Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary Material: Controlled phase synthesis of VmOn in differing oxidation states using a simplified formic acid process, quantified with a new generalized index designed for use with public domain materials process information

Henam Sylvia Devi¹, Akshita Mishra¹, Md. Samim Reza¹, Parvez Akhtar¹, Henam Premananda Singh², Thiyam David Singh², and Madhusudan Singh¹

¹Functional Materials and Devices Laboratory, Department of Electrical Engineering, Indian Institute of Technology Delhi, India-110016

²Department of Chemistry, National Institute of Technology Manipur, Langol, Manipur, India-795004.

1 Zeta potential measurements

Figure 1: Zeta potential of fresh and aged V_2O_5 (blue) (a) & (b) at pH=1, (c) & (d) at pH=7, fresh and aged VO_2 (red) (e) & (f) at pH=1, and (g) & (h) at pH=7.

Figure 2: DLS data for (a) V_2O_5 , (b) concentrated V_2O_5 , (c) VO_2 , and (d) V_2O_3 .

2 Dynamic light scattering measurements

DLS data (Fig. (2)) for vanadium pentaoxide yields an estimate of 134 nm (in 1.5 ml solvent) for the hydrodynamic diameters for the nanoparticles, and a different estimate (706 nm) for higher concentration (0.5 ml solvent, concentrated by evaporation). This increase can be attributed to a lower degree of separation of agglomerated nanoparticles in the more concentrated solution. An complicating factor is the non-spherical nature of the nanoparticles, which can impact the reliability of DLS measurements¹.

3 IV hystersis data

The IV characteristics (hysteresis loop) of all the three vanadium oxides (a) V_2O_5 (b) VO_2 and (c) V_2O_3 (unannealed (U) and annealed (P)) are in Figure. 3 respectively.

Figure 3: IV characteristics of (a) V_2O_5 , (b) VO_2 and (c) V_2O_3 for unannealed (U) and annealed (P) devices.

4 Relation of greenness index to the 12 guiding principles for green synthesis

In our proposal of a more accessible greenness index that can be employed in academic research labs for obtaining estimates of relative greenness against published literature, we have defined the following normalized

dimensionless quantities:

- 1. U_s (Health, special and flammability hazard).
- 2. E_c (Process thermal energy conversion index).
- 3. L_s (Shelf-life).
- 4. A (Atom economy).
- 5. C_s (Use of surfactants).
- 6. R_s (Derivability of reactants from agricultural products, or renewable feedstocks).
- 7. M_f (Metal criticality/scarcity/use of catalysts).

We now attempt to relate the above factors to the 12 principles laid down by Anastas and Warner^{2,3}.

- 1. Prevention is better than cure, and
- 2. Atom economy.

The E-factor⁴ relates the weight of waste/byproducts co-produced to the weight of the desired product. Process mass intensity⁵ has been introduced by the ACS Green Chemistry Institute Pharmaceutical Roundtable which prefers to use the ratio of weight of all materials used to the weight of the drug ingredient produced.⁶ This measure has proven to be extremely useful in industry in boosting the efficiency of the production. However, given that the mass of solvents is often unknown in literature or not reported, it becomes difficult to compare the efficiencies of published processes, which is often the first step in selecting processes for scale up and industrial use. We use a measure of A(atom economy) here, defined similarly to the one in literature², as an imperfect indicator for efficiency of use of minimal reactants as a fraction of products. A process that uses too many unnecessary reagents (impacting prevention) would necessarily suffer from a low A value.

3. Less hazardous chemical synthesis, designing safer chemicals, and inherently safer chemicals for accident prevention.

Hazards posed by chemicals take many forms: toxicity, physical damage (such as corrosiveness), flammability, radiological risk, etc, which is an involved consideration depending on the degree of exposure, demographic profile of personnel exposed, and is a strong function of the nature of the hazard^{3,7}. To address this using information that is commonly available to researchers, we have used the National Fire Protection Association (NFPA) Hazard identification system⁸ diamond to define the factor U_s above for the reagents used. The safety of chemicals also is related to the shelf-life of the reagents as safer (more physically stable) chemicals tend to have a longer shelf-life. We account for this using factor L_s .

4. Safer solvents and auxillaries.

This involves avoiding the use of solvents, separation agents (such as reduce derivatives), and use of benign auxillaries whenever possible^{2,5}. This overlaps with our definition of U_s , and C_s .

