Electronic Supplementary information for

Mild selective oxidative cleavage of lignin C-C bonds over copper catalyst in water

Yuzhen Hu, ^{a,c} Long Yan, ^a Xuelai Zhao,^d Chenguang Wang, ^{*a,d} Song Li, ^{a,c} Xinghua Zhang, ^{a,b} Longlong Ma ^{a,b} and Qi Zhang ^{*a,b}

^a Guangdong Provincial Key Laboratory of New and Renewable Energy Research and

Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy

Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.

^b Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of

Energy and Environment, Southeast University, Nanjing 210096, PR China.

^c University of Chinese Academy of Sciences, Beijing 100049, PR China

^d Department of Thermal Science and Energy Engineering, University of Science and Technology

of China, Hefei, 233022, PR China.

*Corresponding Author: zhangqi@ms.giec.ac.cn, wangcg@ms.giec.ac.cn.

Table of Contents

- 1. Chemicals and materials
- 2. Products analysis and calculation of yields
- 3. Synthesis and characterization of lignin models
- 4. Bond dissociation energies (BDEs) of model compounds calculated by density functional theory (DFT)
- 5. Supplementary experimental results

1. Chemicals and materials

CuCl (99.95%), CuBr (98%), Cu₂O (99%), CuCl₂ (99%), CuO (99%), Cu(OAc)₂ (98%), Cu(OH)₂ (94%), CuSO₄ (99%), FeCl₃ (99%), MnCl₂ (99%), AlCl₃ (97%), ZnCl₂

(98%), NaOH (98%), KOH (95%), Na₂CO₃ (99%), K₂CO₃ (99%), CsCO₃ (99%), NH₃·H₂O (25-28%) and NaOAc (99%) were all purchased from Meryer (Shanghai) Co., Ltd. Dichloromethane (99%), hydrochloric acid (37%), anhydrous Na₂SO₄ (99%), 1,2-Diphenylethanone (98%), Diphenylethanedione (98%), 2-Hydroxy-1phenylethanone (98%), phenyl formate (>97%). (99.5%), phenol 2bromoacetophenone (99%), and acetone (99%) were all purchased from Shanghai Macklin Biochemical Co., Ltd. D₂O (99.5%) and DMSO-d₆ (99.9%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. All analytical reagent chemicals were used as received without further purification.

Corn stover was obtained from Mengcheng City, Anhui Province of China. Pine wood, eucalyptus wood, bagasse and bamboo were produced in South China. Compositional analysis of these samples was performed based on NREL's Laboratory Analytical Procedure (see Table S3).¹

2. Products analysis and calculation of yields

2.1 Products analysis

The aromatic products were characterized and quantified using gas chromatography/mass spectrometer (GC-MS, Agilent 7890A-5975C) and gas chromatography (GC, Shimadzu GC-2010 Pro). A 1 µL injection volume was used through a 30 m \times 250 μ m \times 0.25 μ m column (Rtx-SH-5) with a split ratio of 30:1. An inlet temperature of 280 °C and an oven temperature of 80 °C with a 10 °C min⁻¹ ramp to 280 °C was used with an overall run time of 32 min. ¹H, ¹³C nuclear magnetic (NMR) and two-dimensional heteronuclear single quantum coherence resonance nuclear magnetic resonance (2D HSQC-NMR) spectra were obtained using a Bruker AVANCE III 400 MHz spectrometer at room temperature. Fourier transformation infrared (FT-IR) spectra was recorded by a Thermo Scientific Nicolet 6700 spectrometer. Solid sample was diluted with KBr and pressed into disc before FT-IR test.

