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Material and Methods

Materials

Unless stated otherwise, all gas and liquids used in this paper are high-purity (>99%). Lab solvents
DCM, mineral spirits and acetone were used when required. Pentane (MilliporeSigma; product
number: 236705-2L), Cyclohexane (MilliporeSigma; product number: 227048-1L),
Methylcyclohexane (MilliporeSigma; product number: 300306-100ML), Ethylbenzene
(MilliporeSigma; product number: 296848-100ML), Tetralin (MilliporeSigma; product number:
522651-1L), Toluene (MilliporeSigma; product number: 244511-100ML), Benzene
(MilliporeSigma; product number: 401765-100ML), and Methylnaphthalene (MilliporeSigma;
product number: W319309-100G-K) are irradiated.

Preparation of reactor

Commercially available aluminum tube (multipurpose 6061, 12.5 mm OD, 9mm ID, and 50 cm
length), stainless tube fittings and brass ball valve used to house liquid in the reactor. Reactors
were cleaned by acetone before loading samples. One pressure relive valve and pressure gage were
used to monitor pressure in the system. System was leaking checked at 60 psi before loading liquid
samples. Liquid samples were loaded into system and sealed with helium at 5 psi. System pressure
was checked before irradiation test to make sure no system leaking.

About 5 kg ice was mixed with water in the cooling water bath. Temperature of the cooling water
was monitored during each experiment. Temperature was maintained in 5-10 °C range with a
circulation pump. Reactor was partially submerged in water and fixed in the water bath. Reactor
temperature was in equilibrium with cooling water.

Preparation of test

Reactors were carefully aligned with the beam to make sure samples absorbs radiation uniformly.
Solid alanine dosimeters were used to measure dose rate (kJ/kg-s) absorbed by the sample.
Exposure time was calculated based on the desired specific energy input (kJ/kg) and measured
dose rate. When reactor with sample was ready, beam was turned on. Temperature and system
pressure were monitored in real-time when beam was on to make sure pressure was below the
pressure relief setting pressure and sample temperature below the boiling point of each sample.
Beam was turned off when specific energy input reached desired values. Reactors with treated
samples were closed and stored at lab conditions before samples were collected into a glass jar.

Sample characterization

Treated liquid samples were first poured into a glass jar (ULINE; product number: S-15846M-W),
then stored in a refrigerator. Liquid products were analyzed by Thermo Scientific DSQ II GC-MS
(gas chromatography-mass spectrometry) and Agilent 6890N series gas chromatograph with flame
ionization detector (GC-FID). The liquid samples for the GC-MS and GC-FID analysis were
prepared by mixing 8 mg of the treated sample with 2.4 g of Dichloromethane (Sigma—Aldrich;
product number: 270997). Diluted sample (1uL) was injected into a space on the top of the GC
column. Liquid product was first identified using Cg-C, alkanes calibration standard (Sigma—
Aldrich; product number: 40147-U). The concentration of the liquid products was quantified
calculating the normalized peak areas in GC-MS. Mass spectrum of each new peaks was analyzed
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by the GC-MS system and compared to the mass spectrum library to identify the chemical structure
of them. Results from both GCs help verify each other.

Conversion in treated sample

Conversion of each compound to each hydrocarbon compound in different ranges was calculated
based on both GC-FID and GC-MS peak area. Peak area corresponding to each compound within
one sample was first calculated. Peak area was then normalized by the total peak areas. Normalized
peak area corresponding to each compound is proportional to its mass concentration in the sample.
The proportionality constant was determined by calibrant (Sigma Aldrich; part number: 49452-U).
Normalized peak areas in treated sample subtract the same peaks in control sample and the

difference represents conversion to each compound.
C; (%) = A,

— treated ~ AL’ - control
i=15

Ctotal (%) = Z (Ai - treated ~ Ai - control)
i=6

Where Ci is conversion to each compound including multiple hydrocarbon products. Ctotal is the