5. Energy efficiency.

Energy requirements and environmental impact need to be accounted for in process design, and synthesis should be conducted at ambient temperatures as far as is practicable^{2,5}. Our definition of the E_c (process thermal energy conversion index) explicitly measures deviations from the room temperature (298K) at different process steps.

6. Renewable feedstocks.

To avoid depleting precious natural resources, the use of renewable feedstocks is desirable^{2,9}. We have defined a factor R_s that explicitly measures the fraction of reagents that are sourcable in principle from renewable feedtsocks.

7. Reduce derivatives.

Use of blocking group/protecting group/ any chemical that can alter physical/ chemical process like Methoxymethyl ether (MOM), Methoxytrityl [(4-methoxyphenyl)diphenylmethyl] (MMT), p-Methoxybenzyl ether (PMB), p-Methoxyphenyl ether (PMP) etc. should be avoided as far as possible^{2,9}.

We are counting this factor as surfactants (C_s). However, the greenness index has been defined in a manner that clearly admits of future extension. In the synthesis of V₂O₅ and VO₂, examples of enzymatic synthesis were not readily found.

8. Catalysis.

While role of catalysis is encouraged in discussions^{2,10} as it reduces activation energy of the reaction, and also enables the use of simple reducing agents in certain cases, a matter of concern is that metals involved in catalysis tend to be found only rarely in the Earth's crust and oceans. The low natural abundances argue against the use of catalysis in certain cases where its avoidance does not impose a large energy cost. In our treatment, we have elected to treat use of catalysis as an undesirable factor (M_f) since G explicitly and separately accounts for thermal energy usage explicitly, in recognition of the fact that the choice of catalysis is driven by multiple considerations.

9. Design for degradation.

This aspect relates to the desirability of spontaneous breakdown of chemical products at the end of their desired function^{2,9}. Given that how long the functionality of a synthesized material is needed depends strongly on the application, we have elected not to account for this specific principle in G.

10. Real-time analysis for pollution prevention.

This principle relates to the need for in-process monitoring of synthetic processes^{2,9}, and control prior to the formation of hazardous substances. Given that this principle asks for information that is highly specific to the process involved, and concerns information that rarely makes it into scientific literature, we have chosen not to include it in *G*.

11. Inherently safer chemistry for accident prevention.

This principle relates to the need for use of chemistry and phase of chemicals that is inherently safer^{2,5}. There is a significant overlap between this principle and the one recommending less hazardous synthesis. We have addressed this through the factor U_s in G.

As can be seen above, we have made an attempt to account for 8 of the above 11 principles in the definition of G. These principles, which are intended as guiding principles towards the design of chemical processes, can only be imperfectly captured by different greenness indices. Each index has its own natural strengths. We have attempted to construct a greenness index that can be informally used in graduate research laboratories, and can employ the usually low degree of process detail expressed in scientific literature to produce estimators of greenness.

Table 1: Greenness index of V_2O_5 synthesis. Constitutent terms have been estimated for each of the referenced works primarily from published data. This has been supplemented with public domain material safety data sheet (MSDS) data for the precursor safety, which has been used where appropriate, as described in the manuscript.

Process	A	R_s	E_c	U_s	L_s	C_s	M_{f}	$G = \frac{1}{7} \times (A + R_s +$
								$U_s + E_c + L_s$
								$+C_s+M_f)$
Present work	0.649	0.5	0.646	0.548	0.864	1	1	0.744
Thermal de-	0.777	0	0.335	0.7	0.950	1	1	0.680
composition ¹¹								
Solvothermal ¹²	0.614	1	0.630	0.616	0.950	1	1	0.830
Hydrogen per-	0.492	0	0.646	0.6	0.864	0	0.0003	0.371
oxide ¹³								
Hydrothermal ¹⁴	0.547	0	0.728	0.699	0.950	1	0.284	0.601
Polyol ¹⁵	0.614	1	0.589	0.616	0.950	1	1	0.824

Table 2: Greenness index of VO₂ synthesis.