2.2 Calculation of the conversion of lignin (models) and yield of products

Calculation of the conversion of lignin models (**a** represents β -O-4 models and **b** represents β -1 models) and yield of products (**c** represents benzoic acid and its derivatives; **d** represents phenol and its derivatives; **e** represents benzaldehyde and its derivatives):

Conversion of model a (%) =
$$\frac{Moles of reacted model a}{Moles of added a}$$
\$100%
Conversion of model b (%) = $\frac{Moles of reacted model b}{Moles of added b}$ \$100%
Yield of product c (%) = $\frac{Moles of formed c}{Moles of added model}$ \$100%
Yield of product d (%) = $\frac{Moles of formed d}{Moles of added model}$ \$100%
Yield of product e (%) = $\frac{Moles of formed d}{Moles of added model}$ \$100%

Calculation of the yield of aromatic compounds from authentic lignin:

$$\begin{aligned} \text{Yield of aromatic monomer } (wt\%) &= \frac{\text{Mass of formed aromatic monomer}}{\text{Mass of starting lignin}} \text{$\%$100 wt\%} \\ \text{Vanillin Selectivity } (\%) &= \frac{\text{Mass of Vanillin}}{\text{Mass of aromatic monomers}} \text{$\%$100\%} \\ \text{Syringaldehyde Selectivity } (\%) &= \frac{\text{Mass of Syringaldehyde}}{\text{Mass of aromatic monomers}} \text{$\%$100\%} \end{aligned}$$

3. Synthesis and characterization of lignin models

Preparation of 2-phenoxy-1-phenylethanone (1a)

2-Phenoxy-1-phenylethanone was prepared by reference.² To a solution of phenol (2.4 g, 25 mmol) and K_2CO_3 (3.5 g, 25 mmol) in acetone (50 mL) was added 2bromoacetophenone (4.7g, 23 mmol) with Ar atmosphere protection and was stirred at RT for 16 h. After reaction, the suspension was filtered and concentrated in vacuum. The solid was dissolved in ethyl acetate and washed with NaOH aqueous and water successively. The organic phase was then dried by anhydrous Na₂SO₄. The crude product was recrystallized from ethanol to give 2-phenoxy-1-phenylethanone as a white solid in 78% yield. For the other methoxy substituted β -O-4 compounds, the procedures are the same as described above, except that different stating materials were used.

Procedure for the preparation of deuterium labelled 1a-d₂

The deuterated compound (Model 1a-d₂) was synthesized according to following procedure: 2-phenoxy-1-phenylethanone (1.1 g, 5.0 mmol) and anhydrous K_2CO_3 (0.1 g, 0.5 mmol) were added into D_2O (10 mL) in a 25 mL round bottom flask under argon atmosphere. The mixture was refluxed in an oil bath at 100 °C for 12 h. After cooling down to room temperature, the solvent was replaced by fresh D_2O under argon atmosphere, and further refluxed at 100 °C for another 12 h. Then the obtained solid was washed to remove K_2CO_3 residues. Finally, the solid was dried under vacuum to give a deuterated compound as a light yellow solid.

The structures of these compounds are confirmed by ¹H NMR (Fig. S1-S6).

1H NMR and 13C NMR:

Model 1a: β^{α} 2-phenoxy-1-phenylethanone.

White solid.¹H NMR (400 MHz, DMSO-d6) δ 8.03-8.05 (t, J = 7.3 Hz, 2H), 7.68-7.72 (t, J = 7.4 Hz, 1H), 7.56-7.60 (t, J = 7.7 Hz, 2H), 7.26-7.32 (m, 2H), 6.93-6.99 (m, 3H), 5.58 (s, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ = 195.11, 158.39, 134.90, 134.25, 129.89, 129.31, 128.34, 121.34, 115.08, 70.50.

Fig. S1 ¹H NMR and ¹³C NMR spectra of model 1a

Model 1a-d2: Model 1a-d2: Light yellow solid. ¹H NMR (400 MHz, DMSO-d₆) δ 8.03-8.06 (t, J = 7.3 Hz, 2H), 7.68-7.73 (t, J = 7.4 Hz, 1H), 7.56-7.60 (t, J = 7.7 Hz, 2H), 7.26-7.31 (m, 2H), 6.93-6.99 (m, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ = 195.21, 158.39, 134.91, 134.26, 129.89, 129.31, 128.35, 121.32, 115.07.

