1 Supplementary materials for *de novo* biosynthesis of sex pheromone

2 components of *Helicoverpa armigera* through an artificial pathway in

```
3 yeast
```

- 4
- 5 This profile includes:
- 6 Method details
- 7 Table S1-4
- 8 Figure S1-5
- 9

10 1.1 Optimization of fermentation conditions

11 For optimization of fermentation conditions, a $L^{16}(4^3)$ orthogonal table was designed

12 $\,$ to obtain best combination of these conditions. To be specific, pH of medium varied

- 13 from 5 to 6.5 in step of 0.5 adjusted by 1M KOH, concentration of $(NH_4)_2$ SO₄ varied
- 14 from 2 g/L to 10 g/L in step of 3.7 g/L and concentration of KH_2PO_4 varied from 2
- 15 g/L to 15 g/L in step of 4.3 g/L. Specific combinations were shown below (Table S2
- 16 & S3). Through extremum difference analysis (Fig. 4D), best theoretical combination
- 17 is pH=6, 7.4 g/L (NH₄)₂ SO₄, 6.3g/L KH₂PO₄.
- 18

19 **1.2 Extraction of metabolites**

20 The detailed methods of free fatty acid, fatty aldehydes and alcohols from

- 21 fermentation broth were shown below:
- 22

23 For free fatty acids, simultaneous extraction and methylation was conducted as

- 24 described previously¹. Briefly, cell cultures from flask fermentation were diluted
- 25 twofold and those from batch were diluted 4-fold in total 0.4 mL in 4-mL glass vials.
- 26 Then, 20 μ L of 40% (C₄H₉)₄N⁺OH⁻ was added into vials followed with 400 μ L pre-
- 27 mixed CH₂Cl₂ solution containing 0.2M CH₃I and 50 mg/L pentadecanoic acid as an
- 28 internal standard. The mixtures were shaken for 60 min at 1500 rpm on a mixer. After
- 29 centrifugation, organic phases were transferred into 1.5 mL centrifugal tubes and
- 30 $\,$ evaporated to dryness in Concentrator Plus (Eppendorf, Germany). In the end, 50 μL
- 31 hexane was added to suspend methyl esters and transferred into glass inserts for gas
- 32 chromatography (GC) or gas chromatography-mass spectrum (GC-MS) analysis.
- 33

34 For fatty aldehydes, cell pellets were collected by centrifuging 10 mL cell culture from flask fermentation or 2 mL from batch fermentation. After washed by 20 mL of 35 50 mM Tris-HCl (pH 7.5), cell pellets were suspended in 0.5 mL of 6.7% Na₂SO₄ and 36 transferred into 4-mL glass vials. Then, 2 mL mixture of isopropanol and hexane in 37 ratio of 2:3 (v/v) was added into vials, and the mixture was shaken for 120 min at 38 1500 rpm on a mixer. After centrifugation, organic phases were transferred into new 39 40 4-mL vials and evaporated to dryness. Finally, 50 µL hexane was added to suspend extracts and transferred into glass inserts for GC or GC-MS analysis. As for 41 fermentation with dodecane cover, after centrifugation to promote phase separation, 42 upper dodecane layer was directly transferred into glass inserts for analysis. Rest of 43 cell culture were dealt with same methods mentioned above if needed. 44 45 For raw purification of fermentation extracts, cell culturte from fed-batch 46

fermentation was directed extracted by 1L hexane:isopropanol (3:2, v/v) overnight. 47 48 After phase separation in funnel, near 640 mL organic phase was concentrated 40-fold for thin layer chromatography (TLC). Seventy microliter of concentrated sample was 49 loaded onto a TLC plate (Silica gel 60, Merck, Germany) and separated with a mobile 50 51phase of hexane/diethyl ether/HAc $(85:15:1, v/v/v)^2$. The bands were visualized by spraying 20% H₂SO₄-EtOH solution, followed by heating. Target gel areas were 52 collected and suspended with 4 mL hexane. The extracts were centrifuged, and 53 54 supernatant was transferred into a new vial for evaporation to dryness. One hundred microliter of hexane was added to dissolve the compounds, followed by analysis by 55 GC-FID to quantify final concentration of (Z)-11-hexadecenal. 56

