻¹ (R_s (resistance of the solution) in this system was tested to be 1.3 Ω). (b) Electrochemical effect of the PTFE holder with a Pt plate toward HER and SOR without electrodes.^[S16]

Catalysts	Reaction conditions	Current density	E (V)	Ref.
		$(mA cm^{-2})$	vs. RHE	
Cu ₂ S/NF	1 M NaOH	10	0.26	This
	+1M Na ₂ S	100	0.44	work
CoNi@NGs	1 M NaOH	10	0.34	[S17]
	$+1M Na_2S$	100	0.52	
NiCoO _x -	1 M NaOH	10	0.37	[S17]
CNTs	$+1M Na_2S$	50	0.50	
IrO ₂	1 M NaOH	10	0.43	[S17]
	$+1M Na_2S$			
Graphite	1 M NaOH+	10	0.34	[S18]
electrode	1M NaHS+2 M NaClb	100	0.51	
Pt electrode	0.1 M Na ₂ S	0.1	1.8	[S19]
	+ 1 M NaOH			
CoP	1 M NaOH	10	1.27	[S20]
nanoarray	$+50 \text{ mM Na}_2\text{S}$	20	1.31	
Ir mixed-	1 M NaOH	30	0.91	[S21]
metal oxide (Ir-MMO)	+1M Na ₂ S			
Ru MMO	50 mM NaOH	5	1.62	[S22]
	$+50 \text{ mM Na}_2\text{S}$			
TaO ₂ /IrO ₂	1.6 M NaOH	10	2.74 (cell)	[S23]
	+130 mM Na ₂ S			
Pt disk	$1 M Na_2 S$	100	1.0 (vs SCE)	[S24]
Carbon	5 mM Na ₂ S	0.43	1.0	[S25]
cloth	+ 100 mM PBS			

Table S4 Comparison of the current densities obtained at different potentials on variou	IS
electrodes for SOR reactions ^a	

^a The reactions were performed at room temperature without specific instruments. ^b reaction occurred at 80 °C.

Figure S13 LSV curves obtained on Cu_2S/NF in the electrolyte containing 1 mol L⁻¹ NaOH with 0.1, 0.5, and 1.0 mol L⁻¹ Na₂S.

Figure S14 LSV curve of the Cu₂S/NF electrode with a wide potential window from 0 to 1.2 V vs. RHE. Electrolyte: $1 \text{ mol } L^{-1} \text{ NaOH} + 1 \text{ mol } L^{-1} \text{ Na}_2\text{S}$ in water solution; scan rate: $5 \text{ mV } \text{ s}^{-1}$.

Figure S15 (a-e) ECSA measurements of electrodes at different scan rate from 10 to 80 mV s⁻¹, and (f) corresponding linear fitting of the relationship between scan rates and current densities.

Electrode	C (mF cm ⁻²)	
Ni-S/NF	5.42	
Co-S/NF	3.91	
Cu ₂ S/NF	2.87	
Fe-S/NF	2.74	
NF	0.68	

Table S5 ECSA results of electrodes based on Figure S15.

Figure S16 LSV curves based on ECSA results.

) ** **************	10110		
Cations	Ι	A	η=(I-A)/2	Soft or hard
	(eV)	(eV)	(eV)	
Cu^+	20.29	7.73	6.28	Soft
Co^{2+}	33.50	17.06	8.22	Dandarlina
Ni ²⁺	35.71	18.17	8.50	Bordernne
Fe ³⁺	54.80	30.65	12.08	Hard

Table S6 Parameters of ionization potential (*I*), electron affinity (*A*), and absolute hardness (η) of selected cations^a

^a Data obtained from Ref. [S26]

Figure S17 XPS spectra of S of the Cu_2S/NF electrodes before and after electrolysis at 100 mA cm⁻² for 10 and 24 h.

Figure S18 CV curves of Cu_2S/NF electrode in 1 mol L⁻¹ NaOH electrolyte from -0.6 to 1.8 V at a scan rate of 5 mV s⁻¹.

Figure S19 CV curves of Cu₂S/NF electrode in 1 mol L⁻¹ NaOH electrolyte from 0.4 to 1.3 V at a scan rate of 10 mV s⁻¹.

Figure S20 Photographs of anodic electrolytes (diluted for 40 times) after SOR for 0 to 25 h on Cu_2S/NF at a constant current density of 100 mA cm⁻².