Fig. S2 ¹H NMR and ¹³C NMR spectra of model 1a-d₂

White solid.¹H NMR (400 MHz, DMSO-d₆) δ 8.03-8.04 (t, *J* = 7.4 Hz, 2H), 7.68-7.72 (t, *J* = 7.4 Hz, 1H), 7.55-7.59 (t, *J* = 7.8 Hz, 2H), 6.89-7.01 (m, 2H), 6.81-6.85 (m, 3H), 5.54 (s, 2H), 3.79(s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ = 195.20, 149.47, 147.91, 134.94, 134.21, 129.29, 128.36, 121.84, 121.02, 114.21, 112.96, 71.23, 56.03.

Fig. S3 ¹H NMR and ¹³C NMR spectra of model 2a

Model 3a: 1-(3,4-dimethoxyphenyl)-2-phenoxyethanone. Light yellow solid. .¹H NMR (400 MHz, DMSO-d₆) δ = 7.72-7.74 (dd, J = 8.4 Hz, 1.9, 1H),7.50 (d, J = 1.9 Hz, 1H), 7.26-7.31 (m, 2H), 6.93 –7.12(m, 4H), 5.51 (s, 2H), 3.84-3.87(d, J = 8.5 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ = 193.47, 158.48, 154.02, 149.19, 129.87, 127.72, 123.07, 121.27, 115.09, 111.50, 110.63, 70.24, 56.30, 56.06.

= 12.0 Hz, 911). C NWK (101 WHZ, DWSO- \mathbf{u}_{6}) $\mathbf{0} = 195.56, 155.99, 149.40, 149.10, 147.$

 $127.76,\,123.08,\,121.78,\,121.00,\,114.15,\,112.95,\,111.48,\,110.70,\,71.01,\,56.29,\,56.03.$

Fig. S5 ¹H NMR and ¹³C NMR spectra of model 4a

Model 5a:

1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2-methoxyphenoxy) propane-1,3-diol Light yellow solid. ¹H NMR (400 MHz, DMSO-d₆) δ = 8.11 (s, 1H), 6.99 (dd, J =7.4, 2.2 Hz, 5H), 6.99-6.75 (m, 3H), 6.68(s, 2H), 5.33 (d, J = 4.7 Hz, 1H), 4.71(t, J = 5.0 Hz, 1H), 4.60(t, J = 5.6 Hz, 1H), 4.33 (q, J = 5.0 Hz, 1H), 3.72 (d, J = 5.2 Hz, 9H), 3.63 (t, J = 5.6 Hz, 2H). ¹³C NMR (101MHz, DMSO-d₆) δ = 150.16, 148.58, 147.85, 134.94, 132.84, 121.34, 121.11, 116.15, 113.10, 105.26, 83.93, 72.38, 60.67, 56.35.

Fig. S6 ¹H NMR and ¹³C NMR spectra of model 5a

Fig. S7 The synthesized β-O-4 model compounds.

4. Bond dissociation energies (BDEs) of β -O-4 model compounds calculated by density functional theory (DFT)

BDEs were obtained as the difference of the sum of the energies of the dissociated product fragments and the energy of the molecule.

$$BDE=(E_{Frag1} + E_{Frag2}) - E_{Mol}$$
(1)

where E_{Mol} is the total energy of the molecule, E_{Frag1} and E_{Frag2} are energies of the dissociated products through the selected linkage (either the C-O or C-C linkage). All dissociated fragments were fully optimized.

Fig. S8 Optimized structure and Charge distribution of model 1a.

(Center Atomic	Atomic		Coordinates	(Angstroms)	
Num	ber Number	Туре	Х		Y	Z
	6	0	-3.995225	-1.304849	-0.431142	
2	6	0	-2.694516	-1.147097	0.037367	
3	6	0	-2.131487	0.130777	0.143863	
4	6	0	-2.893480	1.245296	-0.227425	
5	6	0	-4.190174	1.087167	-0.696105	
(6	0	-4.743869	-0.189369	-0.798308	
-	7 1	0	-4.424240	-2.297917	-0.509687	
8	3 1	0	-2.129135	-2.027688	0.318975	
ç) 1	0	-2.442505	2.226170	-0.137543	
1	0 1	0	-4.772605	1.956359	-0.982137	

