Supporting Information

For

Insight into the reversible behavior of Lewis-Brønsted basic poly(ionic liquid)s in one-pot two-step chemical fixation of CO₂ to linear carbonate

Yuting He^a, Huimin Lu^a, Xue Li^a, Jun Wu^a, Tiancheng Pu^c, Wei Du^a, Hongping Li^b, Jing Ding^{*a}, Hui Wan^a, Guofeng Guan^{*a}

^a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China.

^b Institute for Energy Research of Jiangsu University, Jiangsu University, Jiangsu 212013, PR China.

^c State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.

* Corresponding authors

E-mails: jding@njtech.edu.cn (Jing Ding)

guangf@njtech.edu.cn (Guofeng Guan)

Tel: +86 25 83587198, Fax: +86 25 83587198

Catalyst characterization

¹H NMR spectra and ¹³C NMR spectra were performed on a Bruker DPX 500 spectrometer at ambient temperature by using D_2O as the deuterium reagent. Fourier transform infrared (FT-IR) spectra were determined on a Thermo Nicolet 6700 spectrometer in the wavenumber range of 4000-500 cm⁻¹ of fully dried samples mixed with KBr. X-ray photoelectron spectroscopy (XPS) was conducted on a PHI 5000 Versa Probe X-ray photoelectron spectrometer equipped with Al K α radiation (1486.6 eV) as the X-ray source. The C 1s peak at 284.5 eV was used as the reference for the binding energies. Brunauer-Emmett-Teller (BET) surface areas, pore volumes and pore-size distributions of the samples were calculated from nitrogen adsorption–desorption isotherms acquired on a BELSORP-MINI instrument at 77 K. Scanning electron microscope (10 kV). Thermal gravimetric (TG) analysis experiments were carried out with a STA409 instrument under the N₂ flow at a heating rate of 10 K·min⁻¹. An FT-IR spectrometer (PerkinElmer Frontier) equipped with an *in situ* diffuse reflection cell (Harrick Praying Mantis) was used for *in situ* DRIFTS analysis.

Computational details

Density functional theory (DFT) calculations based on quantum mechanics were carried out with Gaussian 09 suite of programs. The geometric optimization of the structures and frequency analysis were carried out by using the B3LYP functional with the 6-311++G** basis set with empirical dispersion. Non-covalent interaction (NCI) and electrostatic potential (ESP) [1] were analyzed by Multiwfn 3.8 (wave function analysis) [2] and VMD 1.9.2 (molecular visualization) [3], respectively.

Synthesis of amino-derived ILs monomer [VBTEDA]Cl

Synthesis of carboxyl-derived ILs monomer [CEVIm]Cl

Scheme S1. Synthetic procedure of functionalized ILs monomer.

Scheme S2. Synthetic procedure of functionalized PILs.

Scheme S3. Catalytic procedure of two-step synthesis method.

Fig. S1. EDS spectra of (a) P-IMCCl and (b) P-IMC (the sample was coated on polished silicon wafers and sprayed with gold for 90 s).

Fig. S2. EDS spectra of (a) P-DILsCl and (b) DILsOH (the sample was coated on polished silicon wafers and sprayed with gold for 90 s).

Fig. S3. FT-IR spectra of Triethylene diamine.

Fig. S4. TG-Mass result of P-DILsCl. (a) TG, DTG and DTA curves of P-DILsCl. (b) Relationship between molecular weight of P-DILsCl pyrolysis products and signal intensity with pyrolysis temperature. (c-i) Relationship between different molecular weight pyrolysis products of signal intensity with pyrolysis temperature.

Fig. S5. TG-Mass result of P-DILsOH. (a) TG, DTG and DTA curves of P-DILsOH. (b) Relationship between molecular weight of P-DILsCl pyrolysis products and signal intensity with pyrolysis temperature. (c-i) Relationship between different molecular weight pyrolysis products of signal intensity with pyrolysis temperature.

Fig. S6. N_2 sorption isotherms and pore size distribution curves.

Fig. S7. Dependencies of GLC yields on different parameters over P-DILsOH in CO₂ cycloaddition. (a) the effect of reaction temperature (conditions: 10 bar CO₂, 1.0 h, 100 mg catalyst). (b) the effect of CO₂ pressure (conditions: 80 °C, 1.0 h, 100 mg catalyst). (c) the effect of reaction time (conditions: 80 °C, 10 bar CO₂, 100 mg catalyst). (d) the effect of catalyst amount (conditions: 80 °C, 10 bar CO₂, 1 h).

Fig. S8. ¹H NMR of products after the cycloaddition reaction.

Fig. S9. ¹³C NMR of products after the cycloaddition reaction.

Fig. S10. ¹H NMR of products after the transesterification reaction.

Fig. S11. ¹³C NMR of products after the transesterification reaction.

Fig. S12. Comparison of cycloaddition activities over P-DILsOH and KBr under different CO₂ pressures. Reaction conditions: GO (15 mmol), 80 °C, 1 h, catalysts (100 mg).

Fig. S13. (a) Acidity or basicity of CH₃OH dispersed with P-DILsOH. (b) Acidity or basicity of CH₃OH dissolved with NaOH.