57

58 **1.3 Dimethyldisulphide (DMDS) derivatization of samples**

59 To verify the position of double bond in products, DMDS derivatization was

60 conducted as described previously³. Briefly, near $1\mu g$ aldehydes in *n*-hexane (20-50

61 μ L) was derivatized by addition of 50 μ L of DMDS and 5 μ L iodine solution (60 mg

62 in 1 mL of ether). The reaction was conducted in 1 mL vials and kept at 40°C

63 overnight. Then samples were diluted by 400 μ L of *n*-hexane, followed with another

 $64 \quad 100 \ \mu L \text{ of } Na_2S_2O_3 \text{ solution} (5\% \text{ in } ddH_2O) \text{ to remove the iodine. The organic phase}$

65 was removed and concentrated into 50 µL. A 2 µL aliquot was analyzed by GC-MS.

66 Figure S1: Western-blot analysis of FADs in strain FA3

- 67 After Integration with C-terminal 6 × His-tags, molecular weight of AseFAD, AipFAD,
- 68 HarFAD and HasFAD is 39.69, 39.82, 38.85 and 39.57 kDa, respectively. Expression
- 69 of AseFAD and AipFAD is below the detection limit of western-blot analysis. Under
- 70 the same total protein load, the expression of *Har*FAD is slightly lower than *Has*FAD.

71

- 72 Figure S2: Gas-chromatography analysis of target products in strain FA9,
- 73 FAL1,FAL2
- 74 Gas-chromatography analysis of interested compounds in raw extracts of strain FA9,
- 75 FAL1, FAL2 after 4-day fermentation. Target products and other peaks around were
- 76 illustrated. As shown in Fig. S2, after HFD1 deletion, strain FAL2 could produce
- 77 Z11-16:Ald.
- 78

79 Figure S3: GC-MS spectrum of aldehyde standard mixture and raw extracts of

- 80 fermentation
- 81 As shown above, retention time of candidate peaks in raw extracts of fermentation
- 82 (Fig. S3C-D) corresponded to that of commercial standards in mixture (Fig. S3A-B).
- 83 The fragments distribution is also similar to the corresponding, respectively.
- 84

DMDS adducts of standard compounds mix

85 Figure S4: GC-MS spectrum of dimethyldisulphide (DMDS) adducts of aldehyde

86 standard mixture and raw purified extracts of fermentation

- 87 After derivatization of standard mixture, a molecular ion of DMDS-adducts Z9-
- 88 16:Ald and its Z11 isomer appeared at m/z 332. Taking m/z 145/187 as a pair of
- 89 diagnostic ions for DMDS-adducts Z9-16:Ald and m/z 117/215 for DMDS-adducts
- 90 Z11-16:Ald, production of Z9-16:Ald and Z11-16:Ald by fermentation of strain FAL2
- 91 was verified.

93 Figure S5: Ratio of aldehydes to alcohols and titers of aldehydes and alcohols in

94 strain FAL2-adh5 and -bdh2

95 (A) Ratio of aldehydes to alcohols in strain FAL2, FAL2-bdh2 and FAL2-adh5. The

96 ratio was calculated by dividing titers in mmol/L of aldehydes into titers in mmol/L of

97 corresponding alcohols. (B) Titers of Z9-16:Ald, Z11-16:Ald, Z9-16:OH and Z11-

- 98 16:OH in strain FAL2, FAL2-bdh2 and FAL2-adh5. The standard deviation was
- 99 calculated from three biological replicates. Differences in titer and ratio between
- 100 mutants and strain FAL2 are indicated: ns, not significant; *p < 0.05; **p < 0.01;
- 101 ****p* < 0.005.
- 102

