Cycloaddition of *N*-sulfonyl and *N*-sulfamoyl Azides with Alkynes in Aqueous Media for the Selective Synthesis of 1,2,3-Triazoles

Prasanth Thumpati,^{a,b} Gargi Chakraborti,^a Tirtha Mandal,^a Velayutham Ravichandiran^b and Jyotirmayee Dash^a*

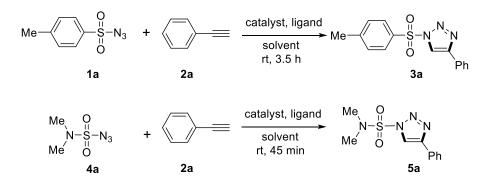
^aSchool of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India. ^bNational Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Chunilal Bhawan, Maniktala Kolkata-700054, India

Correspondence email: ocjd@iacs.res.in

Contents

1.0 General Information	S 2
2.0 Optimization of reaction conditions	S 3
3.0 Preparation of ligands	S 6
4.0 Preparation of sulfonyl and sulfamoyl azides	S11
5.0 General procedure for cycloaddition of <i>N</i> -sulfonyl azides and alkynes (GP-1)	S11
6.0 General procedure for cycloaddition of <i>N</i> -sulfamoyl azides and alkynes (GP-2)	S12
7.0 Gram scale experiments	S12
8.0 Analytical data of all compounds	S13
9.0 X-Ray Crystallography of compounds 3x and 5f	S26
10.0 NMR spectra of all compounds	S30

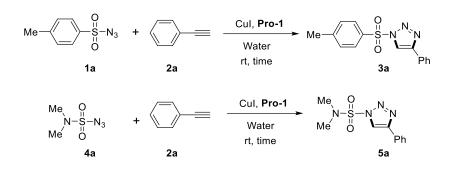
1.0 General information


All experiments were carried out in flame-dried reaction vials. Solvents were dried using standard procedures. All starting materials were obtained from commercial suppliers and used as received. Products were purified by flash chromatography on silica gel (100-200 mesh, Merck). Unless otherwise stated, yields refer to analytical pure samples. NMR spectra were recorded in CDCl₃ and DMSO-d₆. ¹**H** NMR spectra were recorded at 500 MHz using Brüker AVANCE 500 MHz and JEOL 400 MHz instruments at 278 K. Signals are quoted as δ values in ppm using residual protonated solvent signals as internal standard (CDCl₃: δ 7.26 ppm). Data is reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants and integration (Hz). ¹³C NMR spectra were recorded on either a JEOL 400 (100 MHz), or a Brüker AVANCE 500 MHz (125 MHz) with complete proton decoupling. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane with the solvent as the internal reference (CDCl₃: δ 77.26 ppm). **HRMS** analyses were performed with Q-TOF YA263 high resolution (Water Corporation) instruments by +ve mode electrospray ionization.

2.0 Optimization of reaction conditions

To optimize the cycloaddition reactions, various conditions were investigated, including the choice of ligand, copper catalyst and solvent. When the reactions were carried out in the absence of either CuI or **Pro-1**, no product was obtained (Table S1, entry 2 and 3), indicating that both CuI and **Pro-1** are necessary for the cycloaddition. Next, we evaluated the effect of different ligands such as DMEDA, phenanthroline, *L*-proline and chiral prolinamide derivatives **Pro-2**, and **Pro-3** on the cycloaddition (entries 4-8). Poor conversion of the starting materials was observed for DMEDA, phenanthroline (entries 4-6), while among the prolinamide derivatives, **Pro-1** was found to be the best choice for these cycloaddition (entry 1). When the reaction was performed with various copper salts (*i.e* CuBr, Cu(OAc)₂, CuO, Cu(0)), it was found that CuI assists the cycloaddition more efficiently as compared to other copper catalysts (Table S1, entries 9-12). Finally, different solvents were used (entries 13-18, Table S1), and the results suggested that water is the optimal solvent for the reactions (entry 1). The cycloadditions did not proceed well in other solvents and the triazole products **3a** and **5a** were obtained in poor yields.

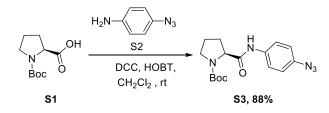
In case of cycloaddition of sulfamoyl azide (4a) and phenylacetylene (2a), after 3.5 h the triazole product 5a was obtained in 85% yield (entry 20). Interestingly, the reaction was found to be completed in 45 minutes, providing the desired triazole 5a in excellent yield (entry 21).



entry	ligand	Catalyst	solvent	time (h)	yield (%) ^b
1	Pro-1	CuI	H ₂ O	3.5	95
2	-	CuI	H ₂ O	24	20
3	Pro-1	-	H ₂ O	24	n.r
4	DMEDA	CuI	H ₂ O	3.5	40
5	Phenanthroline	CuI	H ₂ O	3.5	51
6	L-Proline	CuI	H ₂ O	3.5	65
7	Pro-2	CuI	H_2O	3.5	68
8	Pro-3	CuI	H_2O	3.5	40
9	Pro-1	Cu(OAc) ₂	H_2O	3.5	21
10	Pro-1	CuO	H ₂ O	3.5	-
11	Pro-1	CuBr	H_2O	3.5	57
12	Pro-1	Cu(0)	H_2O	3.5	-
13	Pro-1	CuI	<i>tert</i> -butanol	3.5	30
14	Pro-1	CuI	DMSO	3.5	80
15	Pro-1	CuI	EtOH	3.5	55
16	Pro-1	CuI	DMF	3.5	60
18	Pro-1	CuI	MeCN	3.5	30
20°	Pro-1	CuI	H ₂ O	3.5	85
21 ^c	Pro-1	CuI	H ₂ O	45 min	94

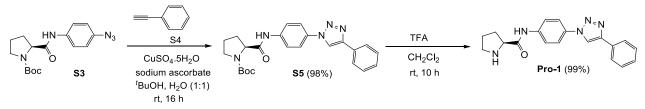
^aReaction conditions: **1a** / **4a** (1.0 mmol), **2a** (1.50 mmol), CuI (0.05 mmol), **Pro-1** (0.1 mmol), in 2 mL water; ^byield refers to the isolated yield without chromatographic purification; ^creaction was performed with **4a** and **2a**.

Table S2. Effect of concentration of ligand, Cu(I) and time on the cycloaddition reactions.^a


entry	Pro-1 (mol%)	CuI (mol%)	time (h)	conversion (%) ^b
1	5	2	3.5	55
2	5	4	3.5	60
3	5	5	3.5	75
4	8	5	3.5	85
5	10	5	3.5	95
6	10	5	4	95
7	10	5	2	80
8 ^c	10	5	30 min	85
9°	10	5	45 min	94

^aReaction conditions: **1a** / **4a** (1.0 mmol), **2a** (1.50 mmol), CuI (0.05 mmol), **Pro-1** (0.1 mmol), in 2 mL water; ^byield refers to the isolated yield without chromatographic purification; ^creaction was performed with **4a** and **2a**.

The highest conversion was obtained when 10 mol% **Pro-1** and 5 mol% CuI were used in both the reactions. The reaction of **1a** and **2a** was completed after stirring for 3.5 h (entry 5, Table S2), while the cycloaddition of **4a** and **2a** completed in 45 minutes (entry 9, Table S2).

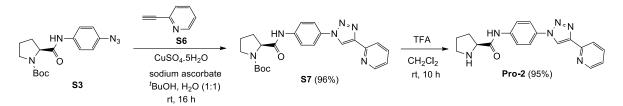

3.0 Preparation of ligands

Preparation of azido prolinamide S3:¹ To an ice-cold suspension of *N*-Boc proline **S1** (1.0 g, 4.65 mmol) in dry CH₂Cl₂ (25 mL), DCC (1.06 g, 5.1 mmol, 1.1 equiv) and HOBT (691 mg, 5.1 mmol, 1.1 equiv) were added and the mixture was allowed to stir for 45 min. Then, a solution of 4-azidoaniline **S2**² (624 mg, 4.65 mmol, 1.0 equiv) in dry CH₂Cl₂ (20 mL) was added dropwise to the reaction mixture, and stirred for 12 h. After complete consumption of the azide **S2** (TLC monitoring), the reaction mixture was filtered through celite, washed with dichloromethane (50 mL) and concentrated under vacuum. The product was purified by flash chromatography using hexane-ethylacetate (95:5 to 85:15) as eluent to afford the desired product **S3** as a yellow solid (1.50 g, 88 %) (Scheme S1). ¹H NMR (400 MHz, CDCl₃): 9.61 (br s, 1H), 7.48 (d, *J* = 9.4 Hz, 2H), 6.89 (br s, 1H), 4.47 (br s, 1H), 3.45-3.36 (m, 2H), 2.44 (br s, 1H), 1.99-1.90 (m, 3H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): 170.0, 156.5, 135.5, 134.9, 120.8, 119.2, 80.9, 60.4, 47.3, 28.3, 27.5, 24.5; HRMS (ESI) calcd for C₁₆H₂₁N₅O₃K (M+K)⁺: 370.1281; found: 370.1268.

Scheme S1. Preparation of azido prolinamide S3.

Preparation of Pro-1: The Cu(I)-catalyzed cycloaddition of azido prolinamide **S3** and phenyl acetylene (**S4**) afforded triazole derivative **S5**, which upon Boc group removal provided ligand **Pro-1** (Scheme S2).

Scheme S2. Synthesis of ligand Pro-1.


¹S. Paladhi, J. Das, P K. Mishra and J. Dash, Adv. Synth. Catal., 2013, 355, 274-280.

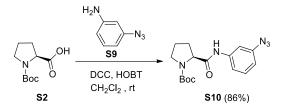
²J. Andersen, U. Madsen, F. Björkling and X. Liang, *Synlett*, 2005, 2209-2213.

Preparation of traizole derivative S5: Phenyl acetylene (**S4**) (1.08 mL, 9.8 mmol), sodium ascorbate (194 mg, 0.98 mmol, 0.1 equiv), CuSO₄.5H₂O (122.4 mg, 0.49 mmol, 0.05 equiv) were dissolved in 10 mL *t*BuOH-H₂O (7:3) mixture. Then the azido prolinamide **S3** (3.3 g, 9.8 mmol, 1.0 equiv) was added and stirred at room temperature for 16 h. After complete consumption of **S3** as monitored by TLC, the reaction mixture was concentrated and the residue was purified by flash chromatography using hexane-ethyl acetate (90:10 to 50:50) mixture to give the pure product **S5** (4.12 g, 98%) as a colorless solid (Scheme S2) . ¹H NMR (400 MHz): 9.97 (s, 1H), 8.08 (s, 1H), 7.84 (d, J = 9.1 Hz, 2H), 7.57 (d, J = 9.6 Hz, 2H), 7.44 (d, J = 9.2 Hz, 2H), 7.35 (t, J = 8.5 Hz, 2H), 7.36-7.30 (m, 1H), 4.56 (s, 1H), 3.57-3.54 (m, 2H), 2.53 (s, 1H), 2.08-1.91 (m, 3H), 1.51 (s, 9H); ¹³C NMR (100 MHz): 171.1, 155.7, 148.1, 139.1, 132.0, 130.0, 128.7, 128.1, 125.6, 120.8,119.9, 117.7, 80.7, 60.4, 47.2, 28.9, 28.3, 24.5; HRMS (ESI) calcd for C₂₄H₂₇N₅O₃K (M+K)+: 472.1751; found, 472.1783.