conversion of pentane and its equal to the sum of all products. A; - treated and A; - control are
normalized area of new hydrocarbon compound in treated sample and control sample, respectively.
Conversion to gaseous hydrocarbon products smaller than Cs was not studied at each individual
carbon number. But mass loss due to those gaseous hydrocarbons is estimated.
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Figure S1. Experimental setup used to irradiate liquid samples at ambient conditions. (a),
electron beam scan horn and water bath. Beam coming from the scan horn is about 22-inch long,
slightly longer than the tube length to make sure sample was irradiated uniformly. Ice water bath
was used to keep the sample cold during the irradiation test. Reactor was submerged into the ice
water bath. Ice water bath was inside a stainless-steel container and a water pump was used to
circulate cold water near the reactor wall. Two thermocouples monitor the real-time reactor
temperature. (b), the reactor was made of /2 inch OD aluminum tubes with thin wall. The length
of the tube is 20 inches. Tube was sealed with a ball valve on one side and a pressure relief valve
on the other side. One pressure gage was used to allow for real time monitor of the system pressure.
Reactor was first washed with pentane to remove potential contaminates. Then pentane sample
was loaded into the reactor. System was purged with inert gas for about two minutes at 0.5 SLPM
to remove air, then sealed at 5 psig. Pressure relief valve values setting point was 50 psig.
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Figure S2. Mass spectrum of multiple compounds studied in this paper. Mass spectrum data
is an important indicator of the crackability of a molecule when colliding with an high energy
electron under very low pressure.
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Figure S3. Normalized fragments of each compound vary with its saturation degree by
electronic ionization. Data was derived based on the mass spectrum from NIST Standard
Reference Database 69: NIST Chemistry WebBook owned by NIST Mass Spectrometry Data
Center. Fragments were normalized by its total carbon bond number for each compound.
Normalized fragments are used to characterize the crackability of a molecule. Aromatics, cyclic
alkanes, and straight alkanes have very different crackability indicated by different number of
fragments. Order of crackability: straight alkanes> cyclic alkanes>aromatics. Crackability
generally increases with increasing the saturation degree.
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Figure S4. GC-MS signals of raw pentane (black line) and irradiated pentane (red line).
Signal was focused in 2-6 minutes to study compounds in C;-C;, group. System was calibrated
with pure hydrocarbon compounds including heptane, octane, 4-methylnonane, 1-decene and
decane. Calibration signals were used to identify peaks in irradiated pentane. Peaks corresponding
to heptane, octane, nonane and decane were identified on signal of irradiated pentane. Branched
compounds appeared on the left of alkanes at each carbon group owning to their lower boiling
points. Based on the retention time of each peak and known calibration signals, boiling point of
each peak was derived. The derived boiling point was compared with data from the National
Institute of Standards and Technology (NIST) Database to identify the name and possible chemical
structure of each compound. Mass spectrum of those identified compounds were also compared
with the NIST mass spectra library. Some of the identified compounds were labeled on the top of

corresponding peaks.
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Figure S5. Mass spectrum of Bicyclohexyl (Ci;H,;) peak at 8.25 minutes in irradiated
cyclohexane compared to the reference in MS library. Structure of the compound is identified
and match the reference shown on the plot.
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Figure S6. Mass spectrum of Hexyl-cyclohexane (C;,H,4) peak at 7.7 minutes in irradiated
cyclohexane compared to the reference in MS library. Structure of the compound is identified
and match the reference shown on the plot.
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Figure S7. Mass spectrum of Hexane, 1,6-dicyclohexyl (C;sH34) peak at 11.98 minutes in
irradiated cyclohexane compared to the reference in MS library. Structure of the compound
is identified and match the reference shown on the plot.
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Figure S8. Mass spectrum of 1,1':2',1"'-Tercyclohexane (CsH3,) peak at 11.79 minutes in
irradiated cyclohexane compared to the reference in MS library. Structure of the compound
is identified and match the reference shown on the plot.
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Figure S9. Mass spectrum of 1,1-bicyclohexyl,4,4-dimethyl- (C,4H,¢) peak at 11.79 minutes
in irradiated methylcyclohexane compared to the reference in MS library. Structure of the
compound is identified and match the reference shown on the plot.
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Figure S10. Mass spectrum of 1-cyclohexylmethyl-4-methyl-,trans- (C,4H,¢) peak at 9.52
minutes in irradiated methylcyclohexane compared to the reference in MS library. Structure
of the compound is identified and match the reference shown on the plot.
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Figure S11. Mass spectrum of Bibenzyl (C{4H;4) peak at 9.65 minutes in irradiated Toluene
compared to the reference in MS library. Structure of the compound is identified and match the
reference shown on the plot.
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Figure S12. Mass spectrum of 4,4'-Dimethylbiphenyl (C{4H;4) peak at 10.06 minutes in
irradiated Toluene compared to the reference in MS library. Structure of the compound is
identified and match the reference shown on the plot.
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identified and match the reference shown on the plot.
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Figure S14. Mass spectrum of Benzene, 1,1'-(1,2-dimethyl-1,2-ethanediyl) bis- (C,sH;s) peak
at 10.19 minutes in irradiated Ethylbenzene compared to the reference in MS library.
Structure of the compound is identified and match the reference shown on the plot.
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Figure S15. Mass spectrum of Benzene, 1,1'-(1-methyl-1,3-propanediyl) bis- (C;cH;s) peak at
10.6 minutes in irradiated Ethylbenzene compared to the reference in MS library. Structure