11	1	0	-5.757707	-0.314063	-1.163838
12	6	0	-0.743423	0.366637	0.648995
13	6	0	0.087472	-0.860950	1.040627
14	1	0	0.149696	-1.545209	0.185133
15	1	0	-0.419880	-1.393863	1.849793
16	6	0	2.332679	-0.270388	0.561823
17	6	0	2.822213	1.024399	0.418554
18	6	0	2.851812	-1.313132	-0.203822
19	6	0	3.842239	1.272452	-0.495466
20	1	0	2.380896	1.812928	1.013349
21	6	0	3.864823	-1.053829	-1.123923
22	1	0	2.479303	-2.321905	-0.058861
23	6	0	4.362831	0.238555	-1.272176
24	1	0	4.224982	2.281479	-0.607930
25	1	0	4.272141	-1.866384	-1.716566
26	1	0	5.155183	0.438230	-1.985533
27	8	0	1.367312	-0.521321	1.521675
28	8	0	-0.285749	1.483552	0.750533

Fig. S9 Optimized structure and Charge distribution of model 2a.

Center	Atomic	Atomic	Coord	inates (Angstro	oms)	
Number	Number	Туре	Х	Y	Z	

1	6	0	4.622562	-0.793158	0.855606
2	6	0	3.367794	-1.179923	0.406071
3	6	0	2.481708	-0.235888	-0.126767
4	6	0	2.877226	1.105429	-0.200921
5	6	0	4.135917	1.492543	0.249244
6	6	0	5.009216	0.545168	0.777817
7	1	0	5.302187	-1.531860	1.266886
8	1	0	3.045045	-2.212907	0.455214
9	1	0	2.211987	1.857129	-0.609383
10	1	0	4.434683	2.533497	0.188237
11	1	0	5.989933	0.848540	1.128988
12	6	0	1.145139	-0.717274	-0.600001
13	6	0	0.197803	0.316827	-1.209012
14	1	0	0.656846	0.730124	-2.111891
15	8	0	-1.033875	-0.243146	-1.615479
16	6	0	-1.957079	-0.476308	-0.619108
17	6	0	-2.332677	-1.780574	-0.336373
18	6	0	-2.576605	0.595359	0.052373
19	6	0	-3.327970	-2.043427	0.603765
20	1	0	-1.816258	-2.574121	-0.860373
21	6	0	-3.561832	0.328201	1.002725
22	6	0	-3.935358	-0.989078	1.273134
23	1	0	-3.614136	-3.067519	0.815727
24	1	0	-4.049234	1.137970	1.530113
25	1	0	-4.706806	-1.179755	2.011502
26	8	0	-2.150907	1.847968	-0.293479
27	6	0	-2.784089	2.958969	0.317645
28	1	0	-3.857528	2.973153	0.102975
29	1	0	-2.631534	2.962957	1.402289
30	1	0	-2.318459	3.842111	-0.115592
31	1	0	0.042552	1.148048	-0.515860
32	8	0	0.827307	-1.883391	-0.511794

Fig. S10 Optimized structure and Charge distribution of model 3a.

	Center	Atomic	Atomic	Со	ordinates (Ang	gstroms)
Nu	mber	Number	Туре	Х	Y	Z
	1	6	0	-3.093679	0.481053	-0.030816
	2	6	0	-1.765112	0.748724	-0.330828
	3	6	0	-0.843535	-0.287192	-0.549465
	4	6	0	-1.276040	-1.613109	-0.465845
	5	6	0	-2.601802	-1.888379	-0.146144
	6	6	0	-3.519094	-0.866291	0.080230
	7	1	0	-1.398927	1.762717	-0.421279
	8	1	0	-0.596590	-2.440260	-0.634777
	9	1	0	-2.961744	-2.908237	-0.069905
	10	6	0	0.559950	0.103585	-0.876283
	11	6	0	1.577053	-1.020992	-1.129144
	12	1	0	1.619217	-1.679652	-0.252612
	13	1	0	1.239927	-1.625272	-1.976467
	14	6	0	3.708312	-0.215467	-0.424143
	15	6	0	4.050642	1.118491	-0.213706
	16	6	0	4.277133	-1.222212	0.356831
	17	6	0	4.969207	1.442039	0.781760
	18	1	0	3.578785	1.876315	-0.826086
	19	6	0	5.186928	-0.888007	1.358045
	20	1	0	4.025972	-2.260024	0.161493
	21	6	0	5.535865	0.443766	1.573480

