Supporting Information Ni-Al/CoOx catalyzing hydrodeoxygenation of 5-hydroxymethyl furfural into 2,5dimethylfuran at low-temperature without external hydrogen

Zhanghui Xia^a, Libo Niu^{a*}, Yadan An^a, Gang Bian^a, Tianming Li^a, Guoyi Bai^{a*}

^a Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China.

*Corresponding authors:

E-mail addresses: niulibohbu@hotmail.com; baiguoyi@hotmail.com

Table of Contents

- **1. Fig. S1** XRD patterns of CoOx (a), Ni/CoOx (b), Al/CoOx (c) and Ni-Al/CoOx-1 (d) samples after calcination in the 2θ ranges of 35–40°, respectively.
- **2. Fig. S2** TEM images of the CoOx sample.
- **3. Fig. S3** TEM images of the Ni/CoOx sample.
- **4. Fig. S4** TEM images of the Al/CoOx sample.
- 5. Fig. S5 CO-DRIFTS spectra of Ni/CoOx, Ni-Al/CoOx-3, Ni-Al/CoOx-1 and Ni-Al/CoOx-0.5 samples at room temperature (a). EPR spectra of CoOx, Ni/CoOx and Ni-Al/CoOx-1 samples (b).

6. Fig. S6 Pyridine-FTIR spectra for CoOx, Ni/CoOx, Al/CoOx and Ni-Al/CoOx-1 catalysts, recorded at (a) 200 °C and (b) 350 °C.

7. Fig. S7 *In situ* DRIFT adsorption of furfural without catalysts.

8. Fig. S8 FT-IR spectra of the fresh and used Ni-Al/CoOx-1 catalyst in the wavenumber ranges of 500-4000cm-1 (a) and 1250-1800cm-1 (b) respectively.

9. Fig. S9 TG-MS of Ni-Al/CoOx-1 before and after 7 cycles of reaction.

10. Table S1 ICP-OES data of Ni/CoOx, Al/CoOx, Ni-Al/CoOx-0.5, Ni-Al/CoOx-1 and Ni-Al/CoOx-3 samples.

11. Table S2 Gaussian fitting analysis of H₂-TPR patterns of the calcined catalysts.

12. Table S3 Quantitative analysis of surface acid sites on different samples.

13. Table S4 Conversion and selectivity of liquid-phase HMF catalytic transfer hydrogenation on different samples.

14. Table S5 Comparison of the catalytic performance of Ni-Al/CoOx with other reported catalysts for the hydrogenation of HMF.

Fig. S1 XRD patterns of CoOx (a), Ni/CoOx (b), Al/CoOx (c) and Ni-Al/CoOx-1 (d) samples after calcination in the 2θ ranges of 35-40°, respectively.

Fig. S2 TEM images of the CoOx sample.

Fig. S3 TEM images of the Ni/CoOx sample.

Fig. S4 TEM images of the Al/CoOx sample.

Fig. S5 CO-DRIFTS spectra of Ni/CoOx, Ni-Al/CoOx-3, Ni-Al/CoOx-1 and Ni-Al/CoOx-0.5 samples at room temperature (a). EPR spectra of CoOx, Ni/CoOx and Ni-Al/CoOx-1 samples (b).

Fig. S6 Pyridine-FTIR spectra for CoOx, Ni/CoOx, Al/CoOx and Ni-Al/CoOx-1 catalysts, recorded at (a) 200 °C and (b) 350 °C.

Fig. S7 In situ DRIFT adsorption of furfural without catalysts.

Fig. S8 FT-IR spectra of the fresh and used Ni-Al/CoOx-1 catalyst in the wavenumber ranges of 500-4000cm⁻¹ (a) and 1250-1800cm⁻¹ (b) respectively.

Fig. S9 TG-MS of Ni-Al/CoOx-1 before and after 7 cycles of reaction.

