Supporting Information

Organocatalytic Cascade Aldimine Condensation/[1,6]-Hydride Transfer/Mannich-Type Cyclization : Sustainable Access to Indole-2,3-Fused Diazocanes

Lin-Xuan Wang[‡],^a Bin Qiu[‡],^a Xiao-De An,^a Pei-Zhen Dong,^a Rui-Bin Liu^c and Jian Xiao^{*a,b}

^a College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China. Email: chemjianxiao@163.com.

^bCollege of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.

^c Shandong Kangqiao Biotechnology Co. Ltd., Binzhou 256500, China.

[‡]These authors contributed equally

Table of Contents

1. General Information	S2
2. General Procedure	S3
3. Mechanistic Study	S8
4. Characterization of Products	S10
5. ¹ H and ¹³ C NMR Spectra	
6.X-ray Crystallography for 3a	S58

1. General Information

Unless otherwise noted, all reagents and solvents were purchased from the commercial sources and used as received. Thin layer chromatography (TLC) was used to monitor the reaction on Merck 60 F254 precoated silica gel plate (0.2 mm thickness). TLC spots were visualized by UV-light irradiation on Spectroline Model ENF-24061/F 254 nm. The products were isolated and purified by flash column chromatography (200-300 mesh silica gel) eluted with the gradient of petroleum ether and ethyl acetate. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker 500 MHz NMR spectrometer (CDCl₃ solvent). The chemical shifts were reported in parts per million (ppm), downfield from SiMe₄ (δ 0.0). Multiplicities were afforded as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet) or m (multiplets). The number of protons for a given resonance is indicated by nH. Coupling constants were reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) was referenced to the appropriate residual solvent peak. High resolution mass spectral analysis HRMS (ESI-TOF) was performed on Waters Q-TOF-MS.

2. General Procedure

2.1 General procedure for the synthesis of 1b, 1c, 1d.¹

To a stirred solution of 1H-indole-2-carbaldehyde (0.8 g, 5.7 mmol) in anhydrous THF (30 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 0.3 g, 14.3 mmol). The mixture was stirred at 0 °C for 30 minutes. To the stirred solution was added R-Br (6.8 mmol) in THF (2 mL) dropwise at 0 °C, then the reaction mixture was allowed to warm to room temperature and stirred until the starting material disappeared (monitored by TLC). The reaction was quenched by the dropwise addition of EtOH at 0 °C. After evaporation of the solvent, the crude product was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:200) to afford the desired products **1b-1d** (**1b**, 90% yield; **1c**, 83% yield; **1d**, 75% yield).

2.2 General procedure for the synthesis of 1j.²

To a stirred solution of ethyl 5-methyl-1H-indole-2-carboxylate (2.2 g, 10.6 mmol) in 30 mL THF at 0 °C dropwisely added lithium aluminum hydride solution (2.5M, in THF 5.0 mL, 12.7 mmol) and the reaction mixture was stirred at 0 °C until completion of the reaction as indicated by TLC analysis. The reaction was quenched with H₂O, 15% NaOH and H₂O before it was filtered and rinsed with THF. The organic phase was dried (anhydrous Na₂SO₄) and concentrated to give (5-methyl-1H-indol-2-yl)methanol in 71% yield (1.2 g).

To a stirred solution of crude (5-methyl-1H-indol-2-yl)methanol (1.2 g, 7.5 mmol) in anhydrous DCM (20 mL) at 10 °C was added MnO₂ (3.3 g, 37.5 mmol). The reaction mixture was stirred at room temperature for 24 hours. Then the mixture was diluted with DCM and filtered through a pad of celite and washed with DCM. After evaporation of the solvent, the crude product was directly purified by flash column

chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:100) to afford 5-methyl-1H-indole-2-carbaldehyde in 65% yield (0.78 g).

2.3 General procedure for the synthesis of 2a, 2l, 2m, 2n, 2o, 2p, 2q, 2r, 2s.³

To a stirred solution of 2-(pyrrolidin-1-yl)aniline (0.4 g, 2.5 mmol) in DCE (10 mL) was added aldehyde (2.8 mmol) for 30 minutes. NaHB(OAc)₃ (1.1 g, 5.0 mmol) was added to the stirred solution, then the mixture was stirred at room temperature until completion of the reaction as indicated by TLC analysis. The solution was basified with sat. NaHCO₃ solution, extracted with ethyl acetate (3 x 25 mL) and subsequently dried with Na₂SO₄. After evaporation of the solvent, the crude product was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:500) to afford the desired products (**2a**, 45% yield; **2l**, 47% yield; **2m**, 45% yield; **2n**, 90% yield; **2o**, 85% yield; **2p**, 75% yield; **2q**, 80% yield; **2r**, 80% yield; **2s**, 65% yield).

2.4 General procedure for the synthesis of 2t, 2u.^{3,4}

To a stirred solution of 1-fluoro-2-nitrobenzene (0.7 g, 5.0 mmol) and potassium carbonate (1.4 g, 10.0 mmol, 2 equiv.) in DMF (20 mL) was added the amine (6.0 mmol, 1.2 equiv.). The resulting reaction mixture was heated under reflux until completion of the reaction as indicated by TLC analysis. The mixture was subsequently allowed to cool to room temperature, diluted with water (5 mL), and extracted with ethyl acetate (2 x 25 mL). The combined organic layers were washed with a saturated NaCl solution (2 x 25 mL) and subsequently dried with Na₂SO₄. After evaporation of the solvent directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:500) to afford the desired product A (A-2t, 86% yield; A-2u, 90% yield).

To a stirred solution of compound **A** (4.3 mmol) in AcOH (8 mL) was added zinc powder (1.4 g, 21.5 mmol, 5 equiv.) portion wise for 10 minutes. The resulting reaction mixture was stirred at room temperature until completion of the reaction as indicated by TLC analysis. The solution was filtered and evaporated at reduced pressure. The residue was basified with sat. NaHCO₃ solution, extracted with ethyl acetate (3 x 25 mL) and subsequently dried with Na₂SO₄. After evaporation of the solvent, the crude product was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:200) to afford the desired product **B** (**B-2t**, 60% yield; **B-2u**, 70% yield).

To a stirred solution of compound **B** (2.5 mmol) in DCE (10 mL) was added aldehyde (2.8 mmol) for 30 minutes. NaHB(OAc)₃ (1.1 g, 5.0 mmol) was added to the stirred solution, then the resulting mixture was stirred at room temperature until completion of the reaction as indicated by TLC analysis. The solution was basified with sat. NaHCO₃ solution, extracted with ethyl acetate (3 x 25 mL) and subsequently dried with Na₂SO₄. After evaporation of the solvent, the crude product was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:500) to afford the desired product (**2t**, 45% isolated yield; **2u**, 55% isolated yield).

2.5 General procedure for the synthesis of 3.

A sealed tube was charged with 1 (0.1 mmol), 2 (0.2 mmol), TfOH (0.02 mmol, 3.0 mg) and EtOH (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. After completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:250) to afford the desired product **3**.

2.6 General procedure for the synthesis of [D]-2a.^{5, 6}

To a vigorously stirred solution of the 2-nitroaniline (5.5 g, 40.0 mmol) in acetic acid (30 mL), the anhydride (4.4 g, 44.0 mmol) was added in one lot. The reaction mixture was stirred further for 10 minutes at 45 °C. The clear solution turned into slurry, then the concentrated sulfuric acid (9.2 g, 93.8 mmol) was added in one lot. The temperature of reaction was then maintained at 60 °C for 30 - 45 minutes. The cooled mixture was poured onto crushed ice. The solid separated was collected, washed with aqueous sodium bicarbonate and then with water, and recrystallized from aqueous ethanol to afford the desired product 1-(2-nitrophenyl)pyrrolidine-2,5-dione (3.1 g, 35% yield).