Fig. S14. FT-IR spectra of fresh and reused P-DILsOH.

Fig. S15. Optimized structures of interaction between basic ILs monomers and CO₂.(a) [VBTEDA]Cl+CO₂, (b) [VBTEDA]OH+2CO₂.

PILs	$S_{BET}{}^a(m^2{\cdot}g{}^{\text{-}1})$	$V_P{}^b(cm^3\cdot g^{-1})$	D _{ave} ^c (nm)
P-IMCC1	59.85	0.1537	10.27
P-IMCOH	87.51	0.1986	9.08
P-BCAC1	18.48	0.0275	5.96
P-DILsCl	15.68	0.0278	7.10
P-DILsOH	22.58	0.0570	10.09

Table S1. Textural parameters of LB-PILs.

^a BET specific surface area. ^b Total pore volume. ^c Average pore size.

Enter		Two-step coupling reac	tion
Entry -	DMC Yield (%)	GLC Yield (%)	By-product Yield (%) ^c
1ª	9	31	58
2 ^b	77	20	Trace

Table S2. Effect of CH₃OH addition timing on DMC yield in two-step coupling reaction.

^a Reaction conditions: GO (15 mmol), CO_2 (10 bar) and CH_3OH (225 mmol) were added into the reaction system together (140 °C, 2.5 h, 100 mg P-DILsOH).

^b Reaction conditions: CO_2 (10 bar) cycloaddition reaction with GO (15 mmol) were carried out at 80 °C for 1 h over P-DILsOH (100 mg). And then CH₃OH (225 mmol) was added into the reaction system (140 °C, 1.5 h, without CO₂).

^c GO was alcoholized by CH₃OH.

Catalysts	PC Yield	GLC Yield	CEC Yield	SC Yield
	(%) ^a	(%) ^a	(%) ^b	(%) ^c
P-IMCC1	59	68	60	57
P-BCAC1	84	85	82	80
P-DILsC1	73	76	71	69
P-DILsOH	96	97	94	92

Table S3. Catalytic performances about cycloaddition reaction of CO₂ with epoxides.

^a Synthetic condition: PO/GO 15 mmol, 80 °C, 10 bar CO₂, 1.0 h and 100 mg P-DILsOH.

^b Synthetic condition: ECH 15 mmol, 100 °C, 10 bar CO₂, 1.0 h and 100 mg P-DILsOH. ^c Synthetic condition: SO 15 mmol, 120 °C, 10 bar CO₂, 1.5 h and 100 mg P-DILsOH.

		Cycloaddit	Cycloaddition reaction ^a		Transesterification reaction ^c	
Entry	Epoxides	GLC	GLC	DMC	By-product	
		Sel. (%)	Yield (%)	Yield (%)	Yield (%) ^d	
1	РО	98	96	81	Trace	
2	GO	98	97	77	Trace	
3 ^b	GO	99	10	Trace	28	
4	ECH	99	94	68	Trace	
5	SO	97	92	75	Trace	

Table S4. Two-step synthesis of DMC by various epoxides.

^a The conditions of CO_2 cycloaddition reaction were consistent with those shown in Table S3.

^b No catalyst was added.

^c Reaction conditions: CH₃OH (225 mmol), 140 °C, without CO₂, 1.5 h.

^d The remaining GO was alcoholized by CH₃OH.

NO	Catalyst	Departion conditions	SC yield ^a	Dof
NU.	Catalyst	Reaction conditions	(%)	Kel.
1	3-IPMP-FtI	SO (30 mmol), Cat. (150 mg), 1.0	88	4
1		MPa, 90 °C, 5 h.	00	т
C		SO (10 mmol), Cat. (100 mg), 1.0	07	5
Z	PEAMCI	MPa, 120 °C, 4 h.	97	
2		SO (15 mmol), Cat. (5 µmol ionic	0.4	6
3	IHCP-OH (0.5)	sites), 3.0 MPa, 408 K, 2 h.	94	
	PAD-3	SO (5 mmol), Cat. (100 mg), 1.0	00	7
4		MPa, 110 °C, 0.5 h.	90	
-		SO (41.5 mmol), Cat. (25 mg, 1.61	01	0
5 I	NHC-CAP-1 (Zn^{2+})	wt% of Zn), 2.0 MPa, 100 °C, 3 h.	81	8
	P-[EEBVIM]Cl ₂ -	SO (5 mmol), Cat. (2 mg), 1.0 MPa,		
6	EGDMA	100 °C, 96 h.	95	9
7		SO (15 mmol), Cat. (100 mg), 1.0		This work
	P-DILsOH	MPa, 120 °C, 1.5 h.	92	

Table S5. Comparison of the catalytic performances of different PILs catalysts for the cycloaddition reaction of CO_2 and SO to SC.

^a Cycloaddition activity of SO with CO₂ reported in the references.