Preparation of ligand Pro-1: To an ice cold solution of compound **S5** (1.0 g, 2.3 mmol) in 30 mL CH₂Cl₂ was added TFA (0.53 mL, 6.9 mmol, 3.0 equiv) and the mixture was stirred for 10 h at room temperature. After consumption of the starting material **S5** (monitored by TLC), the reaction mixture was brought to pH 8-9 by dropwise addition of solution of liquid NH₃ (30%) at 0 °C. Then the reaction mixture was extracted with CH₂Cl₂ (3 x 20 mL), evaporated and dried under vacuum to give **Pro-1** (760 mg, 99%) as a white solid (Scheme S2). ¹H NMR (400 MHz): 9.98 (s, 1H), 8.17 (s, 1H), 7.89 (d, *J* = 8.8 Hz, 2H), 7.77 (d, *J* = 11.3 Hz, 2H), 7.72 (d, *J* = 11.1 Hz, 2H), 7.44 (t, *J* = 9.5 Hz, 2H), 7.35 (t, *J* = 9.2 Hz, 1H), 3.89 (dd, *J* = 11.6, 6.5 Hz, 1H), 3.09 (td, *J* = 12.8, 8.5 Hz, 1H), 3.00 (td, *J* = 12.8, 7.9 Hz, 1H), 2.40 (br s, 1H), 2.25-2.20 (m, 1H), 2.04 (dt, *J* = 15.6, 8.3 Hz, 1H), 1.79-1.74 (m, 2H); ¹³C NMR (100 MHz): 173.7, 148.2, 138.3, 132.6, 130.2, 128.8, 128.3, 125.8, 121.1, 120.0, 117.6, 60.9, 47.3, 30.7, 26.3; HRMS (ESI) calcd for C₁₉H₂₀N₅O (M+H)+:334.1667; found, 334.1693.

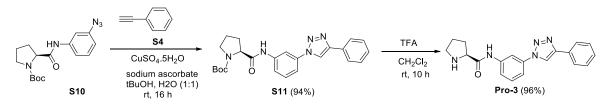
Preparation of Pro-2: A Cu(I)-catalyzed cycloaddition of azido prolinamide **S3** and 2ethynylpyridine **S6** gave triazole derivative **S7**, which upon the removal of Boc group afforded **Pro-2** (Scheme S3).

Scheme S3. Synthesis of Pro-2.


Preparation of traizole derivative S7: 2-Ethynylpyridine **S6** (1.08 mL, 9.8 mmol), sodium ascorbate (194 mg, 0.98 mmol, 0.1 equiv), CuSO₄.5H₂O (122.4 mg, 0.49 mmol, 0.05 equiv) were dissolved in 10 mL *t*BuOH-H₂O (7:3) mixtures. Then the azido prolinamide **S3** (3.3 g, 9.8 mmol, 1.0 equiv) was added and stirred at room temperature for 16 h. After complete consumption of **S3** as monitored by TLC, the reaction mixture was concentrated and the residue was purified by flash chromatography using hexane-ethyl acetate (90:10 to 40:60) mixture to give the pure product **S7** (4.00 g, 96%) as a colorless solid (Scheme S3). ¹H NMR (400 MHz, DMSO-d⁶): 10.3 (br s, 1H), 9.23 (s, 1H), 8.64 (d, *J* = 3.9 Hz, 1H), 8.11 (d, *J* = 7.8 Hz, 2H), 7.96 (d, *J* = 8.3 Hz, 3H), 7.83 (d, *J* = 8.3 Hz, 2H), 7.40 (t, *J* = 5.4 Hz, 1H), 4.29-4.21 (m, 1H), 2.27-2.19 (m, 1H), 1.91-1.81 (m, 3H), 1.41 (s, 3H), 1.28 (s, 6H); ¹³C NMR (100 MHz, DMSO-d⁶): 171.9, 153.2, 149.6, 149.5, 147.9, 139.5, 137.4, 131.7, 123.3, 120.9, 120.8, 119.9, 119.8, 78.6, 60.5, 46.7, 30.9, 27.8, 23.3; HRMS (ESI) calcd for C₂₃H₂₇N₆O₃ (M+H)⁺: 435.2145; found, 435.2144.

Preparation of ligand Pro-2: To an ice cold solution of compound **S7** (1.0 g, 2.3 mmol) in 30 mL dry CH₂Cl₂, added TFA (0.53 mL, 6.9 mmol, 3.0 equiv) and the mixture was stirred for 10 h at room temperature. After consumption of the starting material **S7** (monitored by TLC), the reaction mixture was brought to pH 8-9 by dropwise adition of 30 wt% solution of NH₃ in water at 0 °C. Then the reaction mixture was extracted with CH₂Cl₂ (3 x 20 mL), evaporated and dried under vacuum, to give **Pro-2** (730 mg, 95%) as a white solid (Scheme S3). ¹H NMR (500 MHz, DMSO-d⁶): 10.3 (br s, 1H), 9.24 (s, 1H), 8.64 (d, J = 3.4 Hz, 1H), 8.11 (d, J = 7.6 Hz, 2H), 7. 96-7.89 (m, 5H), 7.39 (t, J = 5.1 Hz, 1H), 3.75 (s, 1H), 2.92 (t, J = 6.7 Hz, 2H), 2.11-2.04 (m, 1H), 1.84-1.78 (m, 1H), 1.67 (t, J = 5.9 Hz, 1H), 1.34 (s, 1H); ¹³C NMR (100 MHz, DMSO-d⁶): 173.7, 149.6, 149.5, 148.1, 138.9, 137.3, 131.8, 123.3, 120.9, 120.7, 120.0, 119.8, 60.8, 46.7, 30.4, 25.8; HRMS (ESI) calcd for C₁₈H₁₉N₆O (M+H)⁺: 335.1620; found, 335.1622.

Preparation of 3-azidoaniline S9: Following the literature procedure,³ to a solution of 3-bromoaniline **S8** (1.0 g, 5.8 mmol, 1.0 equiv) in a mixture of EtOH-H₂O (7:3, 25 mL) and sodium ascorbate (57.6 mg, 0.29 mmol, 0.05 equiv), CuI (115 mg, 0.58 mmol, 0.1 equiv), ligand *N*,*N*'-dimethylethylenediamine (94 μ L, 0.87 mmol, 0.15 equiv) were added and stirred for 10 min. Sodium azide (755 mg, 11.62 mmol, 2.0 equiv) was added to the reaction mixture and the mixture was allowed to stir for 3 h at reflux under argon atmosphere. After complete consumption of **S8** (TLC analysis), the reaction was cooled, concentrated under vacuum and the crude product was purified by flash chromatography using hexane-ethyl acetate (95:5) mixture to give the desired azide **S9** (750 mg, 96%) as a brown solid. ¹H NMR (400 MHz, CDCl₃): 7.10 (t, *J* = 7.9 Hz, 1H), 6.43 (dd, *J* = 6.7, 1.8 Hz, 2H), 6.30 (t, *J* = 1.8 Hz, 1H), 3.73 (br s, 2H); ¹³C NMR (100 MHz):147.9, 141.1, 130.6, 111.9, 109.1, 105.5; HRMS (ESI) calcd for C₆H₇N₄(M+H)⁺: 135.0671; found: 135.0670.

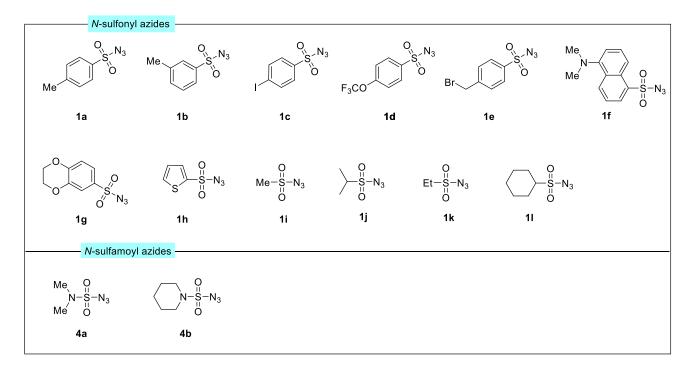

Preparation of 3-azido prolinamide S10: To an ice-cold suspension of *N*-Boc proline **S2** (1.0 g, 4.65 mmol) in dry CH₂Cl₂ (25 mL), DCC (1.06 g, 5.1 mmol, 1.1 equiv) and HOBT (691 mg, 5.1 mmol, 1.1 equiv) were added and the mixture was allowed to stir for 45 min. Then 3-azidoaniline **S9** (624 mg, 4.65 mmol, 1.0 equiv) in 20 mL dry CH₂Cl₂ was added dropwise to the reaction mixture, and stirred for 12 h. After complete consumption of the azide **S9** (TLC monitoring), the reaction mixture was filtered through celite, washed with ethyl acetate (50 mL) and concentrated under vacuum. The product was purified by flash chromatography using hexane-ethylacetate (95:5 to 85:15) as eluent to afford the desired product **S10** as a yellow solid (1.42 g, 86 %) (Scheme S4). ¹H NMR (400 MHz, CDCl₃): 9.72 (s, 1H), 7.36 (s, 1H), 7.10 (s, 1H), 7.04 (s, 1H), 4.49 (s, 1H), 3.50-3.35 (m, 2H) 2.41-1.89 (m, 4H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃):170.5, 156.0, 140.2, 139.9, 129.6, 115.6, 114.0, 109.8, 80.8, 60.4, 47.1, 28.3, 24.5; HRMS (ESI) calcd for C₁₆H₂₁N₅O₃K (M+K)⁺: 370.1281; found: 370.1268.

³(a) J. Andersen, U. Madsen, F. Björkling and X. Liang, *Synlett.* 2005, 2209-2213; (b) S. Paladhi, J. Das, P. K. Mishra and J. Dash, *Adv. Synth. Catal.*, 2013, **355**, 274-280.

Scheme S4. Preparation of azido prolinamide S10.

Preparation of Pro-3: Pro-3 was prepared by using Cu(I)-catalyzed cycloaddition of azido prolinamide **S10** and phenyl acetylene (**S4**) to give triazole derivative **S11**, which upon subsequent removal of Boc group afforded **Pro-3** (Scheme S5).

Scheme S5. Synthesis of ligand Pro-3.


Preparation of traizole derivative S11: Phenyl acetylene (**S4**) (1.08 mL, 9.8 mmol), sodium ascorbate (194 mg, 0.98 mmol, 0.1 equiv), CuSO₄.5H₂O (122.4 mg, 0.49 mmol, 0.05 equiv) were dissolved in 10 mL *t*BuOH-H₂O (7:3) mixture. Then the azido prolinamide **S10** (3.3 g, 9.8 mmol, 1.0 equiv) was added and stirred at room temperature for 16 h. After complete consumption of **S10** as monitored by TLC, the reaction mixture was concentrated and the residue was purified by flash chromatography using hexane-ethyl acetate (90:10 to 50:50) mixture to give the crude product **S11** (4.02 g, 94%) as a colorless solid.