To a solution of 1-(2-nitrophenyl)pyrrolidine-2,5-dione (3.1 g, 14.1 mmol) in 20 mL acetone was added glacial acetic acid (11 mL), water (11 mL) and iron powder (9.5 g, 170 mmol). The reaction mixture was heated to reflux. After 8 h, the reaction was cooled and filtered through pad of celite. The filtrate was concentrated under vacuum. From the filtrate the compound was obtained as a yellow solid then the crude product was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:100) to afford the desired product 1-(2-aminophenyl)pyrrolidine-2,5-dione (1.5 g, 55% yield).

To ethyl 1-(2-aminophenyl)pyrrolidine-2,5-dione (1.5 g, 7.8 mmol) in 10 mL THF at 0 °C was added LiAlD₄ (1.6 g, 39.0 mmol, 5 equiv.). The resulting reaction mixture was heated under reflux until completion of the reaction as indicated by TLC analysis. The reaction was quenched by the dropwise addition of H₂O. After evaporation of the solvent directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:200) to afford the desired product

2-(pyrrolidin-1-yl-2,2,5,5-d4)aniline (0.5 g, 40% yield).

To a stirred solution of 2-(pyrrolidin-1-yl-2,2,5,5-d4)aniline (0.5 g, 3.1 mmol) in anhydrous THF (30 mL) at 0 °C was added NaH (60%, 0.12 g, 5.0 mmol). The reaction mixture was stirred at 0 °C for 30 minutes. To the stirred solution was added CH₃I (0.3 g, 2.4 mmol) in THF (2 mL) dropwise at 0 °C, then the mixture was allowed to warm to room temperature and stirred until the starting material disappeared (monitored by TLC). The reaction was quenched by the dropwise addition of EtOH at 0 °C. After evaporation of the solvent directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:500) to afford the desired product [**D**]-2a (0.3 g, 48% yield).

2.7 Reference

- 1. D. Uredi, D. Motati and E. Watkins, Org. Lett., 2018, 20, 6336.
- 2. P. Zheng, S. Wu, C. Mou, W. Xue, Z. Jin and Y. R. Chi, Org. Lett., 2019, 21, 5026.
- 3. D. M. Wang, M. N. Sun and G. Liu, J. Comb. Chem., 2009, 11, 556.
- 4. K. Ramakumar, T. Maji, J. J. Partridge and J. A Tunge, Org. Lett., 2017, 19, 4014.
- 5. S. V. Patil, K. A. Mahale, K. S. Gosavi, G. B. Deshmukh and N. S. Patil, *Organic Preparations and Procedures International.*, 2013, **45**, 314.
- 6. K. Maji, M. Abbasi, D. Podder, R. Datta and D. Haldar, *ChemistrySelect.*, 2018, **3**, 10220.

3. Mechanistic Study

A sealed tube was charged with **1a** (0.1 mmol, 15.9 mg) and deuterated substrate **[D]-2a** (0.2 mmol, 36.1mg), TfOH (0.02 mmol, 3.0 mg) and EtOH (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. After completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:250) to afford the desired product **[D]-3a** as a white solid in 79% yield (25.4 mg).

A sealed tube was charged with **1a** (0.1 mmol, 15.9 mg), deuterated substrate **[D]-2a** (0.1 mmol, 18.0 mg), **2a** (0.1 mmol, 17.6 mg) TfOH (0.02 mmol, 3.0 mg) and EtOH (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. The reaction was controlled within 12 h, then the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:250) to afford the product **[H/D]-3a** as a yellow solid in 61% yield (19.6 mg).

7, 27, 447 7, 27, 2010 7, 2010 7, 2010 6, 2010 7, 20

4. Characterization of Products

N,4-dimethyl-2-(pyrrolidin-1-yl)aniline (2l)

Red oil; 13.3 mg, 35% yield; column chromatography eluent, petroleum ether/EtOAc = 500:1; ¹H NMR (500 MHz, CDCl₃) δ 6.76 – 6.71 (m, 2H), 6.45 (d, *J* = 7.7 Hz, 1H), 4.19 (s, 1H), 2.97 – 2.84 (m, 4H), 2.74 (s, 3H), 2.17 (s, 3H), 1.85 – 1.74 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 142.48, 137.29, 125.90, 124.32, 119.15, 109.96, 51.24(2C), 31.36, 24.13(2C), 20.83; HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₉N₂ [M+H]⁺: 191.1543; found: 191.1543.

5-chloro-N-methyl-2-(pyrrolidin-1-yl)aniline (2m)

Red oil; 18.5 mg, 44% yield; column chromatography eluent, petroleum ether/EtOAc = 500:1; ¹H NMR (500 MHz, CDCl₃) δ 6.77 (dd, J = 8.3, 2.6 Hz, 1H), 6.55 – 6.48 (m, 1H), 6.46 – 6.39 (m, 1H), 4.45 (s, 1H), 2.93 – 2.76 (m, 4H), 2.71 (s, 3H), 1.85 – 1.71 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 145.84, 135.77, 129.63, 119.28, 115.89, 109.50, 51.37(2C), 30.66, 24.08(2C); HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₆ClN₂ [M+H]⁺: 211.0997; found: 211.0997.

N-benzyl-2-(pyrrolidin-1-yl)aniline (2n)

Yellow oil; 22.0 mg, 87% yield; column chromatography eluent, petroleum ether/EtOAc = 500:1; ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.29 (m, 1H), 7.26 (dd, J = 10.3, 4.9 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 6.96 (dd, J = 7.8, 1.4 Hz, 1H), 6.86 (td, J = 7.7, 1.4 Hz, 1H), 6.61 (td, J = 7.6, 1.4 Hz, 1H), 6.51 (dd, J = 7.9, 1.3 Hz, 1H), 4.84 (s, 1H), 4.28 (s, 2H), 3.03 – 2.93 (m, 4H), 1.90 – 1.75 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 142.39, 139.03, 136.24, 127.51(2C), 126.21(2C), 125.91, 123.02, 117.37, 115.87, 109.29, 50.23(2C), 47.31, 23.05(2C); HRMS (ESI-TOF) m/z calcd for

C₁₇H₂₁N₂ [M+H]⁺: 253.1699; found: 253.1701. *N*-(2-methylbenzyl)-2-(pyrrolidin-1-yl)aniline (20)

Yellow oil; 17.8 mg, 67% yield; column chromatography eluent, petroleum ether/EtOAc = 500:1; ¹H NMR (500 MHz, CDCl₃) δ 7.14 – 7.04 (m, 3H), 6.97 – 6.89 (m, 2H), 6.85 – 6.79 (m, 1H), 6.57 (ddd, J = 7.5, 2.2, 1.0 Hz, 1H), 6.48 (d, J = 7.9 Hz, 1H), 4.76 (s, 1H), 4.18 (s, 2H), 2.99 – 2.88 (m, 4H), 2.22 (s, 3H), 1.88 – 1.71 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 143.77, 140.25, 138.30, 137.47, 128.67, 128.26, 127.93, 124.53, 124.31, 118.59, 117.11, 110.59, 51.48(2C), 48.63, 24.32(2C), 21.71; HRMS (ESI-TOF) m/z Calcd for C₁₈H₂₃N₂ [M+H]⁺: 267.1856; found: 267.1858. 2-(((2-(pyrrolidin-1-yl)phenyl)amino)methyl)phenol (2p)

Yellow Solid; 16.6 mg, 62% yield; mp 95 – 98 °C; column chromatography eluent, petroleum ether/EtOAc = 100:1; ¹H NMR (500 MHz, CDCl₃) δ 8.94 (s, 1H), 7.15 – 7.10 (m, 1H), 7.07 – 7.04 (m, 1H), 7.00 – 6.97 (m, 1H), 6.90 (td, *J* = 7.9, 1.4 Hz, 1H), 6.83 – 6.73 (m, 3H), 4.83 (s, 1H), 4.30 (s, 2H), 2.97 – 2,90(m, 4H), 1.86 – 1.75 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 157.20, 142.54, 139.68, 129.06, 128.56, 124.07, 123.44, 120.44, 119.98, 118.83, 116.63, 113.83, 51.79(2C), 49.16, 24.43(2C); HRMS (ESI-TOF) m/z Calcd for C₁₇H₂₁N₂O [M+H]⁺: 269.1648; found: 269.1650.

