Supporting Information

Sustainable Fabrication of Ultralong Pb(OH)Br Nanowires and their Conversion to Luminescent CH₃NH₃PbBr₃ Nanowires

Weijian Wang^{1, 2} [§], Yangchun Yu^{2, §}, Sanam Attique^{2, §}, Jiahui Hou², Fangying Jun³, Yiquan Xie¹, Lebao Mao⁴, Xiaoqing Yu⁵, Xiuhua Zhang⁴, Shengfu Wang⁴, Chongchong Wu⁶, Bingqiang Cao^{3, *}, Shikuan Yang^{2, *}

¹ Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310000, China

² Institute for Composites Science Innovation, School of Materials Science and Engineering , Zhejiang University, Hangzhou, 310000, China

³School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China

⁴Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China

⁵College of Materials Science and Engineering, Hunan University, Changsha, 410004, China;

⁶Department of Chemical and Petroleum Engineering, University of Calgary, Alberta, Canada **Supporting Figures:**

Figure S1. The XRD patterns of $PbBr_2$ and $MAPbBr_3$ prepared directly through rection of $PbBr_2$ and MABr.

Figure S2. The SEM images of PbBr₂ (a,b,c) and MAPbBr₃ (d,e,f) prepared directly through rection of PbBr₂ with MABr.

Figure S3. The Raman spectrum of the Pb(OH)Br nanowires.

Figure S4. XPS spectra of Pb(OH)Br. (a) Element survey. (b) 4f of Pb. (c) 3d of Br. (d) 1s of O.

Figure S5. The TGA and DSC curves of the Pb(OH)Br nanowires.

Figure S6. The SEM images of Pb(OH)Br microrods prepared at (a,b) 40 $^{\circ}$ C and (c,b) 50 $^{\circ}$ C.

Figure S7. The SEM images of Pb(OH)Br nanowires prepared under (a) and (b) 70 $^{\circ}$ C and (c) and (d) 80 $^{\circ}$ C.

Figure S8. The XRD patterns of the Pb(OH)Br nanowires synthesized at different temperatures.

Figure S9. The XRD patterns of Pb(OH)Br nanowires prepared under different $PbBr_2$ concentration. 0.04 M and 0.08 M: Stirring for 15 minutes, 0.01 M and 0.02 M: Stirring for 5 minutes.

Figure S10. The SEM images of Pb(OH)Br nanowires prepared under under different PbBr₂ concentration. (a) 0.01 M and (b) 0.02 M: Stirring for 5 minutes, (c) 0.04 M and (d) 0.08 M. 0.04 M and 0.08 M: Stirring for 15 minutes.

Figure S11. The XRD pattern of the Pb(OH)Br nanowires after reacting with different masses of MABr vapor

Figure S12. The SEM images of Pb(OH)Br nanowires after reacting with different masses of MABr vapor.(a,b:0.01 g; c,d:0.1 g; e,f:0.2 g)

Figure S13. The PLQY of the MAPbBr₃ nanowires. Ems represents the emission of the sample that collects the photons emitted by the product; Emb is the blank emission performed with a blank quartz plate in the same spectral range used for the Ems measurement; the Exs is the excitation of a sample, which records the photons that are not absorbed by the sample; Exb represents the blank excitation, which are the photons going through the blank. For each sample, the above four measurements were recorded and we can get the corresponding PLQY value.

Perovskite NCs	PLQY solution	Ref
MAPbBr ₃	90.33%	This work
MAPbBr ₃	10-32%	1
MAPbBr ₃	83%	2
MAPbI ₂ Br	60-85%	3
MAPbI ₃	46%	4

Table S1: Comparison of photoluminescence quantum yield (PLQY) performance of MAPbBr3 in this work with previous reports.

References:

- 1. C. Geng, S. Xu, H. Zhong, A. Rogach and W. Bi, *Angew. Chem.*, 2018, **130**, 9798-9802.
- 2. S. Gonzalez-Carrero, R. Galian and J. Pérez-Prieto, J. Mater. Chem. A., 2015, 3, 9187-9193..
- Y. Hassan, O. Ashton, J. Park, G. Li, N. Sakai, B. Wenger, A. Haghighirad, N. Noel, M. Song, B. Lee, R. Friend and H. Snaith, *J. Am. Chem. Soc.*, 2019, 141, 1269-1279.
- 4. F. Zhang, S. Huang, P. Wang, X. Chen, S. Zhao, Y. Dong, and H. Zhong, *Chem. Mater.*, 2017, **29**, 3793-3799.