Preparation of Pro-3: To an ice cooled solution of crude compound **S11** (1.0 g, 2.3 mmol) in 30 mL CH₂Cl₂, added TFA (0.53 mL, 6.9 mmol, 3.0 equiv) and the mixture was stirred for 10 h at room temperature. After consumption of the starting material **S11** (monitored by TLC), the reaction mixture was brought to pH 8-9 by dropwise addition of solution of liquid NH₃ (30%) at 0 °C. Then the reaction mixture was extracted with CH₂Cl₂ (3 x 20 mL), dried in vacuum, purified by flash chromatograghy using hexane-ethylacetate (50:50 to 30:70) to give **Pro-3** (746 mg, 96%) as a white solid. ¹H NMR (400 MHz, DMSO-d⁶): 10.4 (s, 1H), 9.23 (s, 1H), 7.95-7.88 (m, 6H), 7.50 (t, J = 7.8 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 3.91 (q, J = 5.8 Hz, 1H), 3.02 (t, J = 6.8 Hz, 2H), 2.21-2.12 (m, 1H), 1.91-1.83 (m, 1H), 1.79-1.72 (m, 2H); ¹³C NMR (100 MHz, DMSO-d⁶): 172.0,

147.2, 138.7, 132.1, 130.3, 128.9, 128.2, 125.3, 120.6, 120.2, 119.4, 60.6, 46.5, 30.2, 25.2; HRMS (ESI) calcd for C₁₉H₂₀N₅O (M+H)+: 334.1667; found, 334.1693.

4.0 Preparation of Substrates

Preparation of sulfonyl and sulfamoyl azides: Following reported procedures the following *N*-sulfonyl⁴ and *N*-sulfamoyl⁵ azides were prepared.

5.0 General procedure for cycloaddition of N-sulfonyl azides and aromatic alkynes (GP-1)

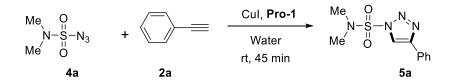
In a small reaction vial, **Pro-1** (10 mol%), a mixture of *N*-sulfonyl azide (0.2 mmol), aromatic /aliphatic alkyne (0.3 mmol) and water (0.2 M) was taken. Then, copper iodide (5 mol%) was added and the resulting heterogeneous reaction mixture was stirred at rt for 3.5 h. The completion of reaction was monitored by TLC analysis. The reaction mixture was extracted with ethyl acetate (3 x 2 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was then purified by flash chromatography on 100-200 mesh silica gel using hexane-ethyl acetate (95:05-80:20) as eluent to remove the residual copper and provide the corresponding products.

⁴ C. G. Wang, R. Wu, T. P. Li, T. Jia, Y. Li, D. Fang, X. Chen, Y. Gao, H. L. Ni, P. Hu, B. Q. Wang and P. Cao, *Org. Lett.*, **2020**, *22*, 3234-3238.

⁵ J. C. Culhane and V. V. Fokin, Org. Lett., 2011, 13, 4578-4580.

6.0 General procedure for cycloaddition of *N*-sulfamoyl azides and aromatic alkynes (GP-2) In a small reaction vial, **Pro-1** (10 mol%), *N*-sulfamoyl azide (0.2 mmol), alkyne (0.3 mmol) and water (2.0 mL, 0.2 M) were taken. Then, copper iodide (5 mol%) was added and the resulting heterogeneous reaction mixture was stirred at rt for 45 minutes. The completion of reaction was monitored by TLC analysis. The reaction mixture was extracted with ethyl acetate (3 x 2 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was then purified by flash chromatography on 100-200 mesh silica gel using hexane-ethyl acetate (95:05-80:20) as eluent to remove the residual copper and provide the corresponding products.

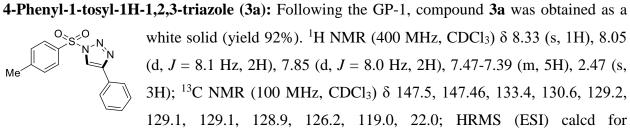
7.0 Gram scale experiment


Preparation of 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a):

Scheme S6. Gram scale synthesis of **3a**.

To a suspension of 4-methylbenzenesulfonyl azide **1a** (1.00 g, 5.07 mmol, 1 equiv), phenylacetylene **2a** (776.7 mg, 7.60 mmol, 1.5 equiv) in water (0.2 M), were added copper iodide (48 mg, 0.05 equiv) and **Pro-1** (168 mg, 0.1 equiv). The reaction mixture was stirred at rt for 3.5 h (Scheme S6). After the completion of reaction, the reaction mixture was extracted with ethyl acetate (20 x 3 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was then purified by flash chromatography on 100-200 mesh silica gel using hexane-ethyl acetate (95:05-80:20) as eluent to remove the residual copper, providing compound **3a** (1.30 g, 86%) in pure form.

Preparation of N,N-dimethyl-4-phenyl-1H-1,2,3-triazole-1-sulfonamide (5a):



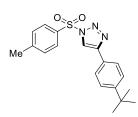
Scheme S7. Gram scale synthesis of 5a.

To a stirring suspension of ((azidosulfonyl)(methyl)amino)methane **4a** (1.00 g, 6.66 mmol, 1 equiv), phenylacetylene **2a** (1.02 g, 9.99 mmol, 1.5 equiv) in water, copper iodide (64 mg, 0.05

equiv) and **Pro-1** (221 mg, 0.1 equiv) were added and the reaction mixture was stirred at rt for 45 minutes (Scheme S7). After the completion of reaction, as monitored by TLC analysis, the reaction mixture was extracted with ethyl acetate ($20 \times 3 \text{ mL}$), dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was then purified by flash chromatography on 100-200 mesh silica gel using hexane-ethyl acetate (95:05-80:20) as eluent to remove the residual copper, providing compound **5a** (1.51 g, 90%) in pure form.

8.0 Analytical data of compounds

 $C_{15}H_{13}N_3O_2S$ [M+H]⁺: 300.0807; found: 300.0818.


4-(*p***-Tolyl)-1-tosyl-1H-1,2,3-triazole (3b):** Following the GP-1, compound **3b** was obtained as a white solid (yield 78%). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.02 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 2.44 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 147.4, 139.2, 133.3, 130.5, 130.0, 128.8, 126.2, 126.1, 118.6, 22.0,

21.4. HRMS (ESI) calcd for $C_{16}H_{15}N_3O_2S$ [M+H]⁺: 314.0963; found: 314.0964.

4-(*m***-Tolyl)-1-tosyl-1H-1,2,3-triazole (3c):** Following the GP-1, compound **3c** was obtained as a white solid (yield 88%). ¹H NMR (500 MHz, CDCl₃) δ 8.30 (s, 1H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.66 (s, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 7.5 Hz, 1H), 2.44 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 147.4, 138.9, 133.3, 130.6, 130.0, 129.0,

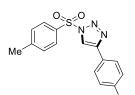
128.9, 128.8, 126.9, 123.3, 119.0, 22.0, 21.5; HRMS (ESI) calcd for $C_{16}H_{15}N_3O_2S$ [M+H]⁺: 314.0963; found: 314.0964.

4-(4-(Tert-butyl)phenyl)-1-tosyl-1H-1,2,3-triazole (3d): Following the GP-1, compound 3d was

obtained as a white solid (yield 67%). ¹H NMR (500 MHz, CDCl₃) δ 8.29 (s, 1H), 8.02 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 147.5, 147.4, 133.3, 130.4, 128.8, 126.1, 126.0, 126.0, 118.7, 34.9, 31.3, 21.9; HRMS (ESI) calcd for C₁₉H₂₁N₃O₂S

[M+H]⁺: 356.1432; found: 356.1434.

4-(4-Pentylphenyl)-1-tosyl-1H-1,2,3-triazole (3e): Following the GP-1, compound **3e** was obtained as a white solid (yield 91%). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.38 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 2.64-2.60 (m, 2H), 2.44 (s, 3H), 1.66-1.60 (m, 2H), 1.33-1.28 (m, 4H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 8.26 (m, 2H), 2.44 (s, 2H), 1.66-1.60 (m, 2H), 1.33-1.28 (m, 4H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 8.26 (m, 2H), 1.47 4, 144 4, 122 4, 120 6, 120 2, 128 0, 126 4, 126 2, 118 6, 25 0, 21 6


MHz, CDCl₃) δ 147.7, 147.4, 144.4, 133.4, 130.6, 129.2, 128.9, 126.4, 126.2, 118.6, 35.9, 31.6, 31.1, 22.7, 22.0, 14.1; HRMS (ESI) calcd for C₂₀H₂₃N₃NaO₂S [M+Na]⁺: 392.1409; found: 392.1408.

4-(2-Methoxyphenyl)-1-tosyl-1H-1,2,3-triazole (3f): Following the GP-1, compound 3f was obtained as a yellowish solid (yield 94%). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.31 (dd, *J* = 7.7, 1.6 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.35 (dd, *J* = 15.1, 7.7 Hz, 3H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 8.3 Hz, 1H), 3.97 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.1,

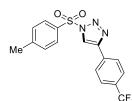
147.2, 142.9, 133.6, 130.5, 130.0, 128.8, 128.2, 122.2, 121.2, 117.9, 111.0, 55.6, 22.0; HRMS (ESI) calcd for C₁₆H₁₅N₃O₃S [M+H]⁺: 330.0912; found: 330.0910.

118.6, 115.3, 111.4, 55.5, 22.0; HRMS (ESI) calcd for C₁₆H₁₅N₃NaO₃S [M+Na]⁺: 352.0732; found: 352.0733.

4-(4-Methoxyphenyl)-1-tosyl-1H-1,2,3-triazole (3h): Following the GP-1, compound 3h was

obtained as a white solid (yield 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 147.4, 147.4, 133.4, 130.6, 128.8, 127.6, 121.7,

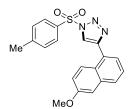
118.0, 114.6, 55.5, 22.0; HRMS (ESI) calcd for $C_{16}H_{15}N_3O_3S$ [M+H]⁺: 330.0912; found: 330.0913.


4-(4-Fluorophenyl)-1-tosyl-1H-1,2,3-triazole (3i): Following the GP-1, compound **3i** was obtained as a white solid (yield 94%). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.82-7.78 (m, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.12 (t, *J* = 8.7 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 162.1, 147.6, 146.6, 133.2, 130.6, 128.9, 128.1, 128.1, 125.3, 125.3, 118.8,

116.3, 116.1, 22.0; HRMS (ESI) calcd for $C_{15}H_{14}N_3[M+H]^+$: 236.1188; found: 236.1171.