N-(furan-2-ylmethyl)-2-(pyrrolidin-1-yl)aniline (2q)

Yellow oil; 18.9 mg, 78% yield; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 0.9 Hz, 1H), 6.94 (dd, J = 7.7, 1.1 Hz, 1H), 6.88 (td, J = 7.7, 1.3 Hz, 1H), 6.65 – 6.56 (m, 2H), 6.21 (dd, J = 3.0, 1.9 Hz, 1H), 6.11 (d, J = 2.8 Hz, 1H), 4.78 (s, 1H), 4.23 (s, 2H), 2.99 – 2.85 (m, 4H), 1.87 – 1.73 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 152.36, 141.97, 140.65, 136.47, 122.99, 117.55, 116.29, 109.46, 109.22, 105.51, 50.28(2C), 40.57, 23.04(2C);

HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₉N₂O [M+H]⁺: 243.1492; found: 243.1494. 2-(*pyrrolidin-1-yl*)-*N*-(*thiophen-2-ylmethyl*)*aniline* (2*r*)

Yellow oil; 17.8 mg, 69% yield; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.00 (dd, J = 5.1, 1.2 Hz, 1H), 6.91 – 6.87 (m, 1H), 6.85 – 6.81 (m, 2H), 6.78 (dd, J = 5.0, 3.5 Hz, 1H), 6.58 (td, J = 7.6, 1.3 Hz, 1H), 6.53 (dd, J = 7.9, 1.1 Hz, 1H), 4.78 (s, 1H), 4.34 (s, 2H), 2.96 – 2.84 (m, 4H), 1.82 – 1.67 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 144.25, 143.11, 137.78, 127.03, 124.68, 124.51, 124.26, 118.69, 117.76, 110.81, 51.46(2C), 43.91, 24.38(2C); HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₉N₂S [M+H]⁺: 259.1263; found: 259.1266. *N*-(*pyridin-2-ylmethyl*)-2-(*pyrrolidin-1-yl*)*aniline* (2s)

Yellow oil; 20.5mg, 81% yield; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 8.49 – 8.42 (m, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.22 (d, *J* = 7.8 Hz, 1H), 7.03 – 6.97 (m, 1H), 6.92 (dd, *J* = 7.8, 1.3 Hz, 1H), 6.80 (ddd, *J* = 7.7, 3.1, 1.6 Hz, 1H), 6.57 (ddd, *J* = 7.6, 3.1, 1.6 Hz, 1H), 6.44 – 6.39 (m, 1H), 5.22 (s, 1H), 4.38 (s, 2H), 3.04 – 2.89 (m, 4H), 1.88 – 1.74 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 159.69, 149.25, 143.10, 137.46, 136.70, 124.08, 121.95, 121.28, 118.54, 117.15, 110.51, 51.36(2C), 49.82, 24.20(2C); HRMS (ESI-TOF) m/z Calcd for C₁₆H₂₀N₃ [M+H]⁺: 254.1652; found: 254.1653.

2-(3,4-dihydroisoquinolin-2(1H)-yl)-N-methylaniline (2t)

Yellow oil; 17.6 mg, 37% yield; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.11 – 7.03 (m, 3H), 7.01 – 6.93 (m, 3H), 6.61 (td, J = 7.6, 1.3 Hz, 1H), 6.54 (dd, J = 8.0, 1.1 Hz, 1H), 4.67 (s, 1H), 3.94 (s, 2H), 3.10 (s, 2H), 2.90 (s, 2H), 2.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.51, 137.78, 134.49, 133.25, 127.86, 125.40, 125.21, 124.61, 124.24, 118.59,

115.50, 108.51, 53.10, 48.48, 29.56, 28.98; HRMS (ESI-TOF) m/z Calcd for $C_{16}H_{19}N_2 [M+H]^+$: 239.1543; found: 239.1543.

N-methyl-2-(octahydro-2H-isoindol-2-yl)aniline (2u)

Red oil; 20.7 mg, 45% yield; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 6.98 – 6.82 (m, 2H), 6.66 – 6.46 (m, 2H), 4.12 (s, 1H), 3.16 – 3.03 (m, 2H), 2.96 (dd, J = 8.6, 4.4 Hz, 1H), 2.75 (s, 3H), 2.27 – 2.10 (m, 2H), 1.62 – 1.38 (m, 6H), 1.36 – 1.18 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.39, 137.75, 122.07, 116.81, 115.81, 108.89, 54.46(2C), 36.58(2C), 30.08, 25.55(2C), 22.00(2C); HRMS (ESI-TOF) m/z Calcd for C₁₅H₂₃N₂ [M+H]⁺: 231.1856; found: 231.1857.

N-methyl-2-(pyrrolidin-1-yl-2,2,5,5-d4)aniline [D]-2a

Red oil; 13.3 mg, 35% yield; column chromatography eluent, petroleum ether/EtOAc = 500:1; ¹H NMR (500 MHz, CDCl₃) δ 6.94 (t, *J* = 7.5 Hz, 2H), 6.61 (t, *J* = 7.5 Hz, 1H), 6.56 (d, *J* = 7.8 Hz, 1H), 4.40 (s, 1H), 2.79 (s, 3H), 1.83 – 1.80 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 144.89, 137.27, 124.31, 118.37, 116.73, 109.77, 51.33(2C), 31.03, 24.19(2C) ; HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₃D₄N₂ [M+H]⁺: 181.1637; found: 181.1638.

9,11-dimethyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]diazoc ino[6,7-b]indole (3a)

White solid; 30.2 mg, 95% yield; mp 192 – 194 °C; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 8.2 Hz, 1H), 7.05 – 7.00 (m, 1H), 6.96 – 6.91 (m, 1H), 6.85 – 6.81 (m, 2H), 6.76 – 6.68 (m, 2H), 5.45 (dd, *J* = 8.2, 6.6 Hz, 1H), 5.14 (d, *J* = 14.5 Hz, 1H), 4.16 (d, *J* = 14.5 Hz, 1H), 3.54 (s, 3H), 3.42 – 3.32 (m, 1H), 3.17 – 3.08 (m, 1H),

2.92 (s, 3H), 2.46 – 2.36 (m, 1H), 2.36 – 2.28 (m, 1H), 2.20 – 2.01 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 144.00, 143.26, 137.08, 135.03, 126.09, 122.96, 122.14, 120.93, 120.80, 120.65, 118.93 (2C), 114.01, 109.11, 60.88, 52.71, 50.91, 44.20, 31.28, 29.43, 24.02; HRMS (ESI-TOF) m/z Calcd for C₂₁H₂₄N₃ [M+H]⁺: 318.1965; found: 318.1967.