Process	A	R_s	E _c	U_s	L_s	C_s	M_f	$G = \frac{1}{7} \times (A + R_s +$
								$U_s + E_c + L_s$
								$+C_s+M_f)$
Present work	0.508	0.666	0.738	0.555	0.632	0	1	0.585
Gram scale ¹⁶	0.471	0	0.532	0.472	0.632	0	0.284	0.341
Colloidal ¹⁷	0.560	0.25	0.293	0.386	0.632	1	1	0.588
Hydrothermal ¹⁸	0.458	0.5	0.638	0.561	0.993	0	1	0.592

5 Calculations for *G* and its constituent terms

The tables that provide values for various terms used in the greenness index: A(atom economy): Table $3(V_2O_5)$ and $4(VO_2)$, R_s (renewable feedstocks): Table $5(V_2O_5)$ and $6(VO_2)$, E_c (energy conversion index): Table. $7(V_2O_5)$ and $8(VO_2)$, U_s (total hazard): Table 9, $10(V_2O_5)$ and $11(VO_2)$, L_s (shelf life):Table 9, Table $12(V_2O_5)$ and Table $13(VO_2)$, M_f (standardised metal scarcity):Table 9.

References

- [1] P. Arenas-Guerrero, Á. V. Delgado, K. J. Donovan, K. Scott, T. Bellini, F. Mantegazza and M. L. Jiménez, *Sci Rep*, 2018, **8**, 9502.
- [2] H. C. Erythropel, J. B. Zimmerman, T. M. de Winter, L. Petitjean, F. Melnikov, C. H. Lam, A. W. Lounsbury, K. E. Mellor, N. Z. Janković, Q. Tu, L. N. Pincus, M. M. Falinski, W. Shi, P. Coish, D. L. Plata and P. T. Anastas, *Green Chem.*, 2018, **20**, 1929–1961.
- [3] P. T. Anastas and J. Charles Warner, *Green Chemistry: Theory and Practice*, Oxford University Press, 1998.
- [4] R. A. Sheldon, Green Chem., 2007, 9, 1273–1283.

Synthesis	Reactants	Molecular	Desired	Molecular	А
		weight	product	weight	
		(amu)		(amu)	
Present work	2NH ₄ VO ₃ +HCOOH	279.99	V ₂ O ₅	181.88	0.649
Thermal	12NH ₄ VO ₃	1403.76	6V ₂ O ₅	1091.28	0.777
decomposi-					
tion ^{11,19}					
Solvothermal	$2NH_4VO_3+H_6C_2O_2$	296.03	V ₂ O ₅	181.88	0.614
synthesis ¹²					
Peroxide	$2NH_4VO_3+4H_2O_2$ +	368.97	V ₂ O ₅	181.88	0.492
method ¹³	HNO ₃		_		
Hydrothermal ¹⁴	$2NH_4VO_3+H_2SO_4$	332.03	V ₂ O ₅	181.88	0.547
Polyol route ¹⁵	$2NH_4VO_3+H_6C_2O_2$	296.03	V ₂ O ₅	181.88	0.614

Table 3: Calculation of A for V_2O_5 synthesis.

Table 4: Calculation of A for VO_2 synthesis.

Synthesis	Reactants	Molecular	Desired	Molecular	А
		weight	product	weight	
		(amu)		(amu)	
Present work	2NH ₄ VO ₃ +2HCOOH	326.02	2VO ₂	165.88	0.508
Gram ¹⁶	$V_2O_5+H_2SO_4+N_2H_4+$	351.99	2VO ₂	165.88	0.471
	NaOH				
Colloidal ¹⁷	$2NH_4VO_3+$	296.03	2VO ₂	165.88	0.560
	$H_6C_2O_2+C_{18}H_{34}O_2$				
Hydrothermal ^{18,20}	$V_2O_5+2C_2H_2O_4$	361.94	2VO ₂	165.88	0.458

Table 5: Calculation of R_s for V_2O_5 synthesis.

Synthesis	Number of	Number	R_s
	renewable	of non-	
	reactants	renewable	
		reactants	
Present work	1	1	0.5
Thermal decom-	0	1	0
position			
Solvothermal	1	0	1
Hydrogen perox-	0	1	0
ide			
Hydrothermal	0	1	0
Polyol	1	0	1

Synthesis	Number of	Number	R_s
	renewable	of non-	
	reactants	renewable	
		reactants	
Present work	2	1	0.66
Gram Scale	0	1	0
Colloidal	1	3	0.25
Hydrothermal	1	1	0.5

Table 6: Calculation of R_s for VO₂ synthesis

Table 7: Process steps in V₂O₅ synthesis are defined using a (process temperature (K), time (minutes)) vector. Quantity $e_{c,i} \equiv |T_i - 298K| \times \Delta t_i (\times 10^4) (K.min)$ is calculated in columns below for the *i*th process step.