4-(4-Bromophenyl)-1-tosyl-1H-1,2,3-triazole (3j): Following the GP-1, compound **3j** was obtained as a brownish solid (yield 90%). ¹H NMR (500 MHz, CDCl₃) δ 8.32 (s, 1H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) Br δ 147.6, 146.4, 133.1, 132.3, 130.6, 129.0, 128.0, 127.7, 123.3, 119.1, 22.0;

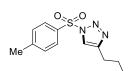
HRMS (ESI) calcd for C₁₅H₁₂BrN₃O₂S [M+H]⁺: 377.9911; found: 377.9914.


1-Tosyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (3k): Following the GP-1, compound

3k was obtained as a greenish solid (yield 92%). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.03 (d, *J* = 8.4 Hz, 2H), 7.94 (d, *J* = 8.1 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 146.0, 133.0, 132.5, 130.7, 129.0, 126.4, 126.2,

126.1, 126.1, 119.9, 22.0; HRMS (ESI) calcd for $C_{16}H_{12}F_3N_3O_2S$ [M+H]⁺: 368.0681; found: 368.0697.

4-(6-Methoxynaphthalen-2-yl)-1-tosyl-1H-1,2,3-triazole (3l): Following the GP-1, compound


31 was obtained as a white solid (yield 70%). ¹H NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H), 8.27 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 2H), 7.83 (d, *J* = 8.5 Hz, 1H), 7.77 (dd, *J* = 8.6, 4.1 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 14.0 Hz, 2H), 3.93 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 147.8,

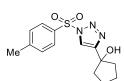
147.4, 134.9, 133.4, 130.6, 130.0, 128.9, 128.9, 127.7, 125.3, 124.3, 124.2, 119.2, 118.8, 106.0, 55.5, 22.0; HRMS (ESI) calcd for C₂₀H₁₇N₃O₃S [M+H]⁺: 380.1068; found: 380.1067.

4-(Thiophen-3-yl)-1-tosyl-1H-1,2,3-triazole (3m): Following the GP-1, compound 3m was obtained as a white solid (yield 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 2H), 7.77-7.74 (m, 1H), 7.43-7.37 (m, 4H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 143.7, 133.3, 130.6, 130.2, 128.8, 127.0, 125.8, 122.9, 118.7, 22.0; HRMS (ESI) calcd for C₁₅H₁₂FN₃O₂S

[M+H]⁺: 318.0713; found:318.0714.

4-(1-Tosyl-1H-1,2,3-triazol-4-yl)butanenitrile (3n): Following the GP-1, compound 3n was

obtained as a white solid (yield 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 2H), 7.93 (s, 1H), 7.39 (d, J = 8.2 Hz, 2H), 2.88 (t, J = 7.4 Hz, 2H), 2.45 (s, 3H), 2.41 (t, J = 7.1 Hz, 2H), 2.06 (p, J = 7.2 Hz, 2H);


¹³C NMR (100 MHz, CDCl₃) δ 147.5, 145.6, 133.2, 130.6, 128.8, 121.1, 119.1, 24.6, 24.1, 22.0, 16.7; HRMS (ESI) calcd for $C_{13}H_{14}N_4O_2S$ [M+H]⁺: 291.0916; found: 291.0901.

4-(2-Bromoethyl)-1-tosyl-1H-1,2,3-triazole (30): Following the GP-1, compound **30** was obtained as a yellowish solid (yield 94%). ¹H NMR (400 MHz, CDCl₃) δ Me Br Br Br Br Br Br **4-(2-Bromoethyl)-1-tosyl-1H-1,2,3-triazole (30):** Following the GP-1, compound **30** was obtained as a yellowish solid (yield 94%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.98 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 3.61 (t, J = 6.8 Hz, 2H), 3.29 (t, J = 6.7 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 144.7, 133.3, 130.6, 128.8, 121.6, 30.5, 29.2, 22.0; HRMS

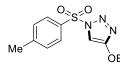
(ESI) calcd for $C_{11}H_{12}BrN_3O_2S$ [M+H]⁺: 329.9912; found: 329.9913.

4-Cyclopropyl-1-tosyl-1H-1,2,3-triazole (3p): Following the GP-1, compound **3p** was obtained as a greenish solid (yield 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.78 (s, 1H), 7.36 (d, *J* = 8.2 Hz, 2H), 2.43 (s, 3H), 1.92 (m, 1H), 0.99-0.95 (m, 2H), 0.88-0.85 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 147.2, 133.5, 130.5, 128.7, 119.3, 21.9, 8.1, 6.6; HRMS (ESI) calcd for C₁₂H₁₃N₃O₂S [M+H]⁺: 264.0806; found: 264.0808.

1-(1-Tosyl-1H-1,2,3-triazol-4-yl) cyclopentanol (3q): Following the GP-1, compound 3q was

obtained as a white solid (yield 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 2.45 (s, 3H), 2.13-2.09 (m, 2H), 1.99-1.93 (m, 4H), 1.86-1.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 130.6, 129.9, 128.9, 126.6, 119.7, 79.1, 41.4, 23.8. 21.7;

HRMS (ESI) calcd for $C_{14}H_{17}N_3O_3S$ [M+H]⁺: 308.1069; found: 308.1088.

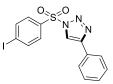

4-Isopentyl-1-tosyl-1H-1,2,3-triazole (3r): Following the GP-1, compound **3r** was obtained as a yellowish solid (yield 78%). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.5 Hz, 2H), 7.83 (s, 1H), 7.37 (d, *J* = 8.2 Hz, 2H), 2.72-2.69 (m, 2H), 2.44 (s, 3H), 1.60-1.54 (m, 3H), 0.92 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 147.2, 133.5, 130.5, 128.7, 120.3, 38.0, 27.7, 23.5, 22.4,

21.9; HRMS (ESI) calcd for $C_{14}H_{19}N_3O_2S$ [M+H]⁺: 294.1276; found: 294.1277.

4-(Methoxymethyl)-1-tosyl-1H-1,2,3-triazole (3s): Following the GP-1, compound 3s was obtained as a white solid (yield 82%). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.98 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 2H), 4.56 (s, 2H), 3.41 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 145.2, 133.2,

130.6, 128.9, 122.2, 65.7, 58.8, 22.0; HRMS (ESI) calcd for $C_{11}H_{13}N_3O_3S$ [M+H]⁺: 268.0765; found: 268.0755.

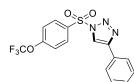
4-Ethoxy-1-tosyl-1H-1,2,3-triazole (3t): Following the GP-1, compound 3t was obtained as a


greenish solid (yield 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 2H), 7.50 (s, 1H), 7.37 (d, *J* = 8.1 Hz, 2H), 4.24 (d, *J* = 7.0 Hz, 2H), 2.44 t (s, 3H), 1.40 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3,

147.3, 133.3, 130.5, 130.1, 128.9, 128.7, 105.0, 67.2, 21.9, 14.8; HRMS (ESI) calcd for $C_{11}H_{13}N_3O_3S$ [M+H]⁺: 268.0756; found: 268.0755.

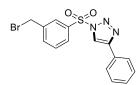
4-Phenyl-1-(m-tolylsulfonyl)-1H-1,2,3-triazole (3u): Following the GP-1, compound **3u** was obtained as a white solid (yield 78%). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.94 (d, *J* = 8.6 Hz, 2H), 7.83 (dt, *J* = 8.2, 1.8 Hz, 2H), 7.53-7.39 (m, 5H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 140.6, 136.7, 136.2, 129.8, 129.3, 129.2, 129.1, 129.0, 126.2, 125.9, 119.1, 21.5; HRMS (ESI)

calcd for $C_{15}H_{13}N_3O_2S$ [M+H]⁺:330.0806; found: 300.0808.


1-((4-Iodophenyl)sulfonyl)-4-phenyl-1H-1,2,3-triazole (3v): Following the GP-1, compound 3v

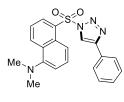
was obtained as a white solid (yield 75%). ¹H NMR (500 MHz, CDCl₃) δ 8.30 (s, 1H), 7.97 (d, *J* = 8.5 Hz, 2H), 7.83 (t, *J* = 8.3 Hz, 4H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 139.4, 135.9, 129.8, 129.4, 129.2, 128.8, 126.3, 119.0, 104.6; HRMS (ESI) calcd for

 $C_{14}H_{10}IN_{3}O_{2}S[\ M+H]^{+}: 411.9616; \ found: \ 411.9615.$


4-Phenyl-1-((4-(trifluoromethoxy)phenyl)sulfonyl)-1H-1,2,3-triazole (3w): Following the GP-

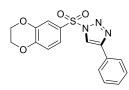
1, compound **3w** was obtained as a white solid (yield 77%). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 8.22 (dd, *J* = 9.4, 2.3 Hz, 2H), 7.84-7.81 (m, 2H), 7.44-7.38 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 147.8, 134.2, 131.3, 129.5, 129.2, 128.7, 126.3, 121.4, 119.1; HRMS (ESI) calcd for

 $C_{15}H_{10}F_3N_3O_3S$ [M+H]⁺: 370.0473; found: 370.0474.


1-((4-(Bromomethyl)phenyl)sulfonyl)-4-phenyl-1H-1,2,3-triazole (3x): Following the GP-1,

compound **3x** was obtained as a white solid (yield 70%). ¹H NMR (500 MHz, CDCl₃) δ 8.32 (s, 1H), 8.12 (d, *J* = 7.8 Hz, 2H), 7.83 (d, *J* = 7.5 Hz, 2H), 7.61 (d, *J* = 7.8 Hz, 2H), 7.45-7.39 (m, 3H), 4.47 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 146.1, 135.9, 130.5, 129.4, 129.3, 129.3, 129.2,

129.1, 128.9, 128.8, 119.1, 30.8; HRMS (ESI) calcd for $C_{15}H_{12}BrN_3O_2S$ [M+H]⁺: 377.9912; found: 377.9929.


N,*N*-dimethyl-5-((4-phenyl-1H-1,2,3-triazol-1-yl)sulfonyl)naphthalen-1-amine (3y):

Following the GP-1, compound **3y** was obtained as a greenish solid (yield 96%). ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 8.5 Hz, 1H), 8.64 (d, *J* = 7.5 Hz, 1H), 8.45 (d, *J* = 8.7 Hz, 1H), 8.41 (s, 1H), 7.81 (d, *J* = 7.2 Hz, 2H), 7.66-7.59 (m, 2H), 7.43-7.35 (m, 3H), 7.19 (d, *J* = 7.6 Hz, 1H), 2.86 (s, 6H); ¹³C

NMR (100 MHz, CDCl₃) δ 152.5, 147.4, 134.2, 132.5, 131.3, 130.1, 130.0, 129.9, 129.2, 129.1, 126.2, 123.3, 119.2, 118.2, 116.2, 46.0; HRMS (ESI) calcd for C₂₀H₁₈N₄O₂S [M+H]⁺: 379.1229; found: 379.1228.