11-benzyl-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4] diazocino[6,7-b]indole (3b)

Yellow solid; 35.0 mg, 89% yield; mp 90 – 92 °C; column chromatography eluent, petroleum ether/EtOAc = 200:1; ¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.45 (m, 1H), 7.12 – 7.05 (m, 3H), 6.99 (dt, J = 6.2, 3.3 Hz, 1H), 6.97 – 6.92 (m, 2H), 6.75 (qd, J = 8.2, 4.2 Hz, 2H), 6.67 (dd, J = 10.0, 4.5 Hz, 2H), 6.63 (dd, J = 7.4, 1.4 Hz, 2H), 5.67 (t, J = 7.5 Hz, 1H), 5.18 (s, 2H), 4.85 (d, J = 14.0 Hz, 1H), 4.12 (d, J = 14.0 Hz, 1H), 3.43 – 3.32 (m, 1H), 3.17 – 3.07 (m, 1H), 2.69 (s, 3H), 2.48 – 2.40 (m, 2H), 2.23 – 2.04 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.98, 143.34, 137.75, 136.83, 135.05, 128.80 (2C), 127.17, 126.38, 125.86 (2C), 123.56, 121.86, 121.59, 121.10, 119.96, 119.31, 119.15, 114.37, 109.56, 60.23, 53.25, 50.75, 46.23, 44.04, 30.65, 23.98; HRMS (ESI-TOF) m/z Calcd for C₂₇H₂₈N₃ [M+H]⁺: 394.2278; found: 394.2277.

11-allyl-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]di azocino[6,7-b]indole (3c)

Colorless oil; 28.7 mg, 83% yield; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 7.8 Hz, 1H), 7.02 (d, J = 7.9 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 6.93 (t, J = 7.3 Hz, 1H), 6.82 (d, J = 7.7 Hz, 1H), 6.78 – 6.70 (m, 2H), 6.68 – 6.61 (m, 1H), 5.80 – 5.69 (m, 1H), 5.65 (t, J = 7.5 Hz, 1H), 4.89 (d, J = 10.0 Hz, 1H), 4.82 (d, J = 14.5 Hz, 1H), 4.53 (s, 2H), 4.38 (d, J = 17.5 Hz, 1H), 4.13 (d, J = 14.0 Hz, 1H), 3.41 – 3.31 (m, 1H), 3.15 – 3.04 (m,

1H), 2.85 (s, 3H), 2.47 – 2,36 (m, 2H), 2.20 – 2.02 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 144.10, 143.37, 136.56, 135.07, 133.08, 126.30, 123.64, 121.80, 121.45, 120.91, 119.84, 119.16, 119.14, 116.35, 114.10, 109.42, 60.16, 53.22, 50.69, 44.97, 44.25, 30.62, 24.02; HRMS (ESI-TOF) m/z Calcd for C₂₃H₂₆N₃ [M+H]⁺: 344.2121; found: 344.2122.

9-methyl-11-(prop-2-yn-1-yl)-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2 ':1,8][1,4]diazocino[6,7-b]indole (3d)

White solid; 23.6 mg, 69% yield; mp 152 – 154 °C; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.9 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.06 (ddd, *J* = 8.2, 7.1, 1.1 Hz, 1H), 6.97 (ddd, *J* = 8.0, 7.1, 1.0 Hz, 1H), 6.87 – 6.80 (m, 2H), 6.76 – 6.68 (m, 2H), 5.43 (dd, *J* = 8.3, 6.6 Hz, 1H), 5.17 (d, *J* = 14.0 Hz, 1H), 4.77 – 4.65 (m, 2H), 4.23 (d, *J* = 14.5 Hz, 1H), 3.42 – 3.34 (m, 1H), 3.17 – 3.09 (m, 1H), 2.94 (s, 3H), 2.46 – 2.29 (m, 2H), 2.16 (t, *J* = 2.5 Hz, 1H), 2.15 – 2.02 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.96, 143.26, 136.28, 134.30, 126.55, 123.00, 122.17, 121.30, 121.23, 120.56, 119.53, 119.17, 115.27, 109.15, 78.44, 72.43, 60.84, 52.42, 50.90, 44.17, 32.29, 31.13, 24.01; HRMS (ESI-TOF) m/z Calcd for C₂₃H₂₄N₃ [M+H]⁺: 342.1965; found: 342.1965.

11-(cyclopropylmethyl)-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo [1',2':1,8][1,4]diazocino[6,7-b]indole (3e)

Pale Yellow oil; 33.2 mg, 93% yield; column chromatography eluent, petroleum ether/EtOAc = 200:1; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 7.9 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H), 7.03 – 6.98 (m, 1H), 6.96 – 6.86 (m, 2H), 6.77 – 6.72 (m, 2H), 6.69 – 6.64 (m, 1H), 5.69 (dd, J = 8.5, 6.3 Hz, 1H), 4.83 (d, J = 14.0 Hz, 1H), 4.22 (d, J = 14.0 Hz, 1H), 3.87 (qd, J = 15.2, 6.3 Hz, 2H), 3.43 – 3.36 (m, 1H), 3.15 – 3.07 (m, 1H), 2.89 (s, 3H), 2.51 – 2.36 (m, 2H), 2.21 – 2.04 (m, 2H), 1.06 – 0.96 (m, 1H), 0.44

- 0.35 (m, 2H), δ 0.20 (q, J = 5.0 Hz, 2H) ; ¹³C NMR (125 MHz, CDCl₃) δ 144.55, 143.32, 136.69, 134.87, 126.16, 123.95, 122.25, 121.18, 120.62, 119.58, 119.03, 118.87, 113.75, 109.52, 59.91, 53.54, 50.53, 46.75, 44.42, 30.47, 23.96, 11.72, 4.00, 3.97; HRMS (ESI-TOF) m/z Calcd for C₂₄H₂₈N₃ [M+H]⁺: 358.2278; found: 358.2278. *9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo*[2,3]pyrrolo[1',2':1,8][1,4]diazocino [6,7-b]indole (3f)

White solid; 23.7 mg, 78% yield; mp 166 – 168 °C; column chromatography eluent, petroleum ether/EtOAc = 20:1; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (s, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.10 (d, *J* = 7.9 Hz, 1H), 7.00 – 6.92 (m, 2H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 7.8 Hz, 1H), 6.79 – 6.68 (m, 2H), 5.48 (t, *J* = 7.3 Hz, 1H), 4.87 (d, *J* = 14.0 Hz, 1H), 4.13 (d, *J* = 14.0 Hz, 1H), 3.43 – 3.34 (m, 1H), 3.17 – 3.08 (m, 1H), 2.85 (s, 3H), 2.48 – 2.33 (m, 2H), 2.18 – 2.02 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.72, 143.64, 135.49, 133.65, 127.05, 123.45, 121.95, 121.70, 121.16, 120.73, 119.35, 119.01, 114.37, 110.81, 60.55, 55.29, 51.00, 44.30, 30.89, 24.22; HRMS (ESI-TOF) m/z Calcd for C₂₀H₂₂N₃ [M+H]⁺: 304.1808; found: 304.1811.