22	1	0	5.236968	2.481344	0.944334	
23	1	0	5.632096	-1.672739	1.961681	
24	1	0	6.248991	0.701512	2.349674	
25	6	0	-3.676236	2.799661	-0.000734	
26	1	0	-2.921303	3.091962	0.735874	
27	1	0	-3.298091	2.999243	-1.007985	
28	1	0	-4.585758	3.373733	0.164756	
29	6	0	-5.444699	-0.712050	1.507919	
30	1	0	-4.819834	-0.892001	2.388694	
31	1	0	-5.657729	0.351891	1.418641	
32	1	0	-6.372995	-1.273214	1.604557	
33	8	0	-4.810008	-1.223456	0.328580	
34	8	0	-4.049595	1.435478	0.149484	
35	8	0	0.897686	1.267018	-0.945643	
36	8	0	2.857124	-0.532670	-1.468363	

Fig. S11 Optimized structure and Charge distribution of model 4a.

 Center	Atomic	Atomic	Co	oordinates (An	gstroms)
Number	Number	Туре	Х	Y	Z
 1	6	0	3.316629	0.443012	-0.626647
2	6	0	1.958935	0.668433	-0.476711
3	6	0	1.215997	0.012893	0.517223
4	6	0	1.876902	-0.871491	1.371934
5	6	0	3.236770	-1.112768	1.233860

6	6	0	3.970408	-0.468088	0.232765
7	1	0	1.505391	1.367005	-1.169422
8	1	0	1.302559	-1.370513	2.142671
9	1	0	3.720672	-1.812695	1.902309
10	6	0	-0.241278	0.226536	0.708674
11	6	0	-0.955749	1.181168	-0.258262
12	1	0	-0.715123	0.944247	-1.300248
13	1	0	-0.602131	2.198492	-0.070357
14	6	0	-3.100105	0.157899	-0.465728
15	6	0	-4.462711	0.212682	-0.116053
16	6	0	-2.626179	-0.917071	-1.213412
17	6	0	-5.324140	-0.783854	-0.553799
18	6	0	-3.504337	-1.912651	-1.644427
19	1	0	-1.575747	-0.999219	-1.462329
20	6	0	-4.854578	-1.844882	-1.328028
21	1	0	-6.369388	-0.704182	-0.276191
22	1	0	-3.118717	-2.741224	-2.228635
23	1	0	-5.538651	-2.615940	-1.664661
24	6	0	-4.534865	1.267252	1.988559
25	1	0	-4.954812	0.406518	2.520522
26	1	0	-3.447452	1.249124	2.069360
27	1	0	-4.925559	2.188292	2.419742
28	6	0	5.990382	-1.601590	0.806969
29	1	0	5.561810	-2.602648	0.703106
30	1	0	7.012327	-1.604329	0.435068
31	1	0	5.985678	-1.307403	1.860897
32	6	0	4.974761	2.015145	-1.265174
33	1	0	4.537019	2.791599	-0.628817
34	1	0	5.802436	1.532972	-0.743840
35	1	0	5.333118	2.463914	-2.190153
36	8	0	5.291890	-0.658754	0.003811
37	8	0	3.978028	1.063341	-1.650986
38	8	0	-4.955786	1.258911	0.619658
39	8	0	-2.343254	1.219771	-0.047424
40	8	0	-0.862689	-0.310739	1.601257

Fig. S12 Optimized structure and Charge distribution of model 5a.