Study	Step 1	<i>e</i> _{c,1}	Step 2	$e_{c,2}$	Step 3	<i>e</i> _{<i>c</i>,3}	$Y = \frac{\sum_{i} e_{c,i}}{298K \times \sum_{i} \Delta t_i}$	$E_c \equiv$
								e^{-Y}
Present	(353.15,	0.99	(343.15,	1.625	(673.15,	6.75	0.43	0.64
work	180)		360)		180)			
Thermal	(623.15,	9.75	(0, 0)	0	(0, 0)	0	1.09	0.33
decomposi-	300)							
tion ¹¹								
Solvotherma	(453.15,	22.34	(298.15,	0.007	(773.15,	5.70	0.46	0.63
synthesis ¹²	1440)		480)		120)			
Hydrogen	(453.15,	22.34	(333.15,	2.109	(773.15,	2.85	0.43	0.64
peroxide ¹³	1440)		600)		60)			
Hydro-	(393.15,	13.70	(343.15,	2.167	(773.15,	2.85	0.31	0.72
thermal ¹⁴	1440)		480)		60)			
Polyol	(433.15,	0.81	(353.15,	1.985	(773.15,	5.70	0.52	0.58
route ¹⁵	60)		360)		120)			

Table 8: Process steps in VO₂ synthesis are defined using a (process temperature (K), time (minutes)) vector. Quantity $e_{c,i} \equiv |T_i - 298K| \times \Delta t_i (\times 10^4) (K.min)$ is calculated in columns below for the *i*th process step.

Study	Step 1	$e_{c,1}$	Step 2	$e_{c,2}$	Step 3	$e_{c,3}$	Step 4	$e_{c,4}$	Y =	$E_c \equiv$
									$\frac{\sum_{i} e_{c,i}}{298K \times \sum_{i} \Delta t_{i}}$	e^{-Y}
Present	(353.15,	7.94	(333.15,	1.26	(973.15,	8.10	-	-	0.30	0.73
work	1440)		360)		120)					
Thermal	(493.15,	56.20	(333.15,	0.03	(1073.15,	4.65	(333.15,	1.26	0.63	0.53
decom-	2880)		10)		60)		360)			
posi-										
tion ¹¹										
Solvo-	(433.15,	0.81	(473.15,	0.52	(473.15,	0.52	(873.15,	6.90	1.22	0.29
thermal	60)		30)		30)		120)			
synthe-										
sis ¹²										
Hydrogen	(453.15,	44.68	(298.15,	0.0003	(333.15,	2.10	-	-	0.44	0.63
perox-	2880)		20)		600)					
ide ¹³										

Table 9: H_i (Health), T_f (flash temperature), S_i (special hazard factors)⁸, L_s (shelf life) and M_f (standardised metal scarcity) for the reagents used. For materials whose flash temperature, health and special hazard is not available, we have assigned zero.

Substances	H _i	$T_f(K)$	Si	$h_1 = \frac{H_i + S_i}{5}$	$h_2 = e^{-\frac{T_f}{343}}$	t=shelf	L_s	$M_f = M_s/1 \times$
						life in		10^{-7}
						months		
H ₂ O	0	0	0	0	0	0	0	1
$H_2SO_4^{21}$	3	0	1	0.8	0	36	0.95	0.28
HNO ₃ ²²	4	0	1	1	0	36	0.95	$2.6 imes 10^{-6}$
$C_2H_6O_2^{21,23}$	1	384.15	0	0.2	0.32	60	0.99	1
HCOOH ^{21,24}	3	342.15	0	0.6	0.36	24	0.86	1
H ₂ O ₂ ^{21,25}	3	0	1	0.8	0	24	0.86	3×10^{-4}
NaCl ²⁶	0	0	0	0	0	60	0.99	1
NaOH ^{26,27}	3	0	1	0.8	0	12	0.63	1
NH ₄ VO ₃	4	0	0	0.8	0	36	0.95	1
NH ₄ Cl ²⁶	2	0	0	0.4	0	12	0.63	1
NO ²⁸	3	0	1	0.8	0	13.92	0.68	1
NO ₂ ²⁸	3	0	1	0.8	0	3.99	0.28	1
SO ₂ ²⁸	3	0	0	0.6	0	18	0.77	1
$Ca(OH)_2^{26}$	3	0	0	0.6	0	12	0.63	1
NH ₃ ²⁸	3	0	0	0.6	0	13.92	0.68	1
CO_{2}^{28}	2	0	0	0.4	0	27.6	0.89	1
CO ²⁸	3	82.15	0	0.6	0.787	27.6	0.89	1
CH ₄	2	85.15	0	0.4	0.78	0	0	1
H ₂	0	0	0	0	0	0	0	1
HSO ₄ ⁻	1	0	0	0.2	0	0	0	1
C ₂ H ₂ O ₄ ^{26,29}	3	439.15	0	0.6	0.27	60	0.99	1
$N_2H_4^{30}$	4	325.15	0	0.8	0.38	60	0.99	1
$C_{18}H_{34}O_2^{31}$	0	462.15	0	0	0.25	12	0.63	1
Citric	1	0	0	0.2	0	12	0.63	1
acid ^{26,32}								
Na	3	0	0	0.6	0	0	0	1
V ₂ O ₅	4	0	0	0.8	0	60	0.99	1
PVP	0	0	0	0	0	48	0.98	1