14-bromo-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4] diazocino[6,7-b]indole (3g)

White solid; 32.5 mg, 85% yield; mp 186 – 188 °C; column chromatography eluent, petroleum ether/EtOAc = 20:1; ¹H NMR (500 MHz, DMSO) δ 11.12 (s, 1H), 7.54 (d, J = 1.3 Hz, 1H), 7.18 (d, J = 8.5 Hz, 1H), 7.08 (dd, J = 8.6, 1.7 Hz, 1H), 6.92 – 6.88 (m, 1H), 6.86 – 6.80 (m, 1H), 6.76 – 6.70 (m, 2H), 5.39 (dd, J = 8.2, 6.8 Hz, 1H), 4.96 (d, J = 14.0 Hz, 1H), 4.26 (d, J = 14.0 Hz, 1H), 3.35 – 3.31 (m, 1H), 3.10 – 3.02 (m, 1H), 2.86 (s, 3H), 2.48 – 2.39 (m, 1H), 2.24 – 2.15 (m, 1H), 2.15 – 2.08 (m, 1H), 2.08 – 1.98 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 144.04, 142.88, 136.60, 134.53, 128.59, 123.21, 122.93, 122.33, 121.08, 120.98, 120.85, 113.50, 112.67, 111.68, 60.55, 54.67, 51.09, 44.14, 31.19, 24.30; HRMS (ESI-TOF) m/z Calcd for C₂₀H₂₁BrN₃ [M+H]⁺: 382.0913; found: 382.0915.

14-chloro-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4] diazocino[6,7-b]indole (3h)

White solid; 27.7mg, 82% yield; mp 200 – 202 °C; column chromatography eluent, petroleum ether/EtOAc = 20:1; ¹H NMR (500 MHz, DMSO) δ 11.10 (s, 1H), 7.41 (s, 1H), 7.22 (d, *J* = 8.5 Hz, 1H), 6.97 (d, *J* = 8.5 Hz, 1H), 6.94 – 6.88 (m, 1H), 6.86 – 6.80 (m, 1H), 6.77 – 6.70 (m, 2H), 5.42 (t, *J* = 7.4 Hz, 1H), 4.95 (d, *J* = 14.0 Hz, 1H), 4.26 (d, *J* = 14.5 Hz, 1H), 3.36 – 3.30 (m, 1H), 3.11 – 3.01 (m, 1H), 2.86 (s, 3H), 2.48 – 2.38 (m, 1H), 2.27 – 2.20 (m, 1H), 2.17 – 2.08 (m, 1H), 2.08 – 1.97 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 143.98, 142.96, 136.81, 134.32, 127.86, 123.68, 122.99, 122.25, 121.14, 120.89, 120.66, 117.88, 113.00, 112.75, 60.48, 54.75, 51.06, 44.15, 31.11, 24.30; HRMS (ESI-TOF) m/z Calcd for C₂₀H₂₁ClN₃ [M+H]⁺: 338.1419; found: 338.1418.

14-methoxy-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1, 4]diazocino[6,7-b]indole (3i)

White solid; 22.7mg, 68% yield; mp 80 – 82 °C; column chromatography eluent, petroleum ether/EtOAc = 20:1; ¹H NMR (500 MHz, DMSO) δ 10.68 (s, 1H), 7.11 (d, J = 8.7 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 6.88 (t, J = 2.4 Hz, 2H), 6.78 – 6.70 (m, 2H), 6.64 (dd, J = 8.7, 2.4 Hz, 1H), 5.33 (dd, J = 8.3, 6.6 Hz, 1H), 5.05 (d, J = 14.0 Hz, 1H), 4.22 (d, J = 13.5 Hz, 1H), 3.73 (s, 3H), 3.42 – 3.36 (m, 1H), 3.14 – 3.10 (m, 1H), 2.89 (s, 3H), 2.50 – 2.42 (m, 1H), 2.27 – 2.19 (m, 1H), 2.19 – 2.11 (m, 1H), 2.11 – 2.02 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 153.46, 144.46, 142.81, 135.27, 131.03, 127.14, 122.55, 122.50, 121.37, 120.81, 112.72, 112.04, 110.43, 101.16, 61.22, 55.84, 54.67, 51.28, 44.16, 31.32, 24.23; HRMS (ESI-TOF) m/z Calcd for C₂₁H₂₄N₃O [M+H]⁺: 334.1914; found: 334.1915.

9,14-dimethyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]diazo cino[6,7-b]indole (3j)

White solid; 26.9 mg, 85% yield; mp 120 – 122 °C; column chromatography eluent, petroleum ether/EtOAc = 15:1; ¹H NMR (500 MHz, DMSO) δ 10.72 (s, 1H), 7.23 (s, 1H), 7.11 (d, *J* = 8.2 Hz, 1H), 6.95 – 6.90 (m, 1H), 6.88 – 6.80 (m, 2H), 6.78 – 6.72 (m, 2H), 5.45 (dd, *J* = 8.3, 6.9 Hz, 1H), 4.97 (d, *J* = 14.0 Hz, 1H), 4.27 (d, *J* = 14.0 Hz, 1H), 3.38 – 3.35 (m, 1H), 3.14 – 3.05 (m, 1H), 2.89 (s, 3H), 2.49 – 2.40 (m, 1H), 2.35 (s, 3H), 2.34 – 2.27 (m, 1H), 2.23 – 2.13 (m, 1H), 2.12 – 2.01 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 144.16, 143.21, 134.77, 134.26, 127.30, 127.14, 122.87, 122.27, 122.11, 121.11, 120.82, 118.46, 112.25, 111.20, 60.80, 54.97, 51.07, 44.19, 31.17, 24.31, 21.84; HRMS (ESI-TOF) m/z Calcd for C₂₁H₂₄N₃ [M+H]⁺: 318.1965; found: 318.1967.

13-chloro-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4] diazocino[6,7-b]indole (3k)

White solid; 25.7 mg, 76% yield; mp 125 – 127 °C; column chromatography eluent, petroleum ether/EtOAc = 20:1; ¹H NMR (500 MHz, DMSO) δ 11.07 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 7.28 (d, J = 1.9 Hz, 1H), 7.00 – 6.93 (m, 2H), 6.87 – 6.82 (m, 1H), 6.80 – 6.74 (m, 2H), 5.53 (dd, J = 8.4, 6.6 Hz, 1H), 4.93 (d, J = 14.0 Hz, 1H), 4.32 (d, J = 14.0 Hz, 1H), 3.44 – 3.39 (m, 1H), 3.14 –3.05 (m, 1H), 2.90 (s, 3H), 2.52 – 2.43 (m, 1H), 2.36 – 2.26 (m, 1H), 2.23 – 2.13 (m, 1H), 2.13 – 2.02 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 143.84, 143.14, 136.30, 136.05, 125.61, 125.48, 123.14, 122.04, 121.30, 120.67, 120.08, 119.25, 113.07, 111.07, 60.28, 54.87, 50.96, 44.14, 31.01, 24.24; HRMS (ESI-TOF) m/z Calcd for C₂₀H₂₁ClN₃ [M+H]⁺: 338.1419; found: 338.1422.

6,9,11-trimethyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]diaz ocino[6,7-b]indole (3l)

Yellow oil; 19.9 mg, 60% yield; column chromatography eluent, petroleum ether/EtOAc = 200:1; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.0 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 7.04 – 6.98 (m, 1H), 6.93 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.52 (d, J = 1.5 Hz, 1H), 6.47 (dd, J = 8.0, 1.5 Hz, 1H), 5.74 (dd, J = 8.4, 6.4 Hz, 1H), 4.80 (d, J = 14.0 Hz, 1H), 4.20 (d, J = 14.0 Hz, 1H), 3.51 (s, 3H), 3.42 – 3.34 (m, 1H), 3.15 – 3.06 (m, 1H), 2.86 (s, 3H), 2.50 – 2.34 (m, 2H), 2.26 – 2.07 (m, 2H), 2.06 (s, 3H) ; ¹³C NMR (125 MHz, CDCl₃) δ 144.05, 140.76, 137.14, 135.44, 133.37, 126.11, 121.92, 121.90, 120.65, 120.31, 119.03, 118.89, 113.63, 109.05, 59.55, 53.80, 50.48, 44.60, 30.48, 29.42, 23.94, 21.00; HRMS (ESI-TOF) m/z Calcd for C₂₂H₂₆N₃ [M+H]⁺: 332.2121; found: 332.2123.