1-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)-4-phenyl-1H-1,2,3-triazole (3z): Following

the GP-1, compound **3z** was obtained as a white solid (yield 83%). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.83 (d, *J* = 7.2 Hz, 2H), 7.64 (dd, *J* = 7.0, 2.2 Hz, 2H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.03-6.99 (m, 1H), 4.33 (dd, *J* = 5.5, 2.1 Hz, 2H), 4.29 (dd, *J* = 5.5, 2.2 Hz, 2H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 150.3, 147.5, 144.2, 129.2, 129.1, 127.9, 126.2, 122.9, 119.0, 118.7, 118.5, 64.9, 64.2; HRMS (ESI) calcd for C₁₆H₁₃N₃O₄S [M+H]⁺: 344.0705; found: 344.0700.$

4-Phenyl-1-(thiophen-2-ylsulfonyl)-1H-1,2,3-triazole (3aa): Following the GP-1, compound **3aa** was obtained as a white solid (yield 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.03 (dd, J = 3.9, 1.3 Hz, 1H), 7.87-7.83 (m, 3H), 7.47-7.38 (m, 3H), 7.20 (dd, J = 4.9, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 137.5, 137.4, 135.6, 129.3, 129.2, 128.9, 128.6, 126.3, 118.9; HRMS (ESI) calcd for C₁₂H₉N₃O₂S₂ [M+H]⁺: 292.0214; found: 292.0214.

1-(Methylsulfonyl)-4-phenyl-1H-1,2,3-triazole (3ab) : Following the GP-1, compound **3ab** was obtained as a white solid (yield 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.87 (d, *J* = 7.1 Hz, 2H), 7.46 (m, 3H), 3.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 129.4, 129.2, 129.1, 128.8, 126.3, 126.3, 118.9, 42.8; HRMS (ESI) calcd for C₉H₉N₃O₂S [M+H]⁺: 224.0493; found: 224.0495.

4-Cyclopropyl-1-(methylsulfonyl)-1H-1,2,3-triazole (3ac): Following the GP-1, compound **3ac** was obtained as a brownish solid (yield 72%). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 3.48 (s, 3H), 1.99 (tt, *J* = 8.6, 5.1 Hz, 1H), 1.04-1.01 (m, 2H), 0.93 (t, *J* = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 119.3, 42.7, 8.2, 6.6; HRMS (ESI)

calcd for C₆H₉N₃O₂S [M+H]⁺: 188.0494; found: 188.0495.

1-(Isopropylsulfonyl)-4-phenyl-1H-1,2,3-triazole (3ad): Following the GP-1, compound **3ad** was obtained as a white solid (yield 81%). ¹H NMR (500 MHz, CDCl₃) δ 8.29 (s, 1H), 7.87 (d, *J* = 7.4 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 3.92-3.86 (m, 1H), 1.45 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 129.3, 129.2, 128.8, 126.2, 120.5, 57.5, 16.1; HRMS (ESI) calcd for C₁₁H₁₃N₃O₂S

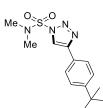
[M+H]⁺: 252.0807; found: 252.0808.

1-(Ethylsulfonyl)-4-phenyl-1H-1,2,3-triazole (3ae): Following the GP-1, compound **3ae** was obtained as a white solid (yield 75%). ¹H NMR (500 MHz, CDCl₃) δ 8.29 (s, 1H), 7.86 (d, *J* = 7.4 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 3.69 (d, *J* = 7.4 Hz, 2H), 1.38 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 129.4, 129.2, 128.8, 126.2, 119.9, 50.2, 7.8; HRMS (ESI) calcd for C₁₀H₁₁N₃O₂S [M+H]⁺:238.0650; found: 238.0651.

1-(Cyclohexylsulfonyl)-4-phenyl-1H-1,2,3-triazole (3af): Following the GP-1, compound **3af** was obtained as a brownish solid (yield 76%). ¹H NMR (500 MHz, CDCl₃) δ 8.28 (s, 1H), 7.88 (d, *J* = 7.4 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 3.62 (ddd, *J* = 12.1, 8.9, 3.3 Hz, 1H), 2.08 (d, *J* = 12.0 Hz, 2H), 1.90 (d, *J* = 13.6 Hz, 2H), 1.60 (td, *J* = 12.4, 3.1 Hz, 2H), 1.33-1.18 (m, 4H); ¹³C NMR (100 MHz,

CDCl₃) δ 147.2, 129.3, 129.1, 128.9, 126.2, 120.5, 64.8, 25.9, 24.8, 24.7; HRMS (ESI) calcd for C₁₀H₁₁N₃O₂S [M+H]⁺:292.1120; found: 292.1122.

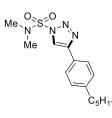
N,N-dimethyl-4-phenyl-1H-1,2,3-triazole-1-sulfonamide (5a): Following the GP-2, compound $Me_{N}^{O} \leq S_{N}^{O} \leq N_{N}^{N}$ Me (100 MHz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.0 Hz, 1H), 3.09 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 129.3, 129.2, 129.1, 126.2, 120.0, 39.0; HRMS (ESI) calcd for C₁₀H₁₂N₄O₂S [M+H]⁺: 253.0759; found:


253.0782.

N,N-dimethyl-4-(p-tolyl)-1H-1,2,3-triazole-1-sulfonamide (5b): Following the GP-2, $Me \sum_{N=0}^{N} \sum_{N=0}^{N}$ 126.1, 119.6, 39.0, 21.5; HRMS (ESI) calcd for $C_{11}H_{14}N_4O_2S$ [M+H]⁺: 267.0915; found: 267.0912.

N,N-dimethyl-4-(m-tolyl)-1H-1, 2, 3-triazole-1-sulfonamide (5c): Following the GP-2, $Me \bigvee_{Me}^{O} S \bigotimes_{N-N}^{O} CDCl_{3} \delta 8.19 (s, 1H), 7.70 (s, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 3.08 (s, 6H), 2.42 (s, 3H); ¹³C NMR$

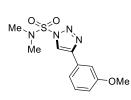
 $(100 \text{ MHz}, \text{CDCl}_3) \ \delta \ 146.9, \ 138.9, \ 129.9, \ 129.0, \ 126.9, \ 123.3, \ 120.0, \ 39.0, \ 21.5 \ ; \ \text{HRMS} \ (\text{ESI}) \\ \text{calcd for } C_{15}H_{12}\text{FN}_3\text{O}_2\text{S} \ [\text{M}+\text{H}]^+ : \ 267.0915; \ \text{found}: \ 267.0917.$


4-(4-(Tert-butyl)phenyl)-N,N-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5d): Following the

GP-2, compound **5d** was obtained as a green solid (yield 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 2H), 3.08 (s, 6H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 146.9, 126.4, 126.1, 125.9, 119.7, 39.0, 34.9, 31.4; HRMS (ESI) calcd for C₁₄H₂₀N₄O₂S

[M+H]⁺: 309.1385; found: 309.1386.

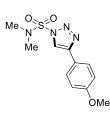
N,N-dimethyl-4-(4-pentylphenyl)-1H-1,2,3-triazole-1-sulfonamide (5e): Following the GP-2,


compound **5e** was obtained as a white solid (yield 92%). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.77 (d, *J* = 8.1 Hz, 2H), 7.28 (d, 2H, merged with CDCl₃), 3.09 (s, 6H), 2.67-2.63 (m, 2H), 1.68-1.64 (m, 2H), 1.36-1.33 (m, 4H), 0.89 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 144.2, 129.2, 126.7, 126.1, 119.6, 39.0, 35.9, 31.6, 31.1, 22.7, 14.1; HRMS (ESI) calcd for

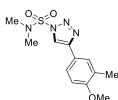
 $C_{15}H_{22}N_4O_2S$ [M+H]⁺: 323.1541; found: 323.1543.

4-(2-Methoxyphenyl)-*N*,*N*-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5f): Following the GP- $Me \bigvee_{Me}^{O} \bigvee_{N} \bigvee_{N} \bigvee_{Me}^{O} \bigvee_{N} \bigvee_{N} \bigvee_{Me}^{O} \bigvee_{N} \bigvee_{N} \bigvee_{Me}^{O} \bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{Me}^{O} \bigvee_{N} \bigvee_$

111.0, 55.6, 39.0; HRMS (ESI) calcd for C₁₁H₁₄N₄O₃S [M+H]⁺: 283.0864; found: 283.0864.

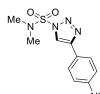

4-(3-Methoxyphenyl)-N,N-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5g): Following the GP-

2, compound **5g** was obtained as a white solid (yield 92%). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.45 (s, 1H), 7.37 (dd, *J* = 12.3, 7.7 Hz, 2H), 6.93 (d, *J* = 7.9 Hz, 1H), 3.86 (s, 3H), 3.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 146.7, 130.5, 130.2, 120.2, 118.5, 115.1, 111.3, 55.5, 39.0;


HRMS (ESI) calcd for $C_{11}H_{14}N_4O_3S$ [M+H]⁺: 283.0864; found: 283.0863.

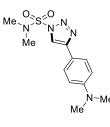
4-(4-Methoxyphenyl)-N,N-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5h): Following the GP-

2, compound **5h** was obtained as a white solid (yield 95%). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.78 (d, *J* = 8.7 Hz, 2H), 6.97 (d, *J* = 8.7 Hz, 2H), 3.84 (s, 3H), 3.07 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 146.7, 127.5, 121.9, 119.1, 114.6, 55.5, 39.0; HRMS (ESI) calcd for C₁₁H₁₄N₄O₃S [M+H]⁺: 283.0864; found: 283.0866.


4-(4-Methoxy-3-methylphenyl)-*N*,*N*-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5i):

Following the GP-2, compound **5i** was obtained as a green solid (yield 93%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 6.84 (d, *J* = 7.5 Hz, 2H), 3.84 (s, 3H), 3.10 (s, 6H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 146.1, 137.7, 130.6, 121.4, 121.3, 116.7, 111.9, 55.4, 39.1,

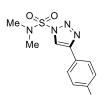
21.7; HRMS (ESI) calcd for $C_{12}H_{16}N_4O_3S$ [M+H]⁺: 297.1021; found: 297.1023.


4-(4-Aminophenyl)-N,N-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5j): Following the GP-2,

compound **5j** was obtained as a yellowish solid (yield 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.65 (d, *J* = 8.4 Hz, 2H), 6.75 (d, *J* = 8.4 Hz, 2H), 3.07 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 147.2, 127.5, 119.6, 118.5, 115.4, 39.0; HRMS (ESI) calcd for C₁₀H₁₃N₅O₂S [M+H]⁺: 268.0868; found:

268.0867.

4-(4-(Dimethylamino)phenyl)-*N*,*N*-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5k):



Following the GP-2, compound **5k** was obtained as a brownish solid (yield 94%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.72 (d, *J* = 8.6 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 3.07 (s, 6H), 3.01 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 147.4, 127.1, 118.2, 117.1, 112.5, 40.4, 39.0; HRMS (ESI) calcd for C₁₂H₁₇N₅O₂S [M+H]⁺: 296.1181; found: 296.1182.