Center Atomic Atomic		Со	ordinates (Ang	gstroms)		
Number	Number	Туре	Х	Y	Ζ	
 1	6	0	-3.452153	-0.900227	0.238868	
2	6	0	-2.100250	-1.202525	0.296586	
3	6	0	-1.178461	-0.342051	-0.309240	
4	6	0	-1.629331	0.802456	-0.954804	
5	6	0	-2.990481	1.112121	-1.014547	
6	6	0	-3.914247	0.252574	-0.418728	
7	1	0	-1.739170	-2.107029	0.765088	
8	1	0	-0.939222	1.481296	-1.443987	
9	6	0	0.294022	-0.645000	-0.198745	
10	1	0	0.830786	-0.094218	-0.985054	
11	6	0	0.869987	-0.218416	1.171338	
12	1	0	0.354960	-0.789422	1.945926	
13	6	0	3.247027	-0.000242	0.650230	
14	6	0	3.765431	-0.513079	-0.554175	
15	6	0	3.832500	1.122316	1.224402	
16	6	0	4.840612	0.123125	-1.172605	
17	6	0	4.904949	1.760002	0.602069	
18	6	0	5.403541	1.261253	-0.594730	
19	1	0	5.248697	-0.263834	-2.097673	
20	1	0	5.349766	2.637500	1.058343	
21	1	0	6.240282	1.746574	-1.085495	

22	8	0	-5.253773	0.503349	-0.490262
23	1	0	-5.701724	-0.226131	-0.039503
24	8	0	2.237852	-0.681921	1.289015
25	6	0	0.698334	1.258210	1.467293
26	1	0	1.258504	1.861868	0.740834
27	1	0	-0.363074	1.500009	1.360545
28	8	0	1.143948	1.509354	2.798438
29	1	0	0.958912	2.431582	3.005782
30	8	0	0.485017	-2.039613	-0.362843
31	1	0	1.436758	-2.188294	-0.260939
32	6	0	-4.119701	-2.885203	1.398041
33	1	0	-3.473627	-2.712822	2.264184
34	1	0	-5.056856	-3.330540	1.725692
35	1	0	-3.616757	-3.558460	0.697747
36	8	0	-4.466430	-1.660390	0.768370
37	6	0	3.463781	-2.068419	-2.355176
38	1	0	2.765065	-2.874091	-2.569707
39	1	0	3.316857	-1.257539	-3.074863
40	1	0	4.489648	-2.442136	-2.426087
41	8	0	3.160862	-1.639951	-1.035699
42	6	0	-4.148554	3.189691	-1.009193
43	1	0	-4.246129	4.043095	-1.679028
44	1	0	-5.134441	2.799942	-0.756348
45	1	0	-3.632571	3.503198	-0.094557
46	8	0	-3.368301	2.224299	-1.718403
47	1	0	3.417909	1.478898	2.158878

Fig. S13 Optimized structure and Charge distribution of model 1b.

 Center Atomic Atomic		Со	gstroms)			
Number	Number	Туре	Х	Y	Z	
 1	6	0	-3.859907	-1.299611	0.284583	
2	6	0	-2.479008	-1.125793	0.274914	
3	6	0	-1.925154	0.126224	-0.016510	
4	6	0	-2.779343	1.199806	-0.298210	
5	6	0	-4.156287	1.025933	-0.290851	
6	6	0	-4.699724	-0.225490	0.001203	
7	1	0	-4.280163	-2.273217	0.512888	
8	1	0	-1.840137	-1.971661	0.498635	
9	1	0	-2.334177	2.162196	-0.519749	
10	1	0	-4.809271	1.863554	-0.511661	
11	1	0	-5.776014	-0.362486	0.007831	
12	6	0	-0.447817	0.381356	-0.037562	
13	6	0	0.484921	-0.802961	0.241801	
14	1	0	0.227502	-1.614802	-0.446092	
15	1	0	0.254076	-1.181533	1.244435	
16	6	0	1.944719	-0.459489	0.127994	
17	6	0	2.650143	-0.731822	-1.044474	

18	6	0	2.613243	0.162602	1.184171	
19	6	0	3.996711	-0.396534	-1.159985	
20	1	0	2.140593	-1.208633	-1.876765	
21	6	0	3.958416	0.499107	1.074477	
22	1	0	2.073017	0.390991	2.097952	
23	6	0	4.655229	0.219179	-0.099220	
24	1	0	4.530988	-0.616945	-2.078394	
25	1	0	4.463442	0.981998	1.904690	
26	1	0	5.704650	0.480544	-0.186141	
27	8	0	-0.011418	1.489369	-0.262703	

Fig. S14 Optimized structure and Charge distribution of hydroperoxide intermediate h.