Study	Materials	$\frac{h_1}{n}$	h_2	$\frac{h_1}{n} + h_2$	$T = \frac{1}{2} \left(\frac{h_1}{n} + h_2 \right)$	U_s
Present work	HCOOH, CO ₂ ,	0.53	0.368	0.902	0.451	0.548
	NH ₃					
Thermal	NH ₃	0.6	0	0.6	0.3	0.7
Solvothermal	$H_6C_2O_2$, NH_3 ,	0.44	0.326	0.766	0.383	0.616
	CO, CO_2, CH_4					
Hydrogen	H_2O_2 , HNO_3 ,	0.8	0	0.8	0.4	0.6
peroxide	NH ₃					
Hydrothermal	$H_2SO_4, NH_3,$	0.46	0.134	0.601	0.300	0.699
	HSO_4^-					
Polyol	$H_6C_2O_2$, NH_3 ,	0.44	0.326	0.766	0.383	0.616
	CO, CO_2, CH_4					

Table 10: U_s calculation for V₂O₅. *n* represents the number of reagents.

Table 11: U_s calculation for VO₂. *n* represents the number of reagents.

Study	Materials	$\frac{h_1}{n}$	h_2	$\frac{h_1}{n} + h_2$	$T = \frac{1}{2} \left(\frac{h_1}{n} + h_2 \right)$	U_s
Present work	HCOOH, citric acid,	0.52	0.368	0.888	0.444	0.555
	$\rm NH_4VO_3, \rm NH_3, \rm CO_2$					
Gram	V_2O_5 , H_2SO_4 ,	0.66	0.387	1.054	0.527	0.472
	N_2H_4 , NaOH,					
	Na ⁺ ,HSO ₄ ⁻					
Colloidal	$NH_4VO_3, H_6C_2O_2,$	0.44	0.787	1.227	0.613	0.386
	$C_{18}H_{34}O_2$, NH ₃ , CO					
Hydrothermal	V_2O_5 , $C_2H_2O_4$,	0.60	0.277	0.877	0.438	0.561
	CO ₂ , CO					

Table 12: Calculation of L_s for V₂O₅ synthesis. The shelf life is governed by the material with the lowest shelf life.

Synthesis type	Material with	t_s	L_s
	lowest shelf life	(min)	
Present work	НСООН	2	0.864
Thermal	NH ₄ VO ₃	3	0.950
Solvothermal	NH ₄ VO ₃	3	0.950
Hydrogen per-	H ₂ O ₂	2	0.864
oxide			
Hydrothermal	NH ₄ VO ₃ /H ₂ SO ₄	3	0.950
Polyol	NH ₄ VO ₃	3	0.950

Table 13: Calculation of L_s for VO₂ synthesis. The shelf life is governed by the material with the lowest shelf life.