7-chloro-9,11-dimethyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8] [1,4]diazocino[6,7-b]indole (3m)

White solid; 28.0 mg, 79% yield; mp 60 – 62 °C; column chromatography eluent, petroleum ether/EtOAc = 200:1; ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 7.9 Hz, 1H), 7.11 (d, *J* = 8.2 Hz, 1H), 7.07 – 7.01 (m, 1H), 6.97 – 6.92 (m, 1H), 6.79 (d, *J* = 8.6 Hz, 1H), 6.69 (d, *J* = 2.4 Hz, 1H), 6.62 (dd, *J* = 8.6, 2.4 Hz, 1H), 5.39 (d, *J* = 14.5 Hz, 1H), 5.17 – 5.11 (m, 1H), 4.09 (d, *J* = 14.5 Hz, 1H), 3.55 (s, 3H), 3.24 – 3.31 (m, , 1H), 3.15 – 3.07 (m, 1H), 2.91 (s, 3H), 2.44 – 2.34 (m, 1H), 2.23 – 2.14 (m, 1H), 2.13 – 1.97 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 145.69, 140.85, 137.10, 134.35, 127.58, 126.02, 122.62, 121.68, 121.16, 119.71, 119.08, 118.83, 114.21, 109.26, 61.99, 51.72, 51.40, 43.82, 31.94, 29.48, 24.03; HRMS (ESI-TOF) m/z Calcd for C₂₁H₂₃ClN₃ [M+H]⁺: 352.1575; found: 352.1577.

9-enzyl-11-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]di azocino[6,7-b]indole (3n)

White solid; 32.4 mg, 82% yield; mp 80 – 82 °C; column chromatography eluent, petroleum ether/EtOAc = 100:1; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 7.4 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 2H), 7.18 (t, *J* = 7.3 Hz, 1H), 7.05

(d, J = 8.1 Hz, 1H), 7.02 – 6.96 (m, 2H), 6.92 (t, J = 7.4 Hz, 1H), 6.85 (dd, J = 8.0, 1.2 Hz, 1H), 6.78 – 6.73 (m, 1H), 6.73 – 6.68 (m, 1H), 5.47 (dd, J = 7.9, 6.9 Hz, 1H), 4.94 (d, J = 14.0 Hz, 1H), 4.36 – 4.24 (m, 2H), 4.09 (d, J = 13.5 Hz, 1H), 3.43 – 3.34 (m, 1H), 3.32 (s, 3H), 3.15 – 3.06 (m, 1H), 2.47 – 2.35 (m, 1H), 2.34 – 2.24 (m, 1H), 2.15 – 2.00 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 144.32, 144.22, 139.53, 137.06, 135.00, 128.47 (2C), 128.45 (2C), 127.16, 126.10, 123.70, 123.47, 122.27, 120.85, 120.73, 118.91, 118.87, 113.90, 109.08, 61.74, 60.85, 51.05, 49.07, 31.57, 29.22, 24.18; HRMS (ESI-TOF) m/z Calcd for C₂₇H₃₀N₃ [M+H]⁺: 394.2278; found: 394.2279.

11-methyl-9-(2-methylbenzyl)-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2 ':1,8][1,4]diazocino[6,7-b]indole (30)

White solid; 35.0 mg, 86% yield; mp 96 – 98 °C; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 7.9 Hz, 1H), 7.16 (s, 1H), 7.13 (d, *J* = 4.7 Hz, 2H), 7.05 – 6.95 (m, 4H), 6.93 – 6.89 (m, 1H), 6.85 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.74 (td, *J* = 7.7, 1.5 Hz, 1H), 6.70 (td, *J* = 7.7, 1.4 Hz, 1H), 5.48 (dd, *J* = 8.0, 6.8 Hz, 1H), 4.92 (d, *J* = 14.0 Hz, 1H), 4.29 (d, *J* = 14.5 Hz, 1H), 4.24 (d, *J* = 13.5 Hz, 1H), 4.07 (d, *J* = 14.0 Hz, 1H), 3.45 – 3.34 (m, 1H), 3.30 (s, 3H), 3.16 – 3.05 (m, 1H), 2.45 – 2.35 (m, 1H), 2.34 – 2.26 (m, 1H), 2.24 (s, 3H), 2.15 – 1.99 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 144.45, 144.16, 139.54, 138.06, 137.09, 135.15, 129.20, 128.38, 127.90, 126.13, 125.48, 123.63, 123.37, 122.28, 120.81, 120.75, 118.93, 118.90, 113.93, 109.11, 61.67, 60.87, 51.08, 49.05, 31.61, 29.22, 24.26, 21.57; HRMS (ESI-TOF) m/z Calcd for C₂₈H₃₀N₃ [M+H]⁺: 408.2434; found: 408.2433.

2-((11-methyl-1,2,3,10,11,15c-hexahydro-9H-benzo[2,3]pyrrolo[1',2':1,8][1,4]diazoc ino[6,7-b]indol-9-yl)methyl)phenol (3p)

White solid; 22.1 mg, 54% yield; mp 86 – 88 °C; column chromatography eluent, petroleum ether/EtOAc = 100:1; ¹H NMR (500 MHz, CDCl₃) δ 9.93 (s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.19 – 7.13 (m, 1H), 7.07 (dd, J = 7.9, 1.5 Hz, 1H), 7.05 (dd, J = 7.1, 4.5 Hz, 2H), 7.02 – 6.98 (m, 1H), 6.97 (dd, J = 8.1, 1.3 Hz, 1H), 6.92 – 6.86 (m, 3H), 6.78 (tdd, J = 7.8, 3.3, 1.3 Hz, 2H), 4.82 (dd, J = 8.8, 7.7 Hz, 1H), 4.67 (d, J = 13.0 Hz, 1H), 4.38 (d, J = 14.0 Hz, 1H), 4.20 (d, J = 13.0 Hz, 1H), 4.13 (d, J = 14.0 Hz, 1H), 3.46 (s, 3H), 3.36 – 3.30 (m, 1H), 3.30 – 3.24 (m, 1H), 2.42 – 2.33 (m, 1H), 2.31 – 2.19 (m, 1H), 2.18 – 2.03 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 157.56, 146.56, 144.30, 137.11, 133.53, 129.29, 129.07, 126.68, 126.21, 125.33, 123.75, 122.72, 121.19, 121.16, 119.72, 119.03, 118.90, 116.61, 113.05, 109.26, 62.69, 62.33, 51.05, 49.58, 31.76, 29.28, 24.15; HRMS (ESI-TOF) m/z Calcd for C₂₇H₂₈N₃O [M+H]⁺: 410.2227; found: 410.2227.