of the compound is identified and match the reference shown on the plot.
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Figure S16. Mass distribution of each group in irradiated pentane normalized by decane.
Results are compared to simulation based on a random cracking and free pairing model.
Experimental results and modeled results match well in most of the carbon groups studied here.
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Figure S17. Product mass distribution in irradiated pentane among C;-C;, groups which are
branched alkanes and straight alkane quantified by the peak area corresponding to each product.

Scheme S1: Radicals creation by irradiation of pentane (CsH;;) and their recombination reaction
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pathways to produce larger molecules in the range of C¢-Cy. a, pathways to create radicals by irradiating
pentane. Pentyl and hydrogen radicals are created in reactions 1-3 due to carbon-hydrogen bond rupture. Butyl
and methyl radicals are created in reaction 4 due to carbon-carbon bond rupture between the first and second
carbon atom. Ethyl and propyl radicals are created in reaction 5 due to carbon-carbon bond rupture between the
second and third carbon atom; b, C4 group; ¢, C; group with 8 isomers identified and; d, Cg group with 16
isomers identified; e, Cy group with 17 isomers identified; f, C;y group with 22 isomers identified by GCMS

and 5 recombination reaction pathways.
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Scheme S2: Radicals creation by irradiation of methylcyclohexane, toluene and benzene and their free

pairing reaction pathways to produce larger molecules (dimers). a, pathways to create radicals by irradiating
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methylcyclohexane. b, larger hydrocarbon molecules are created via free pairing reactions of methylcyclohexyl
radicals. ¢, pathways to create radicals by irradiating toluene. d, larger hydrocarbon molecules are created via
free pairing reactions of methylbenzyl radicals. e, pathways to create radicals by irradiating benzene. f, larger

hydrocarbon molecules are created via free pairing reactions of benzyl radicals.
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(methyleyclohexyl) O— + >—<:> R ——

H e

* (1-(Cyclohexylmethyl)-2-methylcyclohexane)
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ﬂ | O
#_’Q—‘ + H 3 pair of radicals ®_‘ + ’_© —_—

(Methylbenzyl)

O + H' 1 pair of radicals
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Scheme S3: Radicals creation by irradiation of propane C;Hg and their free pairing reaction pathways to
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produce larger molecules in the range of C4-Cq. a, pathways to create radicals by irradiating propane. Six pairs
of 1-propyl and hydrogen radicals, two pair of isopropyl and hydrogen radials, two pair of methyl and ethyl
radicals are created due to carbon-carbon and carbon-hydrogen bond rupture. b, larger hydrocarbon molecules
are created via free pairing reactions of radicals. Production mechanism of molecules in the range of C4-Cg are

illustrated here including hexane, 2-methylpentane, pentane, 2-methylbutane, isobutane and butane.
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@ A
I (isopropyl) (1-Propyl) (Ethyl) Pentane
e” ; ; airi
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Scheme S4: Radicals creation by irradiation of isobutane C,H,, and their free pairing reaction pathways
to produce larger molecules in the range of Cs-Cs. a, pathways to create radicals by irradiating isobutane. Nine
pairs of isobutyl and hydrogen radicals, one pair of tert-butyl and hydrogen radials, three pair of isopropyl and
methyl radicals are created due to carbon-carbon and carbon-hydrogen bond rupture. b, hydrocarbon isomers are
created via free pairing reactions of radicals. Reaction pathways for production of isomers in the range of Cs-Cg
are illustrated here including 2,5-dimethylhexane, 2,4-dimethylpentane, 2-methylbutane and 2,2,4-

trimethylpentane. All those compounds are highly desired gasoline range fuel components.
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Table S1: Physiochemical properties of irradiated hydrocarbon compounds: chemical

formula, boiling point, and saturation degree (SD).

Samples Formula BP (°C) SD Structure
&
Pentane CsHp» 36 1 ’
«{
Cyclohexane CsH» 81 0.875
Methylcyclohexane C;/Hy, 101 0.857
Ethylbenzene CgHio 136 0.5556
Tetralin CioH}2 207 0.5455
Toluene C;Hg 111 0.5
Benzene C¢He 80 0.4286
Methylnaphthalene CiHj 242 0.4167
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