_

103 Table S1: Primers for strain construction

Primer name	Primer sequence, 5'->3'		
POX1 target RNA-fw	GCTATTTCTAGCTCTAAAACATGAAATTACAAAGGAATCAGATCATTTATCTTTCACTG		
POX1 target RNA-rv	CAGTGAAAGATAAATGATCTGATTCCTTTGTAATTTCATGTTTTAGAGCTAGAAATAGC		
POX1 repair oligo fw	AAAGAAAATATAAATAAATTAGTATTGCGATGTAGAGGTTTCCTGTTTTCCTTCGAACCC		
POX1 repair oligo rv	GGGTTCGAAGGAAAACAGGAAACCTCTACATCGCAATACTAATTTATTATATTTTCTTT		
POX1 dg fw	GGAATTCGGTCATTAGCGGC		
POX1 dg rv	ATCGTTGTGGCCGATGAAAC		
FAA1 target RNA-fw	TCCTCATTCTTATAATATTCGTTTTAGAGCTAGAAATAGCAAG		
FAA1 target RNA-rv	GAATATTATAAGAATGAGGAGATCATTTATCTTTCACTGCGG		
FAA1 repair oligo fw	AGACAAAAAAAGACAACAATTGGATCAACATTTCCATGATAGG		
FAA1 repair oligo rv	ATCATGGAAATGTTGATCCAATTGTTGTCTTTTTTGTCTTTTGTG		
FAA1 dg fw	CTTAGAATATGGATGATGCAGCCC		
FAA1 dg rv	GGTTGCTATGGTTTGTCTTCC		

92

FAA4 target RNA-fw	AATAAACCTTAAGTTTCCACGTTTTAGAGCTAGAAATAGCAAG	
FAA4 target RNA-rv	GTGGAAACTTAAGGTTTATTGATCATTTATCTTTCACTGCGG	
FAA4 repair oligo fw	ACTAAGAAGTACGCATCAAAAGGAAGACATAGTTTTTTACTTTCC	
FAA4 repair oligo rv	GTAAAAAACTATGTCTTCCTTTTGATGCGTACTTCTTAGTTTTTC	
FAA4 dg fw	CGGCTTTTTGGCTGCGCGTC	
FAA4 dg rv	CAAACTTGGTGTACTATAGTGC	
GAL80 target RNA-fw	GCAGTGAAAGATAAATGATCGTTTATAAAAGTAACATGATGTTTTAGAGCTAGAAATAG	
GAL80 targetRNA-rv	GCTATTTCTAGCTCTAAAACATCATGTTACTTTTATAAACGATCATTTATCTTTCACTG	
GAL80 repair oligo fw	GGTTTCCCGTTCTTTCCACTCCCGTCAAGCATCTTGCCCTGTGCTTGGCCC	
GAL80 repair oligo rv	GGGGCCAAGCACAGGGCAAGATGCTTGACGGGAGTGGAAAGAACGGGAAACC	
GAL80 dg fw	CCTGCTGGTCTTCTGGTCTG	
GAL80 dg rv	TATGATGGAAGGATGCCCGC	
HFD1 targetRNA fw	GCAGTGAAAGATAAATGATCAGGGTAAAATCATTCCAATAGTTTTAGAGCTAGAAATAG	
HFD1 targetRNA rv	CTATTTCTAGCTCTAAAACTATTGGAATGATTTTACCCTGATCATTTATCTTTCACTGC	
HFD1 repair oligo fw	ATAGCCATAGTAATTTATCACCAACACGTAATGTTTAAGGTTAATTAA	
HFD1 repair oligo rv	AATTAATTAACCTTAAACATTACGTGTTGGTGATAAATTACTATGGCTATG	
HFD1 dg fw	TTCCAGTACAGGCACACCAG	
HFD1 dg rv	GGGTGATGGTTTGGCGAATG	
ADH5 targetRNA fw	CAATTGAAATTTCCATTAATGTTTTAGAGCTAGAAATAGCAAG	
ADH5 targetRNA rv	ATTAATGGAAATTTCAATTGGATCATTTATCTTTCACTGCGG	
ADH5 repair oligo fw	ATCTACAAAATCAAAGCATCTCTTTTGTAACGAATTTGATGAATATA	
ADH5 repair oligo rv	ATCAAATTCGTTACAAAAGAGATGCTTTGATTTTGTAGATATGTAG	
ADH5 dg fw	AGTTCTCCTTTCGCGGAAGG	
ADH5 dg rv	TGGCTAGCTTTGGGACGATC	
BDH2 targetRNA fw	AGTGTGAAAAACTTGAAAGTGTTTTAGAGCTAGAAATAGCAAG	
BDH2 targetRNA rv	ACTTTCAAGTTTTTCACACTGATCATTTATCTTTCACTGCGG	
BDH2 repair oligo fw	TTCATTGAACATATTTCAGATTGTGATTGAGTACTCACGTTC	
BDH2 repair oligo rv	ACGTGAGTACTCAATCACAATCTGAAATATGTTCAATGAATTTATTGTTA	
BDH2 dg fw	GATATGATAAGGAGAACTAAGCA	
BDH2 dg rv	GTCACACGAAGTATCTGCC	
XI-3 target RNA-fw	GCAGTGAAAGATAAATGATCATATGTCTCTAATTTTGGAAGTTTTAGAGCTAGAAATAG	
XI-3 target RNA-rv	CTATTTCTAGCTCTAAAACTTCCAAAATTAGAGACATATGATCATTTATCTTTCACTGC	
XI-3 up-repair fw	AGTTACTTGCTCTATGCGTTTGC	