9-(furan-2-ylmethyl)-11-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1 ',2':1,8][1,4]diazocino[6,7-b]indole (3q)

White solid; 32.6 mg, 85% yield; mp 126 – 128 °C; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 0.9 Hz, 1H), 7.05 (d, *J* = 8.1 Hz, 1H), 7.02 – 6.97 (m, 2H), 6.92 (t, *J* = 7.4 Hz, 1H), 6.81 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.79 – 6.74 (m, 1H), 6.72 – 6.67 (m, 1H), 6.25 (dd, *J* = 2.9, 1.9 Hz, 1H), 6.18 (d, *J* = 3.1 Hz, 1H), 5.48 (dd, *J* = 8.1, 6.6 Hz, 1H), 4.92 (d, *J* = 13.5 Hz, 1H), 4.32 – 4.17 (m, 3H), 3.37 (s, 3H), 3.36 – 3.30 (m, 1H), 3.09 – 3.02 (m, 1H), 2.44 – 2.26 (m, 2H), 2.15 – 1.99 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 153.42, 144.70, 143.33, 142.00, 137.08, 134.86, 126.12, 124.28, 124.27, 122.00, 120.74, 120.55, 118.91, 118.90, 113.84, 110.38, 109.07, 108.03, 60.36, 53.96, 50.81, 49.31, 31.35, 29.13, 24.00; HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₆N₃O [M+H]⁺: 384.2070; found: 384.2073.

11-methyl-9-(thiophen-2-ylmethyl)-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrol o[1',2':1,8][1,4]diazocino[6,7-b]indole (3r)

Pale Yellow oil; 31.9 mg, 80% yield; column chromatography eluent, petroleum ether/EtOAc = 200:1; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 1H), 7.16 (dd, *J* = 5.0, 0.8 Hz, 1H), 7.05 – 7.01 (m, 2H), 7.01 – 6.97 (m, 1H), 6.93 – 6.90 (m, 2H), 6.87 (dd, *J* = 5.0, 3.5 Hz, 1H), 6.82 – 6.78 (m, 1H), 6.75 (dd, *J* = 8.1, 1.4 Hz, 1H), 6.70 – 6.66 (m, 1H), 5.79 (t, *J* = 7.4 Hz, 1H), 4.68 (d, *J* = 13.5 Hz, 1H), 4.48 (d, *J* = 14.5 Hz, 1H), 4.35 (d, *J* = 14.5 Hz, 1H), 4.27 (d, *J* = 13.5 Hz, 1H), 3.42 – 3.39 (m, 1H), 3.36 (s, 3H), 3.13 – 3.01 (m, 1H), 2.47 – 2.36 (m, 2H), 2.20 – 2.01 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 145.25, 143.60, 142.82, 137.12, 134.96, 126.55, 126.09, 125.77, 125.16, 125.05, 124.50, 121.31, 120.69, 119.92, 119.01, 118.92, 113.44, 109.04, 59.56, 56.68, 50.57, 50.21, 30.85, 29.27, 24.05; HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₆N₃S [M+H]⁺: 400.1842; found: 400.1842.

11-methyl-9-(pyridin-2-ylmethyl)-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo [1',2':1,8][1,4]diazocino[6,7-b]indole (3s)

White solid; 21.3 mg, 54% yield; mp 68 – 70 °C; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 8.47 (d, *J* = 4.4 Hz, 1H), 7.51 (td, *J* = 7.7, 1.7 Hz, 1H), 7.42 (dd, *J* = 11.1, 8.0 Hz, 2H), 7.05 (dd, *J* = 7.0, 3.9 Hz, 2H), 7.02 – 6.98 (m, 1H), 6.96– 6.90 (m, 2H), 6.83 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.76 – 6.71 (m, 1H), 6.70 – 6.65 (m, 1H), 5.56 (dd, *J* = 8.2, 6.6 Hz, 1H), 5.09 (d, *J* = 14.0 Hz, 1H), 4.49 (q, *J* = 15.4 Hz, 2H), 4.18 (d, *J* = 14.0 Hz, 1H), 3.41-3.37 (m, 1H), 3.37 (s, 3H), 3.16 – 3.07 (m, 1H), 2.47 – 2.28 (m, 2H), 2.15 – 1.98 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 159.68, 149.09, 143.99, 143.35, 137.10, 136.64, 134.87, 126.04, 123.79, 122.78, 122.65, 122.22, 122.09, 120.84, 120.77, 118.96(2C), 113.85, 109.14, 63.32, 60.66, 51.05, 50.38, 31.42, 29.35, 24.22; HRMS (ESI-TOF) m/z Calcd for

C₂₆H₂₇N₄ [M+H]⁺: 395,2230; found: 395.2231.

12,14-dimethyl-5,6,12,13,14,18c-hexahydrobenzo[2,3]indolo[2',3':6,7][1,4]diazocin o[8,1-a]isoquinoline (3t)

Pale Yellow solid; 23.9 mg, 63% yield; mp 180 – 182 °C; column chromatography eluent, petroleum ether/EtOAc = 200:1; ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 7.8 Hz, 1H), 7.15 – 7.11 (m, 2H), 7.10 – 6.98 (m, 5H), 6.89 (t, *J* = 7.6 Hz, 1H), 6.84 – 6.79 (m, 1H), 6.66 (td, *J* = 7.7, 1.3 Hz, 1H), 6.55 (dd, *J* = 8.1, 1.2 Hz, 1H), 5.74 (d, *J* = 13.5 Hz, 1H), 5.47 (s, 1H), 3.91 (d, *J* = 14.0 Hz, 1H), 3.57 (s, 3H), 3.51 – 3.44 (m, 1H), 3.39 – 3.30 (m, 1H), 3.26 (ddd, *J* = 11.1, 5.6, 1.5 Hz, 1H), 3.01 (s, 3H), 2.85 – 2.78 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 146.89, 144.93, 140.57, 136.90, 134.19, 133.24, 128.57, 127.81, 127.27, 126.19, 125.90, 125.77, 124.15, 121.13, 121.05, 119.29, 119.16, 118.68, 116.54, 109.27, 62.71, 52.18, 50.13, 43.87, 30.81, 29.42; HRMS (ESI-TOF) m/z Calcd for C₂₆H₂₆N₃ [M+H]⁺: 380.2121; found: 380.2121.

11,13-dimethyl-1,3,4,4a,5,11,12,13,17c,17d-decahydro-2H-benzo[2,3]isoindolo[2',1 ':1,8][1,4]diazocino[6,7-b]indole (3u)

White solid; 26.4 mg, 71% yield; mp 122 – 124 °C; column chromatography eluent, petroleum ether/EtOAc = 150:1; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 1H), 7.33 – 7.29 (m, 1H), 7.23 – 7.18 (m, 1H), 7.14 – 7.07 (m, 2H), 6.96 – 6.86 (m, 3H), 5.46 (d, *J* = 15.0 Hz, 1H), 5.28 (d, *J* = 6.5 Hz, 1H), 4.23 (d, *J* = 14.5 Hz, 1H), 3.74 (s, 3H), 3.56 (dd, *J* = 8.8, 6.5 Hz, 1H), 3.36 (dd, *J* = 8.8, 5.0 Hz, 1H), 3.06 (s, 3H), 2.93 – 2.79 (m, 1H), 2.60 – 2.48 (m, 1H), 1.90 – 1.76 (m, 6H), 1.71 – 1.55 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 145.04, 142.17, 137.12, 135.87, 126.33, 122.83, 122.43, 121.90, 120.76, 119.93, 119.30, 118.96, 114.16, 109.20, 64.76, 55.89, 50.97, 44.67, 43.68, 37.21, 29.42, 27.54, 26.39, 24.07, 23.23; HRMS (ESI-TOF) m/z Calcd

for C₂₅H₃₀N₃ [M+H]⁺: 372.2434; found: 372.2437. [**D**]-**3**a

White soild; 26.3 mg, 83% yield; column chromatography eluent, petroleum ether/EtOAc =250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 7.9 Hz, 1H), 7.10 (d, *J* = 8.2 Hz, 1H), 7.02 (t, *J* = 7.3 Hz, 1H), 6.94 (t, *J* = 7.3 Hz, 1H), 6.88 – 6.79 (m, 2H), 6.77 – 6.67 (m, 2H), 5.09 (s, 0.5H), 4.15 (s, 0.5H), 3.54 (s, 3H), 2.91 (s, 3H), 2.47 – 2.27 (m, 2H), 2.18 – 2.00 (m, 2H); HRMS (ESI-TOF) m/z Calcd for C₂₁H₂₀D₄N₃ [M+H]⁺: 322.2216; found: 322.2220.