Figure S21 LSV curves of the polysulfide electrooxidation reactions on the Cu₂S/NF electrode. Electrolytes: 1 mol L⁻¹ NaOH + 1 mol L⁻¹ polysulfide (Na₂S_x, synthesized by stoichiometrically blending elemental sulfur and Na₂S in alkaline medium to form clear solution, HS⁻ + (n-1)/8S₈ + OH⁻ = S_n²⁻ + H₂O).

Figure S22 Standard XRD patterns of the monoclinic Cu₂S (PDF#33-490) and djurleite Cu₃₁S₁₆ (PDF#34-660).

Figure S23. Schematic diagram of the adsorption states of S_x^* (x = 1, 2, 3, 4) on the (0 3 4)_{Cu31S16(8 4 2)}, (6 3 0)_{Cu31S16(10 5 2)}, and (1 0 6)_{Cu31S16(-2 8 2)} facets.

Figure S24 LSV curves (without *iR*-corrected) obtained in 1 mol L⁻¹ NaOH on Cu₂S/NF, NF, and Pt/C for HER at a scan rate of 5 mV s⁻¹.

Figure S25 Comparison between the theoretical and practical H₂ evolution.

Figure S26 Potential-time test of HER at the current density of 100 mA cm⁻² catalyzed by the Cu₂S/NF electrode in 1 mol L⁻¹ NaOH for 12 h.

No.	Catalyst system	Anodic	Anodic	E _{COR}	E _C	Current	Ref.
		electrolyte	Product	(V) ^a	(V) ^b	density ^c	
						(mA cm ⁻²)	
1	CoS_2/MoS_2	1 M KOH +	N_2	1.29	1.29	10	[S27]
	CoS_2/MoS_2	0.5 M urea				1.0	50.007
2	$N_1Te_2/N_1(OH)_2$	1 M KOH +0.33 M urea	N ₂	1.35	NG ^a	10	[S28]
3	Ni ₂ P/NF Ni ₂ P/NF	1.0 M KOH + 10 mM HMF	FDCA	~1.35	1.44	10	[S29] 15
4	MoO ₂ -FeP@C MoO ₂ -FeP@C	1.0 M KOH + 10 mM HMF	FDCA	1.35	1.48	10	[S31] 16
5	Co(OH) ₂ @HOS/CP Co(OH) ₂ @HOS/CP	1.0 M KOH + 3 M methanol	Formate	1.38	1.49	10	[S13] 6
6	$\begin{array}{c} Ni_{0.33}Co_{0.67}(OH)_2/NF \\ Ni_{0.33}Co_{0.67}(OH)_2/NF \\ nanoneedle \end{array}$	1.0 M KOH + 0.5 M methanol	Formate	~1.35	1.50	10	[833]
7	Ni-Mo-N/CFC Ni- Mo-N/CFC	1.0 M KOH + 0.1 M glycerol	Formate	1.30	1.36	10	[832]
8	PtCu PtCu catalyst	1.0 M KOH + CO	CO ₂	~0.5	NG ^d	50	[834]
9	Ni ₂ P Ni ₂ P	1 M KOH+ 0.5 mM THIQs	DHIQs	~1.3	~1.4	10	[836]
10	Ni ₂ P Ni ₂ P	1.0 M KOH + 0.125 M Benzylamine	Benzonit- rile	1.34	1.41	10	[837]
11	Graphite CoNi@NGs	1.0 M NaOH+ 1.0 M Na ₂ S	Sulfur	~0.35	NG ^d	10	[S17]
12	Cu ₂ S/NF Cu ₂ S/NF	1.0 M N2OH+1 0 M	Sulfur	0.26	0.43	10	This work
		Na ₂ S					WUIK
13	Cu ₂ S/NF Cu ₂ S/NF	1.0 M NaOH+	Sulfur	0.29	0.53	30	This
	·	1.0 M Na ₂ S					work
14	Cu ₂ S/NF Cu ₂ S/NF	1.0 M NaOH+	Sulfur	0.32	0.64	100	This
		1.0 M Na ₂ S					work

Table S7 Comparison of several room-temperature electrolytic hydrogen production systems in alkaline medium.

^a E_{COR} : anodic potential of chemical oxidation reaction, vs RHE.

^b E_C: cell voltage.

 $^{\rm c}$ Current density: current density for E_{COR} and $E_{C}.$

^d NG: not given.

References

S1. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Computational Materials Science* **1996**, *6*(1), 15-50.

S2. Blöchl, P. E., Projector augmented-wave method. *Physical review B* 1994, 50(24), 17953.

S3. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. *Physical review B* **1996**, *54*(16), 11169.

