Porous Thienyl Cyclodextrin Polymer Synthesized in Homogeneous Ionic Liquid Catalyst System for Rapid Removal of Pharmaceuticals and Personal Care Products (PPCPs)

Yizhou Tu^a, Huimin Wang^a, Pingping Yang^a, Guizhou Xu^a, Xuejiao Hu^a, Aimin Li^{a,c},

Xianchuan Xie *a,b,d

^a State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment,

Nanjing University, Nanjing, P. R. China

^b Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China

^c Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou, 362008, P. R. China

^d Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province, 330300, P. R. China

* Corresponding Author

Email: xchxie@nju.edu.cn & 24255542@qq.com (X. Xie).

Tel. and Fax: 086-25-83594492

Content

Fig. S1 IR spectra of [EMIm]Cl and [EMIm]Cl/FeCl₃ ionic liquids.

Fig. S2 Nitrogen adsorption isotherm of the sample with a final temperature of 60 °C measured

at 77K (activated in vacuum at 170 °C for 12 h in advance).

Fig. S3 ¹³C NMR spectrum of ThCD (dissolve with deuterated acetone).

Fig. S4 The Zeta potential diagram of Th-CDP and GAC in the range of pH 2–12.

Fig. S5 Model fitting results of adsorption kinetic for four PPCPs by Th-CDP and GAC.

Fig. S6 Model fitting results of adsorption isotherm for four PPCPs by Th-CDP and GAC.

 Table S1 The MRM (multiple reaction monitoring) parameters of the four PPCPs in mass

 spectrometry.

spectrometry.

 Table S2 Mass spectrometry methods of the four PPCPs.

Table S3 Elemental analysis results of Th-CDP.

Table S4 Physicochemical properties and structure diagram of PPCPs studied in this work.

Fig. S1. IR spectra of [EMIm]Cl and [EMIm]Cl/FeCl₃ ionic liquids.

Fig. S2 Nitrogen adsorption isotherm of the sample with a final temperature of 60 °C measured at 77K (activated in vacuum at 170 °C for 12 h in advance).

Fig. S3 ¹³C NMR spectrum of ThCD (dissolve with deuterated acetone).

Fig. S4 The Zeta potential diagram of Th-CDP and GAC in the range of pH 2–12.

Fig. S5 Model fitting results of adsorption kinetic for four PPCPs by Th-CDP and GAC.

Fig. S6 Model fitting results of adsorption isotherm for four PPCPs by Th-CDP and GAC.

Compound	Polarity	Precursor	Product ion	CE	DP
DCE	Negative	294.1	249.9	-15.8	-49.7
DCF			213.9	-27.7	-43.4
IBU	Negative	205.1	161.0	-10.8	-42.0
		227.0	194.0	26.0	81.0
CBZ	Positive	237.0	194.0 179.1	48.0	77.0
SMX	Positive	254.1	155.9	22.0	69.0
			108.0	34.0	71.0

 Table S1 The MRM (multiple reaction monitoring) parameters of the four PPCPs in mass

 spectrometry.

Parameters	Negative	Positive	
Collision Gas	4	4	
Curtain Gas	20	35	
Ion Source Gas 1	45	45	
Ion Source Gas 2	55	55	
IonSpray Voltage	-4500	5500	
Temperature	600	550	
Interface Heater	On	On	

 Table S2 Mass spectrometry methods of the four PPCPs.

Sample	C (wt%)	H (wt%)	O (wt%)	N (wt%)	S (wt%)
Th-CDP	55.76	2.989	12.740	0.55	24.797

Table S3 Elemental analysis results of Th-CDP.

Pollutants	$M_{ m w}~({ m g~mol^{-1}})$	$\log\!K_{ m ow}{}^{ m a}$	$C_{\mathrm{s}} (\mathrm{mg} \mathrm{L}^{-1})^{\mathrm{b}}$	pK _a ^c	Diagram
DCF	318.13	4.02	15906.5	4.18	
IBU	206.28	3.79	21	4.41	ОН
CBZ	236.27	2.25	38	13.94	O NH2
SMX	253.28	0.48	610	5.81	H ₂ N

Table S4 Physicochemical properties and structure diagram of PPCPs studied in this work.

 a Log K_{ow} (KOWWIN v1.67 estimate) implemented in the ChemSpider database;

^b Water Solubility obtained by the ChemSpider database;

^c Calculated using the Advanced Chemistry Development (ACD/Labs) Software V11.02, as implemented in the SciFinder CAS database.