XI-3 up-repair rv	CCGCTCGGCGGCTTCTAATCCGTACTAATCAGACGCACGC		
XI-3 dn-repair fw	GAGAAGGTTTTGGGACGCTCGAAGTTACGTGGATTGAGCCAGCA		
XI-3 dn-repair rv	TGAGAATCCGGACCAGCAGAT		
XI-3-up-Gal1p fw	ATTGACGCCAAGCGTGCGTCTGATTAGTACGGATTAGAAGCCGCC		
GAL1p rv	GGGTTTTTTCTCCTTGACG		
CYC1t fw	ATCCGCTCTAACCGAAAAGG		
XI-3-dn-CYC1t rv	ATCTGTATTGCTGGCTCAATCCACGTAACTTCGAGCGTCCCAAAACCT		
Delta target RNA-fw	TGATCTGAGGATTCCTATATCCTCGGTTTTAGAGCTAGAAATAGCAAG		
Delta target RNA-rv	TCTAAAACCGAGGATATAGGAATCCTCAGATCATTTATCTTTCACTGCGGAGAAG		
Delta up-repair fw	TGTTGGAATAGAAATCAACTAT		
Delta up-repair rv	GGATATAGGAATCCTCAAAATG		
G418-Delta dn-repair fw	TGTCAAGGAGGGTATTCTGGGCCTCCATGTCGCTGTCGAGGAGAACTTCTAGTATATTC		
Delta dn-repair rv	ATGAAGCAGGTGTTGTTGTCTGTTGAG		
G418p-fw	CAGCGACATGGAGGCCCAGAAT		
G418t-rv	TCGACACTGGATGGCGGCGTTA		
Delta-GAL1p-fw	GATTCCATTTTGAGGATTCCTATATCCAGTACGGATTAGAAGCCGCCGAGC		
G418t-CYC1t-rv	CTAACGCCGCCATCCAGTGTCGACTTCGAGCGTCCCAAAACCTTCTCAAG		
AipFAD-fw	ATGGCTCAAGGCGTCCAAACG		
AipFAD-rv	TTAATTGTCTTTCCAGATTTTCAAAAT		
GAL1p-AipFAD fw	CTCTATACTTTAACGTCAAGGAGAAAAAACCCATGGCTCAAGGCGTCCAAACGACTACG		
CYC1t-AipFAD rv	TGTCTAACTCCTTTCCGGTTAGAGCGGATTTAATTGTCTTTCCAGATTTTCAA		
CYC1t-AipFAD-His rv	GTCTAACTCCTTCCTTTTCGGTTAGAGCGGATTTAGTGATGGTGATGGTGATGGTGATTGTC		
HasFAD-fw	ATGGCCCAAAGCTATCAATCAAC		
HasFAD-rv	TTAACTTAATTTATCGTTTACACCCGATCC		
GAL1p-HasFAD fw	TATACTTTAACGTCAAGGAGAAAAAACCCATGGCCCAAAGCTATCAATCA		
CYC1t-HasFAD rv	TGTCTAACTCCTTCCTTTTCGGTTAGAGCGGATTTAACTTAATTTATCGTTTACACC		
CYC1t-HasFAD-His rv	AACTCCTTCCTTTTCGGTTAGAGCGGATTTAGTGATGGTGATGGTGACTGAC		
HarFAD-fw	ATGGCCCAAAGCTATCAATC		
HarFAD-rv	TTAACTTGATTTATCTTTTACATCCC		
GAL1p-HarFAD fw	ACCTCTATACTTTAACGTCAAGGAGAAAAAAACCCATGGCCCAAAGCTATCAATCA		
CYC1t-HarFAD- rv	TTGTCTAACTCCTTCCTTTTCGGTTAGAGCGGATTTAACTTGATTTATCTTTTACATC		
CYC1t-HarFAD-His- rv	TCCTTTTCGGTTAGAGCGGATTTAGTGATGGTGATGATGGTGACTTGATTTATCTTTTA		
AseFAD-fw	ATGGCTCAAGGTGTTCAAACTAC		