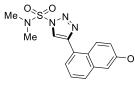
4-(4-Fluorophenyl)-*N*,*N*-**dimethyl-1H-1,2,3-triazole-1-sulfonamide (5l):** Following the GP-2, $Me \bigvee_{Me}^{O} S \lesssim_{N}^{O} N$, compound **5l** was obtained as a brown solid (yield 91%). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.84 (dd, *J* = 8.8, 5.3 Hz, 2H), 7.16 (dd, *J* = 8.7 Hz, 2H), 3.10 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 128.1, 128.0, 125.5, 125.5, 119.8, 116.4, 116.2, 39.1; HRMS (ESI) calcd for C₁₀H₁₁FN₄O₂S [M+H]⁺:

271.0665; found: 271.0664.

4-(4-Bromophenyl)-N,N-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5m): Following the GP-2,

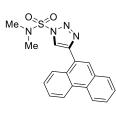
compound **5m** was obtained as a white solid. (yield 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 2H), 3.09 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 132.4, 128.2, 127.7, 123.2, 120.1, 39.0; HRMS (ESI) calcd for C₁₀H₁₁BrN₄O₂S [M+H]⁺: 330.9864; found:

352.9684, 354.9684.


N,*N*-dimethyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole-1-sulfonamide (5n):

Following the GP-2, compound **5n** was obtained as a colourless solid (yield 93%). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.98 (d, *J* = 8.1 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 2H), 3.10 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 132.8, 126.4, 126.2, 125.4, 120.9, 39.0; HRMS (ESI) calcd for C₁₁H₁₁F₃N₄O₂S

[M+H]⁺: 321.0633; found: 321.0631.


4-(6-Methoxynaphthalen-2-yl)-*N*,*N*-dimethyl-1H-1,2,3-triazole-1-sulfonamide (50):

Following the GP-2, compound **50** was obtained as a green solid (yield 94%). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.28 (s, 1H), 7.89 (dd, J = 8.6, 1.6 Hz, 1H), 7.81 (dd, J = 8.7, 5.3 Hz, 2H), 7.21-7.15 (m, 2H), 3.94 (s, 3H), 3.11 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 147.1,

135.0, 130.0, 129.06, 127.8, 125.2, 124.4, 124.4, 119.9, 119.7, 106.1, 55.6, 39.1; HRMS (ESI) calcd for $C_{15}H_{16}N_4O_3S$ [M+H]⁺: 333.1021; found: 333.1013.

N,N-dimethyl-4-(phenanthren-9-yl)-1H-1,2,3-triazole-1-sulfonamide (5p): Following the GP-

2, compound **5p** was obtained as a yellow solid (yield 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, *J* = 8.2 Hz, 1H), 8.73 (d, *J* = 8.3 Hz, 1H), 8.34 (s, 1H), 8.30 (d, *J* = 7.5 Hz, 1H), 8.04 (s, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.72 (tdd, *J* = 8.4, 4.3, 2.1 Hz, 2H), 7.68-7.62 (m, 2H), 3.19 (s, 6H); ¹³C NMR (100 MHz,

CDCl₃) δ 146.0, 131.2, 130.9, 130.9, 129.9, 129.3, 129.2, 127.7, 127.3, 127.2, 127.1, 125.9, 125.4, 123.3, 123.2, 122.8, 39.2; HRMS (ESI) calcd for C₁₈H₁₆N₄O₂S [M+H]⁺: 353.1072; found: 353.1070.

N,N-dimethyl-4-(thiophen-3-yl)-1H-1,2,3-triazole-1-sulfonamide (5q): Following the GP-2, $Me_{N}^{O} \le S_{N}^{O} N$, $Me_{N}^{N} \le S_{N}^{O} N$, Me_{N}^{N

4-Cyclopropyl-N,N-dimethyl-1H-1,2,3-triazole-1-sulfonamide (**5r**): Following the GP-2, $Me \bigvee_{Me}^{O \le S} \bigvee_{N=N}^{O}$ compound **5r** was obtained as a brownish solid (yield 81%). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (s, 1H), 3.02 (s, 6H), 1.97 (tt, *J* = 8.5, 5.0 Hz, 1H), 1.02-0.98 (m, 2H), 0.89 (q, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 120.3, 38.9,

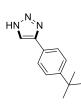
7.9, 6.6, 6.5; HRMS (ESI) calcd for $C_7H_{12}N_4O_2S$ [M+H]⁺: 217.0759; found: 217.0759.

4-(1-Hydroxycyclopentyl)-N,N-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5s): Following the GP-2, compound **5s** was obtained as a brownish solid (yield 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 2.99 (s, 6H), 2.09 (dt, *J* = 11.8, 5.3 Hz, 2H), 1.99-1.91 (m, 4H), 1.80 (dd, *J* = 9.8, 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 120.8, 78.8, 41.2, 38.8, 23.6; HRMS (ESI) calcd for C₉H₁₆N₄O₃S [M+H]⁺:

261.1021; found: 261.1013.

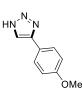
4-(3-Cyanopropyl)-N,N-dimethyl-1H-1,2,3-triazole-1-sulfonamide (5t): Following the GP-2, $Me_{N}^{O}S_{N}^{O}N_{N}^{N}$ compound **5t** was obtained as a white solid (yield 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 3.00 (s, 6H), 2.89 (t, *J* = 7.4 Hz, 2H), 2.43 (t, *J* = 7.0 Hz, 2H), 2.07 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8,

121.9, 119.1, 38.8, 24.6, 24.1, 16.6; HRMS (ESI) calcd for C₈H₁₃N₅O₂S [M+H]⁺: 244.0868; found: 244.0866.


1-((4-Phenyl-1H-1,2,3-triazol-1-yl)sulfonyl)piperidine (5u): Following the GP-1, compound **5u** was obtained as a white solid (yield 91%). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.86 (d, *J* = 7.2 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 3.47-3.43 (m, 4H), 1.73-1.68 (m, 4H), 1.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 129.3, 129.1, 129.1, 126.1, 120.0, 48.3, 24.9, 23.1; HRMS (ESI) calcd for C₁₃H₁₆N₄O₂S [M+H]⁺: 293.1072; found: 293.1073.

4-Phenyl-1H-1,2,3-triazole (6a): White solid (yield 90% from 3a and 93% from 5a). ¹H NMR

 $(400 \text{ MHz, CDCl}_3) \delta 12.25 \text{ (s, 1H), 7.99 (s, 1H), 7.83 (d, J = 7.6 \text{ Hz, 2H}), 7.46 (t, J)} = 7.5 \text{ Hz, 2H}, 7.39 (t, J = 7.2 \text{ Hz, 1H}); {}^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 147.5, 130.0, 129.9, 129.1, 128.9, 126.3; HRMS (ESI) calcd for C8H7N3 [M+H]+: 146.0718 ; 146.08 ; 146$


found: 146.0717.

4-(4-(tert-Butyl)phenyl)-2H-1,2,3-triazole (6b): White solid (yield 92% from 3d and 91% from

5d). ¹H NMR (500 MHz, CDCl₃): 7.97 (s, 1H), 7.75 (d, 2H, J = 8.2 Hz), 7.48 (d, 2H, J = 8.2 Hz), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): 152.2, 147.2, 129.9, 127.1, 126.0, 34.9, 31.4; HRMS (ESI) calcd for C₁₂H₁₆N₃ [M+H]⁺: 202.1344; found: 202.1338.

4-(4-Methoxyphenyl)-2H-1,2,3-triazole (6c): White solid (yield 94% from 3h and 92% from 5h).

¹H NMR (400 MHz, CDCl₃): 7.90 (s, 1H), 7.74 (d, 2H, J = 8.8 Hz), 6.98 (d, 2H, J = 8.8 Hz), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 160.3, 147.2, 127.6, 122.6, 114.6, 55.5; HRMS (ESI) calcd for C₉H₁₀N₃O [M+H]⁺: 176.0824; found: 176.0811.

4-(4-Fluorophenyl)-2H-1,2,3-triazole (6d): Pale brown solid (yield 93% from 3i and 90% from 3i and 9

4-(Thiophen-3-yl)-2H-1,2,3-triazole (6e): Colorless solid (yield 93% from 3m and 94% from 5q). ¹H NMR (400 MHz, CDCl₃): 12.4 (br s, 1H), 7.89 (s, 1H), 7.70-7.69 (m, 1H), 7.51-7.49 (m, 1H), 7.44-7.42 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): 143.6, 131.2, 130.2, 126.9, 126.1, 122.3; HRMS (ESI) calcd for C₆H₅N₃NaS [M+Na]⁺: 174.0102; found: 174.0105.

9.0 X-Ray Crystallography of compounds 3x and 5f

Intensity data was collected on a Bruker's Kappa Apex II CCD Duo diffractometer with graphite monochromated $Mo_{K\alpha}$ radiation (0.71073 Å) at the temperature of 296 K. Scaling and multi-scan absorption correction were employed using SADABS. The structure was solved by direct methods and all the non-hydrogen atoms were refined anisotropically while the hydrogen atoms fixed in the predetermined positions by Shelxs-97 and Shelx1-97 packages respectively.

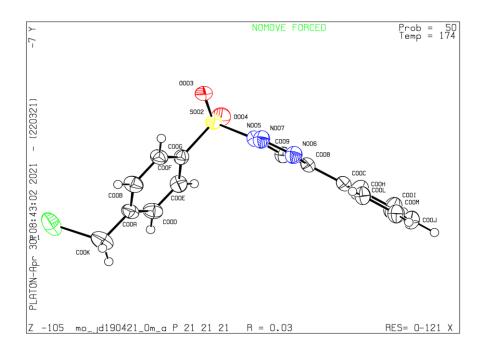
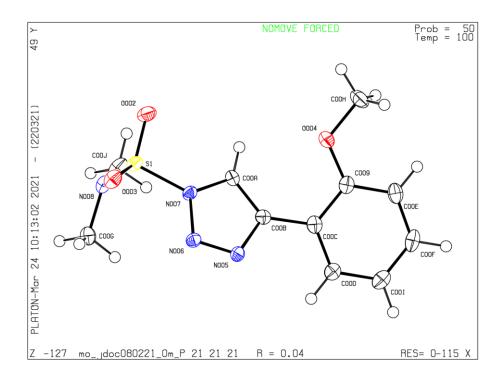
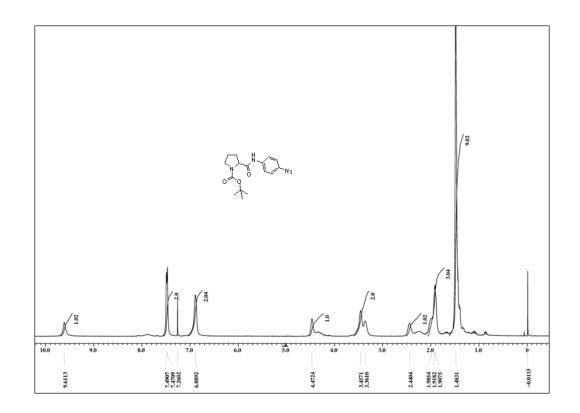


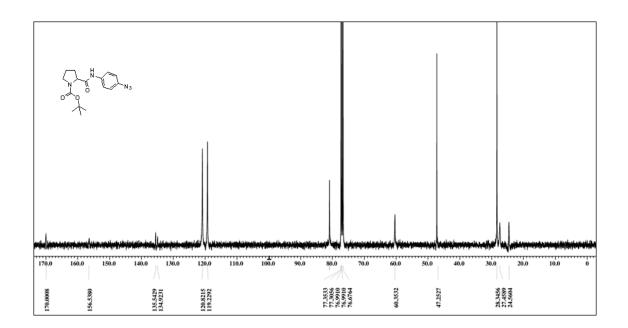
Figure S1. The ORTEP diagram of 3x showing 50% probability thermal ellipsoid.