S4. Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquidmetal–amorphous-semiconductor transition in germanium. *Physical Review B* **1994**, *49*(20), 14251.

S5. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. *Physical review B* **1992**, 46 (11), 6671.

S6. Kim, M.-C.; Nam, H.; Choi, J.; Kim, H. S.; Lee, H. W.; Kim, D.; Kong, J.; Han,
S. S.; Lee, S. Y.; Park, H. S., Hydrogen bonding-mediated enhancement of bioinspired electrochemical nitrogen reduction on Cu_{2-x}S catalysts. *ACS Catal.* 2020, *10*(18), 10577-10584.

S7. Evans, H. T., Crystal structure of low chalcocite. *Nature Physical Science* 1971, 232(29), 69-70.

S8. Chen, L.; Hu, H.; Chen, Y.; Gao, J.; Li, G., Plasmonic Cu_{2-x}S nanoparticles: a brief introduction of optical properties and applications. *Materials Advances* **2021**.

S9. Lide, D. R., *CRC Handbook of Chemistry and Physics*. CRC press: 2004; Vol.
85.

S10. He, H. Y.; Fei, J.; Lu, J., Chemical Bath Deposition and Optical and Electrical Properties of Pure and Doped Fe₂S₃ Films. *Micro and Nanosystems* 2014, *6*(2), 126-132.

S11. Ye, L.; Wen, Z.; Li, Z.; Huang, H., Hierarchical Architectured Ternary

Nanostructures Photocatalysts with In(OH)₃ Nanocube on ZnIn₂S₄/NiS Nanosheets for Photocatalytic Hydrogen Evolution. *Solar RRL* **2020**, *4*, 2000027.

S12. Zuo, Y.; Liu, Y.; Li, J.; Du, R.; Han, X.; Zhang, T.; Arbiol, J.; Divins, N. J.; Llorca, J.; Guijarro, N.; Sivula, K.; Cabot, A., In Situ Electrochemical Oxidation of Cu₂S into CuO Nanowires as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction. *Chemistry of Materials* **2019**, *31*(18), 7732-7743.

S13. Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J. L.; Fu,
X. Z., Boosting H₂ Generation Coupled with Selective Oxidation of Methanol into
Value-Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets
Electrocatalysts. *Advanced Functional Materials* 2020, *30*, 1909610.

S14 May, P. M., Batka, D., Hefter, G., Konigsberger, E., Rowland, D., *Chemical Communications* 2018, *54*, 1980-1983.

S15 Grethlein, A., Soni, B., Worden, R., Jain, M., *Applied Biochemistry and Biotechnology* **1992**, *34*, 233.

S16 Zheng, W.; Liu, M.; Lee, L. Y. S., Best Practices in Using Foam-Type
Electrodes for Electrocatalytic Performance Benchmark. *ACS Energy Letters* 2020, 5 (10), 3260-3264.

S17 Zhang, M.; Guan, J.; Tu, Y.; Chen, S.; Wang, Y.; Wang, S.; Yu, L.; Ma, C.; Deng, D.; Bao, X., Highly Efficient H₂ Production from H₂S via a Robust Graphene-Encapsulated Metal Catalyst. *Energy & Environmental Science* **2020**, *13*(1), 119-126.

S18 Petrov K., Srinivasan S., Low temperature removal of hydrogen sulfide from sour gas and its utilization for hydrogen and sulfur production. *International Journal of Hydrogen Energy* **1996**, *21*, 163-169.

S19 Sanli A E, Yılmaz O, Aytaç A, A novel H₂S/H₂O₂ fuel cell operating at the temperature of 298 K. *International Journal of Energy Research* **2013**, *37*, 1205-1212.

S20 Hao S, Yang L, Liu D, et al., Replacing oxygen evolution with sodium sulfide electro-oxidation toward energy-efficient electrochemical hydrogen production: Using cobalt phosphide nanoarray as a bifunctional catalyst. *International Journal of Hydrogen Energy* **2017**, *42*, 26289-26295.

S21 Ntagia E, Fiset E, Truong Cong Hong L, Vaiopoulou E, Rabaey K,

Electrochemical treatment of industrial sulfidic spent caustic streams for sulfide removal and caustic recovery. *Journal of Hazardous Material* **2020**, *388*, 121770.

S22 Ntagia E, Fiset E, da Silva Lima L, et al., Anode materials for sulfide oxidation in alkaline wastewater: An activity and stability performance comparison. *Water Research* **2019**, *149*, 111-119.