NO.	Catalyst	Reaction conditions	Carbonates yield ^a (%)	Ref.	
1	K ₂ CO ₃ /BrBu ₃ PPEG	Cycloaddition: PO 14.3 mmol, Cat. 1.1344 g, 1 MPa, 120 °C, 6 h.	PC: 99 %	10	
1	6000PBu ₃ Br	Transesterification: alcohol 430	DMC: 99 %	10	
		mmol. 100 °C, 1.5 h.	DEC: 72 %		
2	MCM-41-pr-	Cycloaddition: PO 30 mmol, Cat. 132 mg, 2 MPa, 120 °C, 6 h.	PC: 99 %	11	
2 TN	TMEDA ⁺ Cl ⁻	Transesterification: CH ₃ OH 750 mmol. 120 °C, 4 h.	DMC: 68 %	- 11	
3	KI/K ₂ CO ₃	Cycloaddition: EO 200 mmol, Cat. I 3.76 mmol, Cat. II 0.9 mmol, 2.5 MPa, 120 °C, 1 h.	EC: 99 %	12	
	_	Transesterification: CH ₃ OH 1125 mmol. 60 °C, 0.5 h.	DMC: 82%		
4		Cycloaddition: GO 15 mmol, Cat. 100 mmol, 1 MPa, 80 °C, 1 h.	GLC: 97 %	This	
	P-DVB-AEImIm	Transesterification: alcohol 225	DMC: 77%	work	
		mmol 140 °C 15 h	DEC: 73%		
		1111101. 170 C, 1.J II.	DPC: 67%		

Table S6. Comparison of the catalytic performances of different types of catalysts for two-step synthesis of carbonates.

^a Catalytic activity of two-step synthesis of carbonates with CO₂, epoxide and alcohols as raw materials in the references.

Entry	Catalusta	Cycloaddition reaction		
	Catalysis	Selectivity (%)	Yield (%)	
1ª	P-DILsOH	98	97	
2 ^b	KBr	99	95	

 Table S7. Comparison of cycloaddition activities over P-DILsOH and KBr under different reaction conditions.

^a Reaction conditions: GO (15 mmol), 80 °C, CO₂ (10 bar), 1 h, P-DILsOH (100 mg).

^b Reaction conditions: GO (15 mmol), 110 °C, CO₂ (20 bar), 2 h, KBr (100 mg).

		Cycloaddition reaction ^a		Transesterification reaction ^b	
Entry	Catalysts	GLC	GLC	DMC	By-product
		Sel. (%)	Yield (%)	Yield (%)	Yield (%) ^d
1	P-DILsOH	98	97	77	Trace
2	KBr	99	62	Trace	24
3	NaOH	97	71	56	23
4 ^c	KBr/NaOH	98	64	49	30

Table S8. Two-step synthesis of DMC over various catalysts.

^a Reaction conditions: GO (15 mmol), 80 °C, CO₂ (10 bar), 1 h, catalysts (100 mg).

^b Reaction conditions: CH₃OH (225 mmol), 140 °C, without CO₂, 1.5 h.

^c Binary catalysts: KBr (50 mg)/NaOH (50 mg).

^d The remaining GO was alcoholized by CH₃OH.

REFERENCES

- [1] J. B. Huang, C. He, L. Q. Wu, H. Tong, J. Energy Inst., 2017, 90, 372-381.
- [2] T. Lu, F. W. Chen, J. Comput. Chem., 2012, 33, 580-592.
- [3] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics, 1996, 14, 33-38.
- [4] W. Zhang, Y. Mei, P. Wu, H. H. Wu, M. Y. He, Catal. Sci. Technol., 2019, 9, 1030-1038.
- [5] X. C. Wang, Q. Dong, Z. Z. Xu, Y. Wu, D. M. Gao, Y. S. Xu, C. J. Ye, Y. T. Wen,
 A. Q. Liu, Z. Y. Long, G. J. Chen, *Chem. Eng. J.*, 2021, 403, 126460.
- [6] D. G. Jia, L. Ma, Y. Wang, W. L. Zhang, J. Li, Y. Zhou, J. Wang, *Chem. Eng. J.*, 2020, **390**, 124652.
- [7] Z. J. Guo, X. C. Cai, J. Y. Xie, X. C. Wang, Y. Zhou, J. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 12812-12821.
- [8] P. Puthiaraj, S. Ravi, K. Yu, W. S. Ahn, *Appl. Catal. B: Environ.*, 2019, 251, 195-205.
- [9] H. B. Song, Y. J. Wang, M. Xiao, L. Liu, Y. L. Liu, X. F. Liu, H. J. Gai, ACS Sustainable Chem. Eng., 2019, 7, 9489-9497.
- [10] J. S. Tian, C. X. Miao, J. Q. Wang, F. Cai, Y. Du, Y. Zhao, L. N. He, Green Chem., 2007, 9, 566-571.
- [11] J. Li, L. G. Wang, S. M. Liu, X. L. Li, F. Shi, Y. Q. Deng, Chem. Lett., 2010, 39, 1277-1278.
- [12] J. Q. Wang, J. Sun, C. Y. Shi, W. G. Cheng, X. P. Zhang, S. J. Zhang, Green Chem., 2011, 13, 3213-3217.

[13]