Table 1 Crystal data and structure refinement for 3x.		
Identification code	mo_JD190421_0m_a	
Empirical formula	$C_{15}H_{12}BrN_3O_2S$	
Formula weight	378.25	
Temperature/K	174.29	
Crystal system	orthorhombic	
Space group	P212121	
a/Å	4.8673(12)	

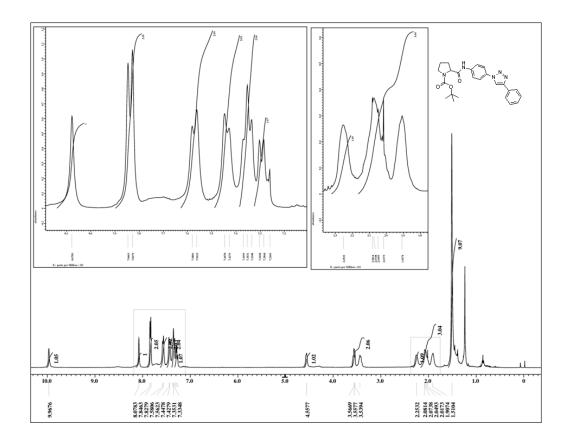
b/Å	11.348(3)
c/Å	27.751(6)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1532.8(6)
Z	4
ρ _{calc} g/cm ³	1.639
μ/mm ⁻¹	2.828
F(000)	760.0
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.636 to 50
Index ranges	$-5 \le h \le 5, -13 \le k \le 13, -32 \le 1 \le 33$
Reflections collected	15737
Independent reflections	2691 [$R_{int} = 0.0500, R_{sigma} = 0.0446$]
Data/restraints/parameters	2691/0/200
Goodness-of-fit on F ²	1.060
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0317, wR_2 = 0.0641$
Final R indexes [all data]	$R_1 = 0.0392, wR_2 = 0.0665$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.30
Flack parameter	0.041(14)

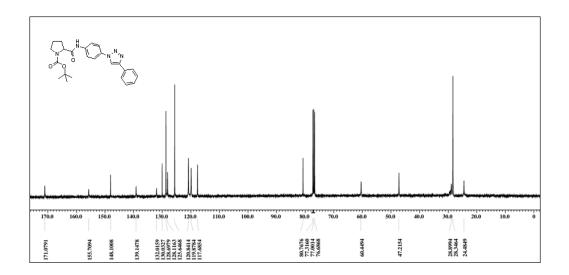


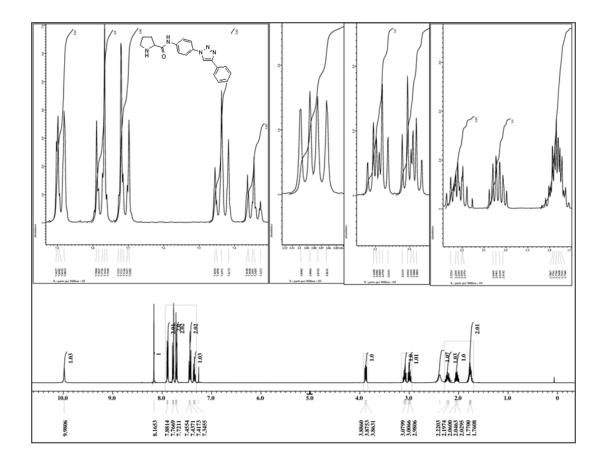

Figure S2. The ORTEP diagram of 5f showing 50% probability thermal ellipsoid.

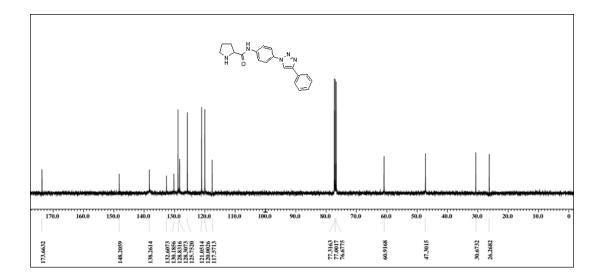

Table 1 Crystal data and structure refinement for 5f.		
Identification code	mo_JDOC080221_0m_a	
Empirical formula	$C_{11}H_{14}N_4O_3S$	
Formula weight	282.32	
Temperature/K	99.83	
Crystal system	orthorhombic	
Space group	P212121	
a/Å	5.3437(5)	
b/Å	14.4207(16)	
c/Å	16.6141(16)	
α/°	90	
β/°	90	
γ/°	90	

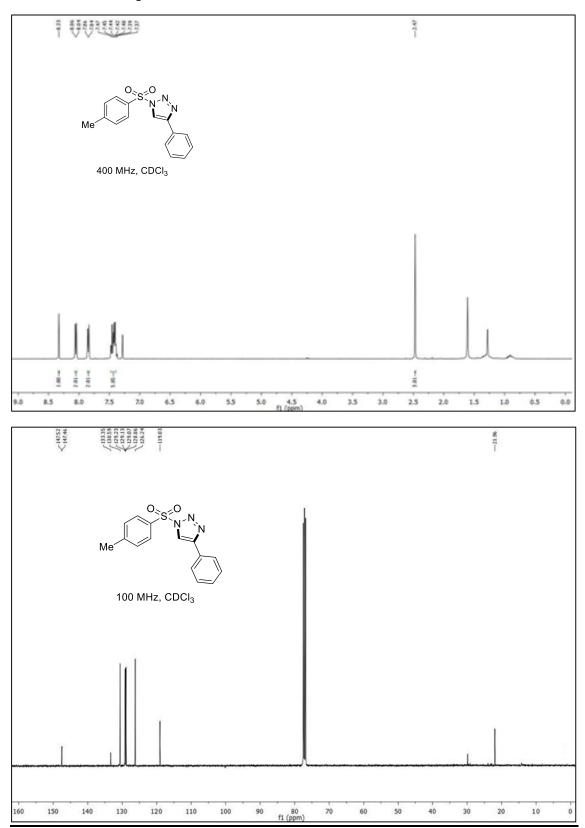
Volume/Å ³	1280.3(2)
Z	4
$\rho_{calc}g/cm^3$	1.465
μ/mm ⁻¹	0.263
F(000)	592.0
Crystal size/mm ³	$? \times ? \times ?$
Radiation	MoKα (λ = 0.71073)
20 range for data collection/°	4.904 to 49.986
Index ranges	$-6 \le h \le 6, -17 \le k \le 17, -19 \le l \le 18$
Reflections collected	11636
Independent reflections	2241 [$R_{int} = 0.1207, R_{sigma} = 0.0656$]
Data/restraints/parameters	2241/0/176
Goodness-of-fit on F ²	1.070
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0424, wR_2 = 0.0905$
Final R indexes [all data]	$R_1 = 0.0450, \ wR_2 = 0.0923$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.39
Flack parameter	0.39(13)


10.0 NMR spectra of all compounds

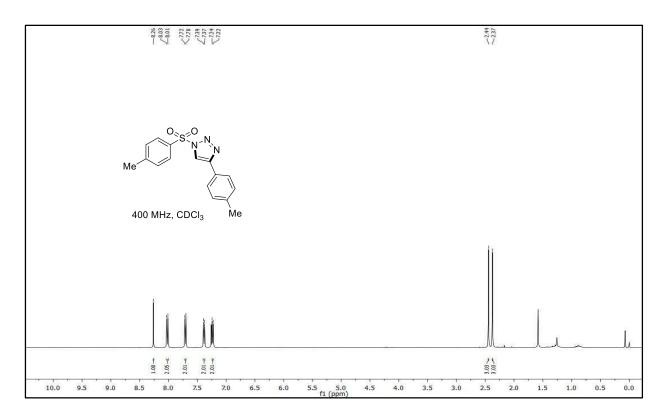

¹H and ¹³C NMR of S3:

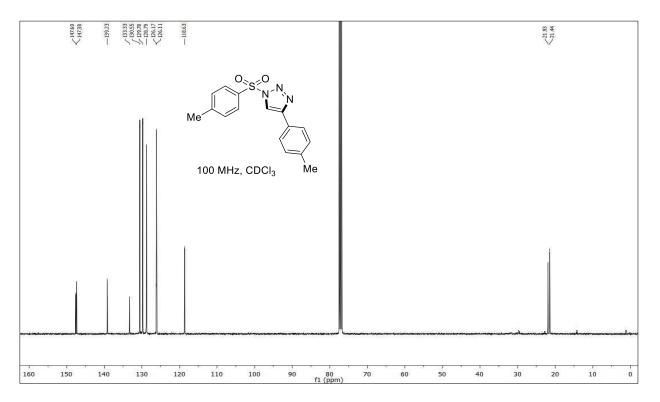



¹H and ¹³C NMR of S5:

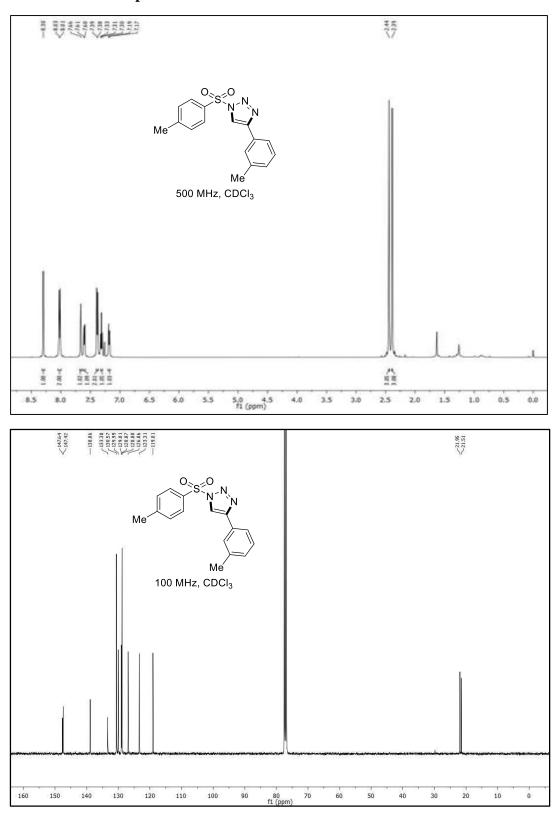


¹H and ¹³C NMR of Pro-1:

