Electronic supplementary information

Single-step preparation of zinco- and aluminosilicate delaminated MWW layers for catalytic conversion of glucose[†]

Hyung-Ki Min,^a Sungjoon Kweon,^b Sohun Oh,^c Hyejin An,^b Yun Hye Cho,^b Haehyun Min,^d Donghui Jo,^e Jeong F. Kim,^b Chae-Ho Shin,^c Sung Bong Kang^{*d} and Min Bum Park^{*b}

^aLOTTE Chemical Research Institute, Daejeon 34110, Korea

^bDepartment of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea. E-mail: mbpark@inu.ac.kr ^cDepartment of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea ^dSchool of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea. E-mail: sbkang@gist.ac.kr ^ePetrochemical Catalyst Research Center, Korea Research Institute of Chemical Technology,

Daejeon 34114, Korea

†Electronic supplementary information (ESI) available. See DOI: xxx

	BET	surface are	$(m^2 g^{-1})^b$		ICP elen	nental analysis		Acid conce	entration (µmol g ⁻¹) ^e
Catalyst ^a	Total	External	Micropore	Si/B	Si/Zn _{Total}	Si/Zn _{Framework} ^d	Si/Al	Brønsted	Lewis	Total
B-MWW	477	25	452	9.5	-	-	-	0	n.d.	-
Zn-DML-100	474	112	362	21	25	25	-	84	n.d.	-
Zn-DML-120	452	142	310	25	9.3	16	-	31	n.d.	-
Zn-DML-140	271	173	98	49	4.6	12	-	13	178	191
Zn-DML-160	165	165	0	240	3.5	10	-	0	84	84
Zn _{0.75} Al _{0.25} -DML-160	322	105	217	1100	190	190	26	137	240	377
Zn _{0.50} Al _{0.50} -DML-160	427	137	291	1100	230	230	8.4	153	266	419
Zn _{0.25} Al _{0.75} -DML-160	372	68	304	1200	410	410	8.4	135	172	307
Al-DML-160	304	66	238	6800	-	-	12	136	143	279
SnAl-BEA	527	120	407	-	130 ^c	-	620	8	65	73

 Table S1 Physicochemical properties of catalysts prepared in this study

^{*a*} Calcined at 550 °C for 8 h. ^{*b*} Calculated from N₂ sorption isotherms (Fig. S5†). ^{*c*} Si/Sn molar ratio. ^{*d*} Calculated under the assumption that the number of framework tetrahedral atoms is 72 including 65.2 Si atoms, which are same to those of B-MWW. ^{*e*} The concentrations of Brønsted and Lewis acid sites were determined from the intensities of the pyridine-adsorbed IR bands at approximately 1550 and 1450 cm⁻¹, respectively (Figs. 6 and S6†). n.d. means that it cannot be determined due to the background spectrum.

		_		
_	Framework Zn	ZnO	Total area	Area ratio
Catalyst	at 1023 eV (A)	at 1022 eV (B)	(A + B)	(A/B)
Zn-DML-100	4600	2450	7050	1.88
Zn-DML-120	14000	8500	22500	1.65
Zn-DML-140	12000	17000	29000	0.71
Zn-DML-160	7000	27500	34500	0.25
Zn _{0.75} Al _{0.25} -DML-160	17000	18000	35000	0.94

Table S2 Relative integrated areas of $Zn 2p_{3/2}$ XPS spectra of the Zn-containing catalysts employed in this study

Fig. S1 Powder XRD patterns of (a) delaminated B-MWW and (b) SnAl-BEA.

Fig. S2 Initial structures of (a) 3D and (b) 2D MWW silicates for DFT calculation. Si, yellow; O, red; H, white. The Si1 atoms of 3D MWW structure, which are connected with O1 and O2 atoms, are marked in green.

Fig. S3 TGA/DTA curves for the as-synthesized B-MWW(P), Zn-DML-*x*, and Zn_yAl_z-DML-160 samples.

Fig. S4 Powder XRD patterns of calcined (a) B-MWW and Zn-DML-*x* and (b) Zn_yAl_z-DML-160 catalysts.

Fig. S5 N₂ sorption isotherms of calcined B-MWW, Zn-DML-*x*, Zn_yAl_z-DML-160, and SnAl-BEA catalysts.

Fig. S6 Powder XRD patterns of as-synthesized Al-DML-180 and Al-DML-200 samples.

Fig. S7 (a) IR spectrum in the 3400–3900 region and (b) pyridine-adsorbed IR spectrum of SnAl-BEA.

Fig. S8 (a) Glucose conversion and yields for (b) fructose, (c) HMF, and (d) LA + FA with no catalyst at 160 °C.

Fig. S9 Yields for LA + FA over (a) Zn-DML-*x* and SnAl-BEA and (b) Zn_yAl_z -DML-160 catalysts at 160 °C.