S23 Vaiopoulou E, Provijn T, Prevoteau A, Pikaar I, Rabaey K, Electrochemical sulfide removal and caustic recovery from spent caustic streams. Water Research 2016, *92*, 38-43.

S24 Zhao Y, Wang S, Varela H, et al., Spatiotemporal Pattern Formation in the Oscillatory Electro-Oxidation of Sulfide on a Platinum Disk. *The Journal of Physical Chemistry C* 2011, *115*, 12965-12971.

S25 Lin H, Williams N, King A, Hu B, Electrochemical sulfide removal by lowcost electrode materials in anaerobic digestion. *Chemical Engineering Journal* **2016**, *297*, 180-192.

S26 Pearson, R. G., Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. *Inorganic Chemistry* **1988**, *27*(4), 734-740.

S27 Li, C.; Liu, Y.; Zhuo, Z.; Ju, H.; Li, D.; Guo, Y.; Wu, X.; Li, H.; Zhai, T., Local Charge Distribution Engineered by Schottky Heterojunctions toward Urea Electrolysis. *Advanced Energy Materials* **2018**, *8*(27), 1801775.

Xu, B.; Yang, X.; Liu, X.; Song, W.; Sun, Y.; Liu, Q.; Yang, H.; Li, C., Lattice
Distortion in Hybrid NiTe₂/Ni(OH)₂ Nanosheets as Efficient Synergistic
Electrocatalyst for Water and Urea Oxidation. *Journal of Power Sources* 2020, 449, 227585.

You, B.; Jiang, N.; Liu, X.; Sun, Y., Simultaneous H₂ Generation and Biomass
 Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.
 Angewandte Chemie International Edition 2016, 128, 10067-10071.

S30 Zhao, Y.; Jia, N.; Wu, X.-R. Li, F.-M.; Chen, P.; Jin, P.-J.; Yin, S.; Chen, Y., Rhodium Phosphide Ultrathin Nanosheets for Hydrazine Oxidation Boosted Electrochemical Water Splitting. *Applied Catalysis B: Environmental* **2020**, *270*, 118880.

S25

S31 Yang, G.; Jiao, Y.; Yan, H.; Xie, Y.; Wu, A.; Dong, X.; Guo, D.; Tian, C.; Fu,
H., Interfacial Engineering of MoO₂-FeP Heterojunction for Highly Efficient Hydrogen
Evolution Coupled with Biomass Electrooxidation. *Advanced Materials* 2020, *32*, 2000455.

S32 Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M., Nickel-molybdenum Nitride Nanoplate Electrocatalysts for Concurrent Electrolytic Hydrogen and Formate Productions. *Nature Communications* **2019**, *10*, 5335.

Li, M.; Deng, X.; Xiang, K.; Liang, Y.; Zhao, B.; Hao, J.; Luo, J. L.; Fu, X. Z.,
Value-added Formate Production from Selective Methanol Oxidation as A Novel
Anodic Reaction to Enhance Electrochemical Hydrogen Co-generation. *ChemSusChem*2019, *13*(5), 914-921...

S34 Cui, X.; Su, H. Y.; Chen, R.; Yu, L.; Dong, J.; Ma, C.; Wang, S.; Li, J.; Yang,
F.; Xiao, J.; Zhang, M.; Ma, D.; Deng, D.; Zhang, D. H.; Tian, Z.; Bao, X., Room-temperature Electrochemical Water-gas Shift Reaction for High Purity Hydrogen
Production. *Nature Communications* 2019, *10*, 86.

Hao, S.; Yang, L.; Liu, D.; Kong, R.; Du, G.; Asiri, A. M.; Yang, Y.; Sun, X.,
Integrating Natural Biomass Electro-oxidation and Hydrogen Evolution: Using a
Porous Fe-doped CoP Nanosheet Array as a Bifunctional Catalyst. *Chemical Communications* 2017, *53*(42), 5710-5713.

S36 Huang, C.; Huang, Y.; Liu, C.; Yu, Y.; Zhang, B., Integrating Hydrogen Production with Aqueous Selective Semi-Dehydrogenation of Tetrahydroisoquinolines over a Ni₂P Bifunctional Electrode. *Angewandte Chemie International Edition* **2019**, *58*(35), 12014-12017.

Ding, Y.; Miao, B.-Q.; Li, S.-N.; Jiang, Y.-C.; Liu, Y.-Y.; Yao, H.-C.; Chen,
Y., Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and
benzonitrile co-production at ultra-thin Ni₂P nanomeshes grown on nickel foam. *Applied Catalysis B: Environmental* 2020, 268, 118393.