Catalysts	Theoretical				Actual			
	Ni (wt%)	Al (wt%)	Co (wt%)	Ni/Al ^b	Ni (wt%)	Al (wt%)	Co (wt%)	Ni/Alª
Ni/CoOx	20.0	-	80.0	-	24.9	-	75.1	-
Al/CoOx	-	10.5	89.5	-	-	6.9	93.1	-
Ni-Al/CoOx-0.5	7.3	6.7	86.0	0.5	7.4	5.7	86.9	0.5
Ni-Al/CoOx-1	10.7	4.9	84.4	1.0	11.1	4.4	84.5	1.1
Ni-Al/CoOx-3	15.5	2.3	82.2	3.0	16.2	2.1	81.7	3.5

Table S1 ICP-OES data of Ni/CoOx, Al/CoOx, Ni-Al/CoOx-0.5, Ni-Al/CoOx-1 and Ni-Al/CoOx-3 samples.

^a The molar ratio of Ni/Al.

Samples	Total H ₂	Reduction temperature(°C)/Relative content(%)						
	Consumption(µmmol/g)	Co_3O_4	α-CoO	γ-CoO	α-NiO	γ-ΝίΟ		
CoOx	1.859×10 ⁴	272/23.3	347/76.7	-	-	-		
Ni/CoOx	1.833×10 ⁴	205/20.0	314/56.1	-	381/23.9	-		
Al/CoOx	1.368×10 ⁴	290/22.7	-	677/77.3	-	-		
Ni-Al/CoOx-1	1.559×10 ⁴	245/20.9	-	580/60.0	325/2.1	734/17.0		

Table S2 Gaussian fitting analysis of H_2 -TPR patterns of the calcined catalysts.

 Table S3 Quantitative analysis of surface acid sites on different samples.

Catalyst	Te	Temperature(°C)			of acid sites (IH ₃ /g _{catalyst}) ^a	Total contents of acid sites (µmol	
	T1	T2	Т3	T1	T2	Т3	NH ₃ /g _{catalyst})
CoOx	66	335	-	32.2	7.1	-	39.3
Ni/CoOx	66	338	555	38.5	24.8	61.1	124.4
Ni-Al/CoOx-1	80	270	513	330.2	80.8	26.5	437.5
Al/CoOx	80	263	-	493.8	7.6	-	501.4

^a Calculated from the Percentage of peak area.

	Conv.	Sel.(%)						
Catalyst	(%)		ОН		НО ОН	OH	OH OH	
CoOx	21.8	0	4.6	18.3	77.1	-	-	
Al/CoOx	69.3	0	1.6	7.5	90.9	-	-	
Ni/CoOx	32.3	2.5	8.7	13.9	62.5	4.2	8.2	
Ni-Al/CoOx-0.5	95.6	47.2	31.4	2.4	13.3	2.3	3.4	
Ni-Al/CoOx-1	99.9	97.2	0	0	0	0.5	2.3	
Ni-Al/CoOx-2	99.9	74.5	0	0	3.5	10.1	11.9	
Ni-Al/CoOx-3	93.1	7.0	36.4	7.2	27.7	9.5	12.2	

 Table S4 Conversion and selectivity of liquid-phase HMF catalytic transfer hydrogenation on different samples.

Reaction conditions: 210°C, 1 h, 0.21 g HMF, 0.1 g catalyst, 40 mL 2-propanol, 0.5 MPa N_2 , 400 r/min.

Entry	Catalyst	T(°C)	Time(h)	Hydrogen source	Conv.(%)	Yield (%)	DMF productivity (mol _{DMF} /g _{catalyst} *h ⁻¹)	Reference
1	CuZnCoOx	210	5	ethanol	100	99.0	0.00516	[2]
2	NC-Cu/MgAlO	220	0.5	cyclohexanol	100	96.1	0.076	[3]
3	Ru/C	190	6	2-propanol	100	81.0	-	[4]
4	RuO ₂ -Ru/C	190	6	2-propanol	100	72.0	-	[5]
5	Cu-Pd@RGO	200	-	2-propanol	96	95	0.0388	[6]
6	Pd/Fe ₂ O ₃	180	-	2-propanol	100	72.0	-	[7]
7	Cu-PMO	300	0.75	methanol	100	34.0	0.00359	[8]
8	Cu/Al	240	6	methanol	100	75.0	-	[9]
9	Co-Ni/C	210	24	Formic acid	99	90	0.00037	[10]
12	Co@NGs	200	6	H ₂	100	94.7	0.00394	[11]
13	Co-Cu/C	180	8	H ₂	100	99.4	0.12276	[12]
14	NiZnAl	180	15	H ₂	100	93.6	0.00492	[13]
15	Fe-Co-Ni/h-BN	180	4.5	H ₂	100	94	0.00208	[14]
16	Ni/LaFeO₃	230	6	H ₂	>99	98.3	0.00163	[15]
17	NiFe/CNTs	200	3	H ₂	100	91.3	0.02426	[16]
18	Fe-L1/C	240	5	H ₂	100	86	0.00086	[17]
19	NiSi-PS	150	3	H ₂	100	90.2	0.04464	[18]
20	Cu-Ni/TiO ₂	200	8	H ₂	100	84.3	0.00138	[19]
10	Ni-Al/CoOx	170	4	2-propanol	99.9	96.8	0.00416	This work
11	Ni-Al/CoOx	130	36	2-propanol	98.7	87.2	0.00040	This work