AseFAD-rv TTAATTATCTTTCCAGATCT

GAL1p-AseFAD fw	TATACTTTAACGTCAAGGAGAAAAAACCCATGGCTCAAGGTGTTCAAACTACAACTAT
CYC1t-AseFAD rv	GTCTAACTCCTTCCTTTTCGGTTAGAGCGGATTTAATTATCTTTCCAGATCTTCAA
CYC1t-AseFAD-His rv	TAACTCCTTCCTTTTCGGTTAGAGCGGATTTAGTGATGGTGATGATGGTGATTATCTTT
OLE1p target RNA-fw	TAAATGATCATAGCCGTAACAATAGGGATGTTTTAGAGCTAGAAATAGCAAGTTAAAAT
OLE1p target RNA-rv	AGCTCTAAAACATCCCTATTGTTACGGCTATGATCATTTATCTTTCACTGCGGAGAAGT
OLE1p-up fw	GTTCTGAGGTATTCGTATCGC
OLE1p-up rv	TCTATGGTAACCGGCAGTAAT
CTR3p-fw	GTATTCCAATGAGAATCGCTAG
CTR3p-rv	CTTTGTATAGCCCTTAAATGTG
CTR3p-OLE1pOUT-UP-rv	CATTTCTAGCGATTCTCATTGGAATACATAGTCACGGAGAATCTTGACG
CTR3p-OLE1-fw	GAAAACACATTTAAGGGCTATACAAAGATGCCAACTTCTGGAACTACTA
MET3p-fw	TGGTATAAGGTGAGGGGGTCCACAG
MET3p-rv	GAATACCACCGTGAGGAGCAGGCATG
MET3p-OLE1pOUT-UP-rv	CTGTGGACCCCCTCACCTTATACCAATAGTCACGGAGAATCTTGACGT
MET3p-OLE1-fw	CATGCCTGCTCCTCACGGTGGTATTCATGCCAACTTCTGGAACTACTA
CYC1p-fw	TCATTGGCGAGCGTTGGTT
CYC1p-rv	ATTTAGTGTGTGTATTTGTGTTTG
CYC1p-OLE1pOUT-up-rv	ACCAACCAACGCTCGCCAAATGAATAGTCACGGAGAATCTTGACGT
CYC1p-OLE1-fw	ACACAAACACAAATACACACACTAAATATGCCAACTTCTGGAACTACT
PDA1p-fw	GAAATTCAAAACTCTCCAGACAA
PDA1p-rv	ATTGGCACAAATGTGGTTTCCT
PDA1p-OLE1pOUT-UP-rv	CTTTGTCTGGAGAGTTTTGAATTTCATAGTCACGGAGAATCTTGACGT
PDA1p-OLE1-fw	GAAAGGAAACCACATTTGTGCCAATATGCCAACTTCTGGAACTACTA
YMRW15 target RNA-fw	GATGGCATAATATTGAGAAAGTTTTAGAGCTAGAAATAGCAAG
YMRW15 target RNA-rv	TTTCTCAATATTATGCCATCGATCATTTATCTTTCACTGCGGAGAAG
YMRW15-up-fw	TCAATCAAAGCAACCCACAA
YMRW15-up-rv	AGTAAAAAAGGAGTAGAAACATTTTGAAGCTATGGCGCGTGCGGTGTAAGAAAATGACA
TCDp-fw	CTGTTTCTCAAACTTTATGTCATTTTCTTACACCGCACGCGCCATAGCTTCAAAATGTT
TCDp-rv	TTCTTTCCAATCTTTCTCTCTGGTAATTGGGGGACATTTTGTTTG
MmaCAR-fw	GAACTTAGTTTCGAATAAACACACATAAACAAAACAAAA
MmaCAR-rv	TACTTGACCTGAACTTAACGATTTGCTCTCAATCCGCTTACAACAAGCCCAACAGCCTC
RBLt-fw	GTACGTTTCTGATTTGAGGCTGTTGGGCTTGTTGTAAGCGGATTGAGAGCAAATCGTTA