Synthesis	Material with	t_s	L_s
type	lowest shelf	(min)	
	life		
Present work	citric acid	1	0.632
Gram	NaOH	1	0.632
Colloidal	C ₁₈ H ₃₄ O ₂	1	0.632
Hydrothermal	$V_2O_5/C_2H_2O_4$	5	0.993

- [5] C. Jimenez-Gonzalez, C. S. Ponder, Q. B. Broxterman and J. B. Manley, Org. Process Res. Dev., 2011, 15, 912–917.
- [6] Amgen, ACS GCI Pharmaceutical Roundtable: Catalyzing Green Chemistry & Engineering in the Global Pharmaceutical Industry., 2005.
- [7] L. Sweatt, Guidance **Determination** Compliance **OSHA** for Hazard for with the Hazard *Communication* Standard **Occupational** Safety and Health Administration, https://www.osha.gov/dsg/hazcom/ghd053107.html, 1970.
- [8] 1. Hazcom and N. 704, NFPA 704: Standard System for the Identification of the Hazards of Materials for Emergency Response, 2016.
- [9] P. Anastas and J. Warner, *12 Principles of Green Chemistry*, https://www.acs.org/content/acs/en/greenchemistry/principles/12-principles-of-green-chemistry.html, 1998.
- [10] R. A. Sheldon, ACS Sustainable Chem. Eng., 2018, 6, 32–48.
- [11] S. A. Selim, C. A. Philip and R. S. Mikhail, *Thermochimica Acta*, 1980, **36**, 287–297.
- [12] E. Uchaker, N. Zhou, Y. Li and G. Cao, J. Phys. Chem. C, 2013, 117, 1621–1626.
- [13] W. Yu, J. Wang, Z. Gou, W. Zeng, W. Guo and L. Lin, *Ceramics International*, 2013, **39**, 2639–2643.
- [14] J. S. Kumar and P. Thangadurai, AIP Conference Proceedings, 2016, 1731, 050140.
- [15] I. Mjejri, A. Rougier and M. Gaudon, *Inorg Chem*, 2017, 56, 1734–1741.
- [16] D. Verma, D. Singh, P. Kumar, P. Avasthi and V. Balakrishnan, *Ceramics International*, 2019, 45, 3554– 3562.
- [17] Y. Choi, D. M. Sim, Y. H. Hur, H. J. Han and Y. S. Jung, *Solar Energy Materials and Solar Cells*, 2018, 176, 266–272.
- [18] H. Yin, K. Yu, Z. Zhang and Z. Zhu, *Applied Surface Science*, 2011, **21**, 8840–8845.
- [19] M. J. O'Neil, *The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals*, The Royal Society of Chemistry, Cambridge, 2013.

- [20] D. Alie, L. Gedvilas, Z. Wang, R. Tenent, C. Engtrakul, Y. Yan, S. E. Shaheen, A. C. Dillon and C. Ban, *Journal of Solid State Chemistry*, 2014, 212, 237–241.
- [21] Romil, *ROMIL ROMIL-SATM Solvents and Acids for General Use Specifications*, https://romil.com/products/sas/specifications, 1996.
- [22] X. Liang, G. Gao, Y. Du, J. Wang, W. Sun, Y. Liu, K. Zhang and G. Wu, *Journal of Alloys and Compounds*, 2018, **757**, 177–187.
- [23] A. V. Grigorieva, S. M. Badalyan, E. A. Goodilin, M. N. Rumyantseva, A. M. Gaskov, A. Birkner and Y. D. Tretyakov, *European Journal of Inorganic Chemistry*, 2010, 2010, 5247–5253.
- [24] J. C. Tsai and K. M. Nicholas, J. Am. Chem. Soc., 1992, 114, 5117-5124.
- [25] T. M. Rueda, J. G. Serna and M. J. C. Alonso, The Journal of Supercritical Fluids, 2012, 61, 119–125.
- [26] Romil, *ROMIL ROMIL-PUROMTM High Purity Process Solvents Specifications*, https://romil.com/products/pus/specifications, 1996.
- [27] F. Du, D. M. Warsinger, T. I. Urmi, G. P. Thiel, A. Kumar and J. H. Lienhard V, *Environ. Sci. Technol.*, 2018, **52**, 5949–5958.
- [28] M. hammons, *The Simple Truth of Calibration Gas Shelf Life*, https://www.indsci.com/en/the-monitor-blog/the-simple-truth-of-calibration-gas-shelf-life/, 2017.
- [29] M. V. Dutton and C. S. Evans, Can. J. Microbiol., 1996, 42, 881-895.
- [30] R. Adams and B. Brown, Org. Synth., 1922, 2, 37.
- [31] J. M. Ntambi and M. Miyazaki, Curr. Opin. Lipidol., 2003, 14, 255–261.
- [32] M. M. P. M, Nature, 1880, 22, 585–586.