Center Atomic Atomic			Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	3.901793	-1.516573	-0.685262	
2	6	0	2.604361	-1.039977	-0.518476	
3	6	0	2.383080	0.312745	-0.222639	
4	6	0	3.483203	1.173540	-0.105721	
5	6	0	4.775314	0.693113	-0.263004	
6	6	0	4.987496	-0.654800	-0.554076	
7	1	0	4.063249	-2.563214	-0.919399	
8	1	0	1.773791	-1.726416	-0.612924	

9	1	0	3.295254	2.218543	0.108360	
10	1	0	5.618958	1.367254	-0.162612	
11	1	0	5.997064	-1.031186	-0.680666	
12	6	0	1.024887	0.923182	-0.062619	
13	6	0	-0.200131	-0.025444	0.013782	
14	6	0	-2.558728	0.264143	0.042143	
15	6	0	-2.867293	-1.087528	-0.109598	
16	6	0	-3.548550	1.236454	-0.102022	
17	6	0	-4.174605	-1.452944	-0.431706	
18	1	0	-2.115902	-1.846662	0.060996	
19	6	0	-4.847737	0.856350	-0.411852	
20	1	0	-3.271847	2.276318	0.025294	
21	6	0	-5.166813	-0.490905	-0.585266	
22	1	0	-4.414418	-2.504766	-0.547438	
23	1	0	-5.613445	1.616478	-0.525499	
24	1	0	-6.181374	-0.785691	-0.829610	
25	8	0	-1.302850	0.739981	0.350018	
26	8	0	0.867169	2.117882	-0.022615	
27	8	0	0.028092	-1.114232	0.888332	
28	8	0	0.529899	-0.584598	2.145529	
29	1	0	1.443581	-0.910748	2.122001	
30	1	0	-0.351063	-0.530321	-0.950711	

5 Supplementary experimental results

5.1 Model compound studies

Table S1 The effect of the amount of base.					
		Air(1 atm)/30 °C-5.5 h Catalyst/Base/H ₂ O	• HO + HO		
	1a		с	d	
			Yields (C mol%)		
Entry	NaOH (mmol)	Conversion	c	d	
1	0	0.75	0	0	
2	0.1	28.76	6.32	5.53	
3	0.2	67.58	35.96	33.64	
4	0.4	96.96	85.12	89.03	
5	0.5	94.24	78.40	75.41	

General conditions: 1a (0.1 mmol), CuCl catalyst (0.05 mmol), H₂O (2.5 mL), air (1 atm).

 Table S2 the effect of temperature and time on the 1a reaction.

		.0 Air(1 atm) CuCl/NaOH/H ₂ O		OH + HO			
	1a		c	d			
The second se	т.		Yields (r	Yields (mol %)		Selectivity (%)	
Temperature	Time	Conversion (%)	c	d	c	d	
	0.5h	8.11	4.09	4.54	50.43	55.98	
	1h	23.55	15.67	16.89	66.54	71.74	
	2h	37.30	27.67	30.21	74.18	80.98	
	3h	64.69	47.39	49.38	73.26	76.33	
30 °C	4h	77.60	63.59	69.17	81.95	89.13	
	5.5h	96.96	85.12	89.03	87.79	91.83	
	6h	100	81.45	83.31	81.45	83.31	
	8h	100	74.30	69.65	74.30	69.65	
	10h	100	58.36	48.39	58.36	48.39	
30 °C		3.53	0	0	0.00	0.00	
40 °C		33.76	14.53	17.32	43.04	51.30	
50 °C		49.56	32.45	27.88	65.48	56.26	
60 °C	10	65.36	38.09	36.85	58.28	56.38	
70 °C	Tomin	73.38	38.68	32.36	52.71	44.10	
80 °C		89.55	33.56	25.15	37.48	28.08	
90 °C		100	22.36	16.38	22.36	16.38	
100 °C		100	19.55	11.39	19.55	11.39	

General conditions: **1a** (0.1 mmol), catalyst (0.05 mmol), NaOH (0.4 mmol), water solvent (2.5 mL), air (1 atm).