 Table S5 Comparison of the catalytic performance of Ni-Al/CoOx with other reported catalysts for the hydrogenation of HMF.

REFERENCES

- [1] Y. Lu, D. Guo, Y. Zhao, P. S. Moyo, Y. Zhao, S. Wang, Xinbin Ma, J. Catal., 2021, 396, 65-80.
- [2] Z. Zhang, S. Yao, C. Wang, M. Liu, F. Zhang, X. Hu, H. Chen, X. Gou, K. Chen, Y. Zhu, X. Lu, P. Ouyang and J. Fu, *J. Catal.*, 2019, 373, 314-321.
- [3] Z. Gao, C. Li, G. Fan, L. Yang and F. Li, *Appl. Catal. B*, 2018, **226**, 523-533.
- [4] J. Jae, W. Zheng, R. F. Lobo and D. G. Vlachos, *ChemSusChem*, 2013, **6**, 1158-1162.
- [5] J. Jae, W. Zheng, A. M. Karim, W. Guo, R. F. Lobo and D. G. Vlachos, *ChemCatChem*, 2014, **6**, 848-856.
- [6] S. Mhadmhan, A. Franco, A. Pineda, P. Reubroycharoen and R. Luque, ACS Sustain. Chem. Eng., 2019, 7, 14210-14216.
- [7] D. Scholz, C. Aellig and I. Hermans, *ChemSusChem*, 2014, **7**, 268-275.
- [8] T. S. Hansen, K. Barta, P. T. Anastas, P. C. Ford and A. Riisager, *Green Chem.*, 2012, 14, 2457.
- [9] Z. Zhang, C. Wang, X. Gou, H. Chen, K. Chen, X. Lu, P. Ouyang and J. Fu, Appl. Catal. A, 2019, 570, 245-250.
- [10] P. Yang, Q. Xia, X. Liu and Y. Wang, *Fuel*, 2017, **187**, 159-166.
- [11] J. Wang, Q. Wei, Q. Ma, Z. Guo, F. Qin, Z. R. Ismagilov and W. Shen, *Appl. Catal. B*, 2020, **263**, 118339.
- [12] B. Chen, F. Li, Z. Huang and G. Yuan, *Appl. Catal. B*, 2017, **200**, 192-199.
- [13] X. Kong, Y. Zhu, H. Zheng, Y. Zhu and Z. Fang, ACS Sustain. Chem. Eng., 2017, 5, 11280-11289.
- [14] N. Chen, Z. Zhu, T. Su, W. Liao, C. Deng, W. Ren, Y. Zhao and H. Lü, *Chem. Eng. J.*, 2020, **381**, 122755.
- [15] M.-Y. Chen, C.-B. Chen, B. Zada and Y. Fu, *Green Chem.*, 2016, **18**, 3858-3866.
- [16] L. Yu, L. He, J. Chen, J. Zheng, L. Ye, H. Lin and Y. Yuan, *ChemCatChem*, 2015, **7**, 1701-1707.
- [17] L. Jiang, L. Junling, L. Heyang and X. Guangyue, *ChemSusChem*, 2017, **10**, 1436-1447.
- [18] X. Kong, Y. Zhu, H. Zheng, X. Li, Y. Zhu and Y.-W. Li, ACS Catal., 2015, 5, 5914-5920.
- [19] B. Seemala, C. M. Cai, C. E. Wyman and P. Christopher, ACS Catal., 2017, 7, 4070-4082.