RBLt-rv	GCGTATTTTAAGTTTAATAACTCGAAAATTCTGCGTTAGCCGAAAATCTTTCAAGCACG
PGK1t-fw	AATGAATCTTTCTGTCGTGCTTGAAAGATTTTCGGCTAACGCAGAATTTTCGAGTTATT
PGK1t-rv	ACCATGTGCTACTGGTGTATGTAACTGCTTGTCTTGAGATCTCCCATGTCTCTACTGGT
npgA-fw	CAAAGAAGCACCACCACCAGTAGAGACATGGGAGATCTCAAGACAAGCAGTTACATACA
npgA-rv	GAAAGCATAGCAATCTAATCTAAGTTTTAATTACAAAATGGTTCAAGATACCTCTTCTG
TEF1p-fw	TTGGAGAGGTAGAAGCAGAAGAGGTATCTTGAACCATTTTGTAATTAAAACTTAGATTA
TEF1p-rv	GAAGATTTATAATGGTTTATCGGTTGCATTTTCCATGAGTGATCCCCCACACACCATAG
YMRW15-dn-fw	GTAGAAACATTTTGAAGCTATGGTGTGTGGGGGGATCACTCATGGAAAATGCAACCGATA
YMRW15-dn-rv	GCCGTCCTCATGATGTGTTA

104

105 Table S2: Levels set in pH and concentration of phosphate and nitrogen source

Levels	pН	$(NH_4)_2$ SO ₄ g/L	KH ₂ PO ₄ g/L
1	5	2	2
2	5.5	4.7	6.3
3	6	7.4	10.6
4	6.5	10	15

106

107 Table S3: Combinations in optimization of fermentation conditions

Number	Combinations	pН	$(NH_4)_2$ SO ₄ g/L	KH ₂ PO ₄ g/L
1	111	5	2	2
2	122	5	4.7	6.3
3	133	5	7.4	10.6
4	144	5	10	15
5	212	5.5	2	6.3
6	223	5.5	4.7	10.6
7	234	5.5	7.4	15
8	241	5.5	10	2
9	313	6	2	10.6
10	324	6	4.7	15
11	331	6	7.4	2
12	342	6	10	6.3

13	414	6.5	2	15
14	421	6.5	4.7	2
15	432	6.5	7.4	6.3
16	443	6.5	10	10.6

108

109 Table S4: Concentration of Z9-16: Ald and Z11-16: Ald in tested samples in

110 dual-choice assay

Samples	Z9-16: Ald (mg/L)	Z11-16: Ald (mg/L)
Standard blend	1.5	48.5
Raw extracts of FAL2	91.9	45.3
Raw extracts of WT	0	0
Raw purified of FAL2	75.2	47.5

111

112 **References**

- 113 1 Y. J. Zhou, N. A. Buijs, Z. Zhu, J. Qin, V. Siewers and J. Nielsen, Nat.
- 114 *Commun.*, 2016, **7**, 11709.
- B. J. Ding, P. Hofvander, H. L. Wang, T. P. Durrett, S. Stymne and C. Löfstedt, *Nat. Commun.*, 2014, 5, 1–7.
- 117 3 H. R. Buser, H. Arn, P. Guerin and S. Rauscher, *Anal. Chem.*, 1983, **55**, 818–
- 118 822.

119