Fig. S15 ¹H NMR spectra of (A) model 1a and (B) its oxidative products. Conditions: 1a (0.1 mmol), CuCl (0.05 mmol), NaOH (0.4 mmol), H₂O (2.5 mL), air (1 atm), 30 °C.

5.2 The conversion of authentic lignin feedstocks

Entry	Biomass source	Cellulose	Hemi-	Acid-solluble	Acid-insolluble
		(wt%)	cellulose (wt%	Lignin (wt%)	lignin (wt%)
)		
1	Native corn stover	31.73	21.31	18.15	2.95
2	Native pine wood	43.82	23.22	19.08	3.82
3	Native eucalyptus wood	44.73	13.58	19.27	4.63
4	Native bagasse	44.49	24.20	20.02	2.06
5	Native pennisetum	34.41	16.98	12.46	2.34
6	Bamboo	34.99	19.38	18.36	2.22

Table S3 Main components of different biomass source

Fig. S16 Effect of temperature on monomer yields (conditions: 0.5 g eucalyptus wood, 0.5 mmol CuCl, NaOH (15 mmol) and H₂O (25 mL) as the solvent, 5 bar air pressure.)

Fig. S17 Effect of reaction time on monomer yields (conditions: 0.5 g eucalyptus wood, 0.5 mmol CuCl, NaOH (15 mmol) and H2O (25 mL) as the solvent, 160 °C, 5 bar air pressure.)

Fig. S18 Effect of initial air pressure on monomer yields (conditions: 0.5 g eucalyptus wood, 0.5 mmol CuCl, NaOH (15 mmol) and H_2O (25 mL) as the solvent, 160 °C, 1h.)

Fig. S19 Gas chromatogram of the monomeric products from eucalyptus oxidation at 160°C for 1h (5 bar air at RT).

Fig. S20 GC-FID was performed on the aqueous phase after dichloromethane extraction in a typical eucalyptus wood oxidation experiment. The minor peaks corresponding to lignin monomer compounds in the aqueous phase correspond to $\sim 0.1\%$ monomer yield (versus 38.61% in the organic phase), which is negligible.

Entry	Wavenumbers (cm ⁻¹)	Assignments and comments	Ref
1	1 2880 C-H stretch in methyl and methylene		3
		groups	
2	1425	C–O–H bending in plane at C-6	4
3	1370	δС–Н	4
4	1160	C-O-C at β-glucosidic linkage	4
5	1066	C-O at C6	4
6	894	C-O-C stretching at β-glycosidic	4
		linkage. C-O-C, C-C-O, and C-C-H at	
		C5 and C6	

Table S4 The ascription of lignocellulosic residue infrared absorption band

Entry	Residue	Delignification(%)	Hemicellulose
			Dissolution(%)
1	Corn stover	91.23	67.50
2	Pine wood	82.65	60.33
3	Eucalyptus wood	86.67	72.23
4	Bagasse	83.10	61.09
5	Pennisetum	89.36	74.36
6	Bamboo	90.03	77.82

Table S5 Delignification (%) and Hemicellulose Dissolution (%) of different biomass source

in mild alkaline oxidation reaction

References

- 1. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Crocker, Determination of structural carbohydrates and lignin in biomass, Report NREL/TP-5100-60223, National Renewable Energy Laboratory (NREL), Goldon, CO (US), 2008.
- 2. N. C. Luo, M. Wang, H. J. Li, J. Zhang, T. T. Hou, H. J. Chen, X. C. Zhang, J. M. Lu and F. Wang, Acs Catal, 2017, 7, 4571-4580.
- S. Y. Oh, D. I. Yoo, Y. Shin, H. C. Kim, H. Y. Kim, Y. S. Chung, W. H. Park and J. H. Youk, Carbohyd Res, 2005, 340, 2376-2391.
 G. Vazquez, G. Antorrena, J. Gonzalez and S. Freire, Holzforschung, 1997, 51, 158-166.