[H/D]-3a

White solid; 19.3 mg, 61% yield; column chromatography eluent, petroleum ether/EtOAc = 250:1; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 7.7 Hz, 1H), 7.11 (d, J = 7.9 Hz, 1H), 7.03 (t, J = 7.2 Hz, 1H), 6.94 (t, J = 7.1 Hz, 1H), 6.87 – 6.78 (m, 2H), 6.77 – 6.66 (m, 2H), 5.46 (t, J = 7.1 Hz, 1H), 5.23 – 5.05 (m, 1H), 4.17 (d, J = 13.7 Hz, 1H), 3.55 (s, 3H), 3.38 (dd, J = 13.4, 7.6 Hz, 1H), 3.14 (dd, J = 14.5, 7.0 Hz, 1H), 2.93 (s, 3H), 2.48 – 2.26 (m, 2H), 2.20 – 2.00 (m, 2H).

5. ¹H and ¹³C NMR Spectra

N,4-dimethyl-2-(pyrrolidin-1-yl)aniline (2l)

N-(2-methylbenzyl)-2-(pyrrolidin-1-yl)aniline (20)

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -6 fl (ppm)

2-(pyrrolidin-1-yl)-N-(thiophen-2-ylmethyl)aniline (2r)

N-(pyridin-2-ylmethyl)-2-(pyrrolidin-1-yl)aniline (2s)

2-(3,4-dihydroisoquinolin-2(1H)-yl)-N-methylaniline (2t)

9,11-dimethyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]diazoc ino[6,7-b]indole (3a)

11-benzyl-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4] diazocino[6,7-b]indole (3b)

11-allyl-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]di azocino[6,7-b]indole (3c)

11-(cyclopropylmethyl)-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo [1',2':1,8][1,4]diazocino[6,7-b]indole (3e)

9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]diazocino [6,7-b]indole (3f)

14-bromo-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4] diazocino[6,7-b]indole (3g)

9,14-dimethyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]diazo cino[6,7-b]indole (3j)

13-chloro-9-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4] diazocino[6,7-b]indole (3k)

6,9,11-trimethyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]diaz ocino[6,7-b]indole (3l)

7-chloro-9,11-dimethyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8] [1,4]diazocino[6,7-b]indole (3m)

77,7408 (1997) (

9-enzyl-11-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2':1,8][1,4]di azocino[6,7-b]indole (3n)

11-methyl-9-(2-methylbenzyl)-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1',2 ':1,8][1,4]diazocino[6,7-b]indole (30)

S50

2-((11-methyl-1,2,3,10,11,15c-hexahydro-9H-benzo[2,3]pyrrolo[1',2':1,8][1,4]diazoc ino[6,7-b]indol-9-yl)methyl)phenol (3p)

 $\begin{array}{c} 7.17, 7.1415\\ 7.17, 1.158\\ 7.1, 1.158\\ 7.7, 1.158\\ 7.7, 1.168\\ 7.7, 1.168\\ 7.7, 1.168\\ 7.7, 1.168\\ 7.7, 1.168\\ 7.7, 1.018\\ 7.7, 1.0$

9-(furan-2-ylmethyl)-11-methyl-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo[1 ',2':1,8][1,4]diazocino[6,7-b]indole (3q)

Mé 1.00_{H} 3.09 $\frac{3.00}{1.00} \pm 1.00$ 2.05| 2.06| 1.00_{-1} $\begin{array}{c} 1.01\\ 1.01\\ 1.01\\ 1.00\\$.5 5.5 4.5 f1 (ppm) 9.0 8.5 8.0 7.5 7.0 5.0 4.0 3.5 3.0 2.5 2.0 -0.5 6.5 1.5 1.0 0.5 0.0 6.0 $\begin{array}{c} 144.701 \\ 144.701 \\ 143.334 \\ 143.348 \\ 137.081 \\ 137.081 \\ 126.118 \\ 126.118 \\ 122.269 \\ 124.269 \\ 124.269 \\ 124.269 \\ 122.700 \\ 122.700 \\ 122.700 \\ 122.700 \\ 122.700 \\ 122.700 \\ 122.700 \\ 122.700 \\ 123.839 \\ 113.839 \\ 113.839 \\ 113.839 \\ 113.839 \\ 110.377 \\ 110.377 \\ 100.377$ ~31.346 ~29.133 ~24.005 Me 100 90 fl (ppm) 00 190 140 110 80 70 60 50 40 30 20 180 170 160 150 130 120 10 0

11-methyl-9-(thiophen-2-ylmethyl)-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrol o[1',2':1,8][1,4]diazocino[6,7-b]indole (3r)

 $\begin{array}{c} 7.447\\ 7.7161\\ 1.161\\ 1$

11-methyl-9-(pyridin-2-ylmethyl)-2,3,9,10,11,15c-hexahydro-1H-benzo[2,3]pyrrolo [1',2':1,8][1,4]diazocino[6,7-b]indole (3s)

88,8475 88,8475 88,8475 89,8475 17,2527 17,5527 17,

12,14-dimethyl-5,6,12,13,14,18c-hexahydrobenzo[2,3]indolo[2',3':6,7][1,4]diazocin o[8,1-a]isoquinoline (3t)

7,7508 7,7128

11,13-dimethyl-1,3,4,4a,5,11,12,13,17c,17d-decahydro-2H-benzo[2,3]isoindolo[2',1 ':1,8][1,4]diazocino[6,7-b]indole (3u)

6. X-ray Crystallography for 3a

CCDC:2077987

Identification code	exp_11691	
Empirical formula	C21 H23 N3	
Formula weight	317.42	
Temperature	293(2) K	
Wavelength	1.54184 A	
Crystal system, space group	Monoclinic, P2(1)/n	
Unit cell dimensions	a = 15.4459(6) A alpha = 90 deg.	
	b = 7.45856(17) A beta = 118.081(5) deg	
	c = 16.2431(6) A gamma = 90 deg.	
Volume	1650.99(12) A^3	
Z, Calculated density	4, 1.277 Mg/m^3	
Absorption coefficient	0.587 mm^-1	
F(000)	680	
Crystal size	0.120 x 0.110 x 0.110 mm	
Theta range for data collection 3.258 to 67.215 deg.		
Limiting indices	-13<=h<=18, -4<=k<=8, -19<=l<=17	
Reflections collected / unique 5325 / 2962 [R(int) = 0.0166]		
Completeness to theta = 67.213	5 99.8 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2962 / 0 / 220	
Goodness-of-fit on F^2	1.060	
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.1197	
R indices (all data)	R1 = 0.0518, wR2 = 0.1254	
Extinction coefficient	0.0038(5)	
Largest diff. peak and hole	0.228 and -0.179 e.A^-3	