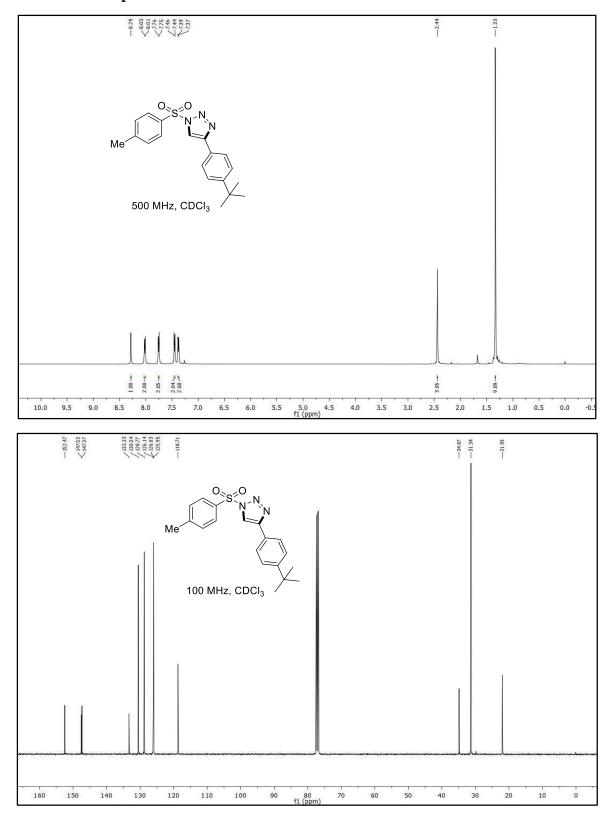


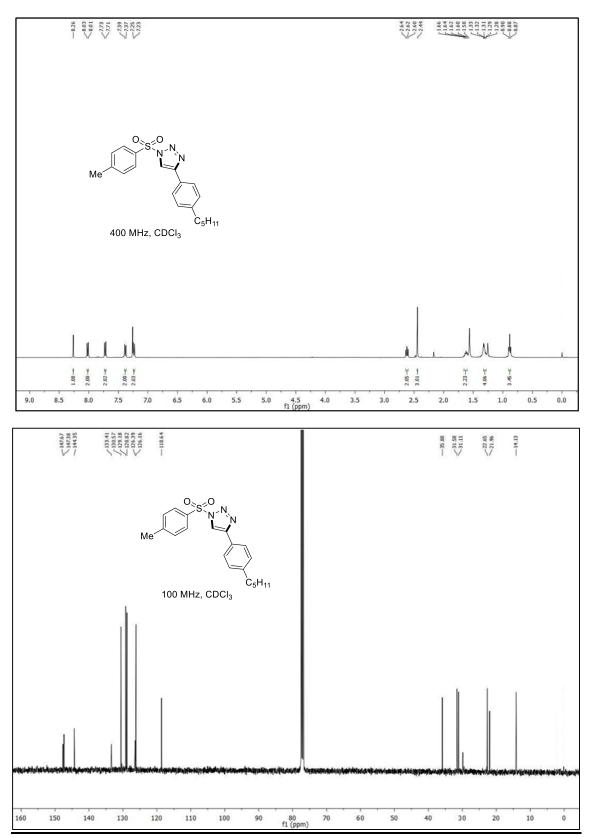


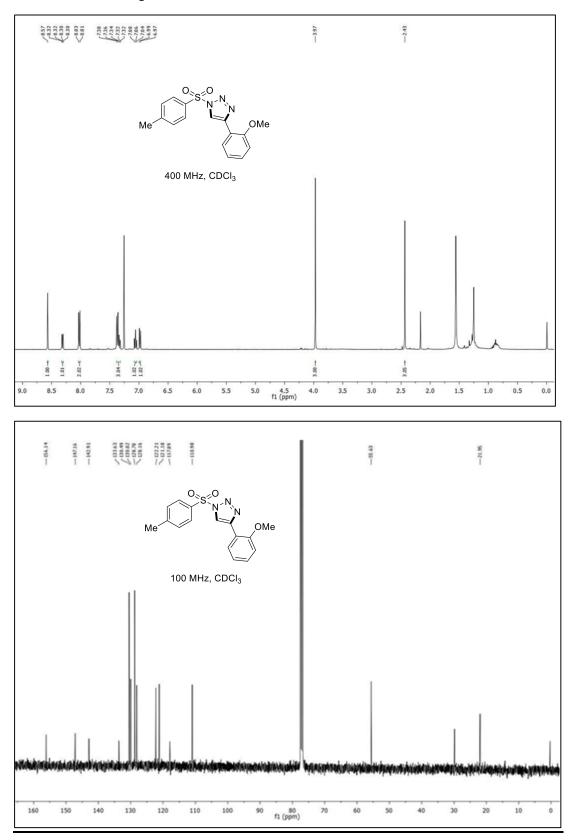
¹H and ¹³C NMR spectra of 3a:

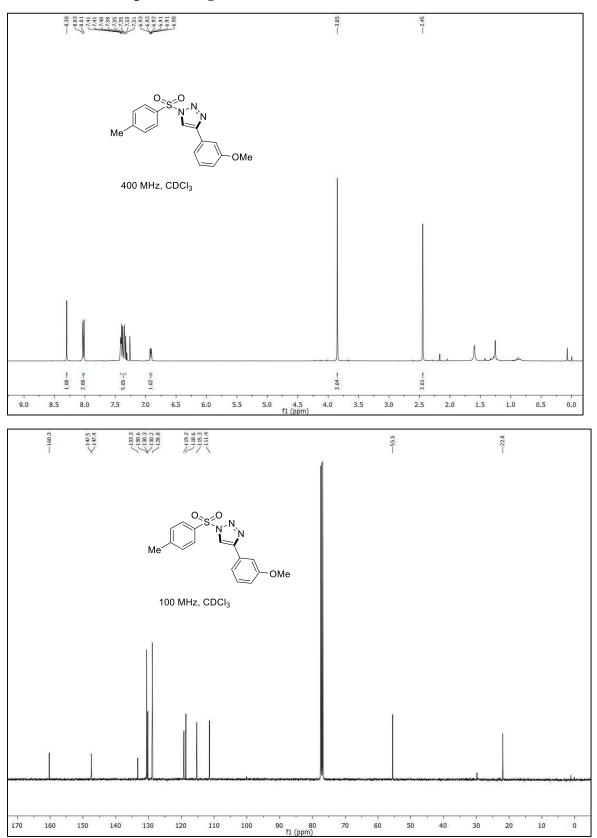


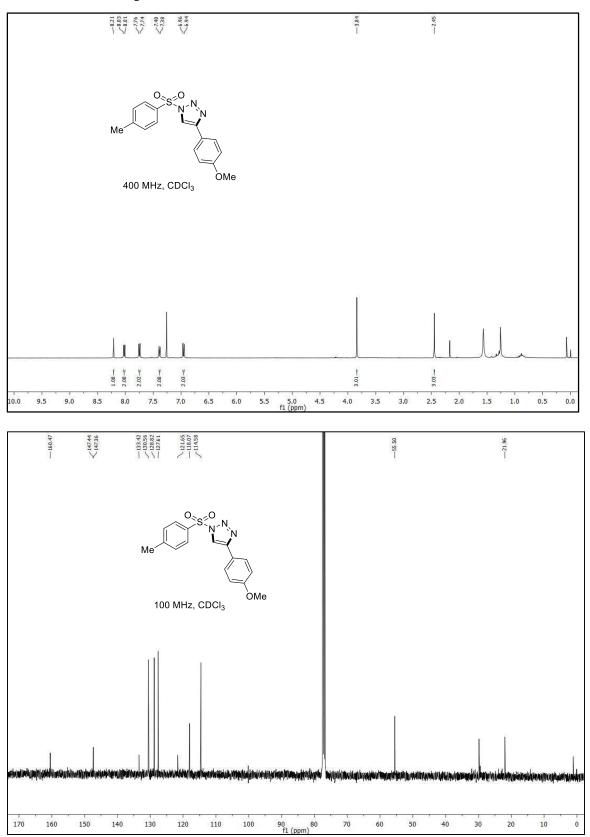
¹H and ¹³C NMR spectra of 3b:

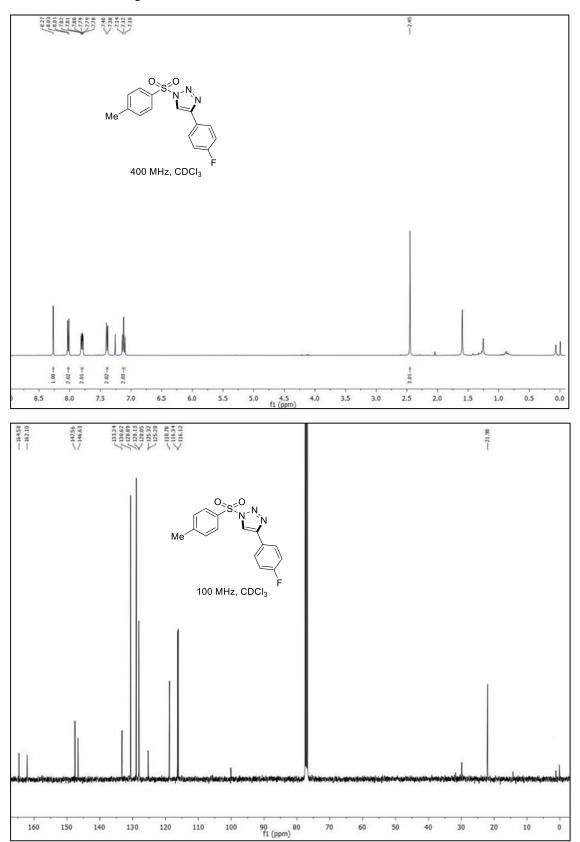


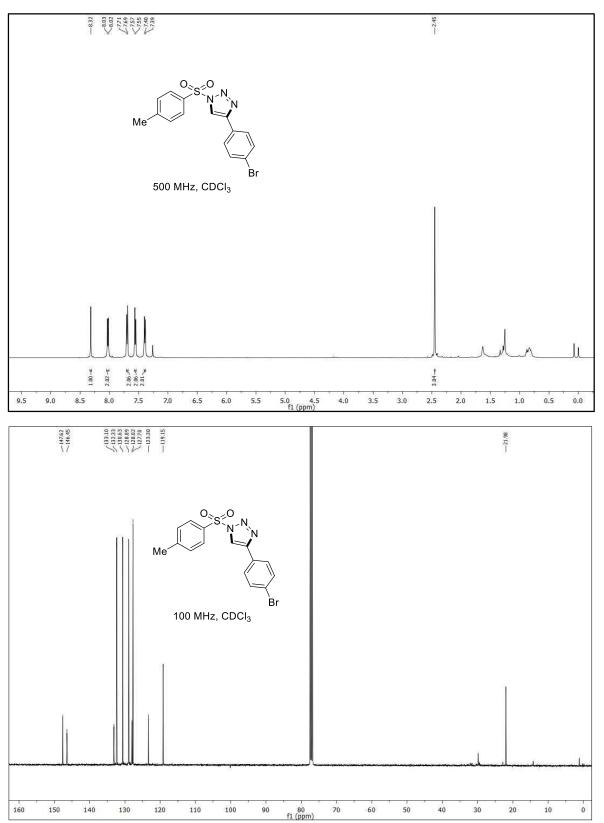

¹H and ¹³C NMR spectra of 3c:

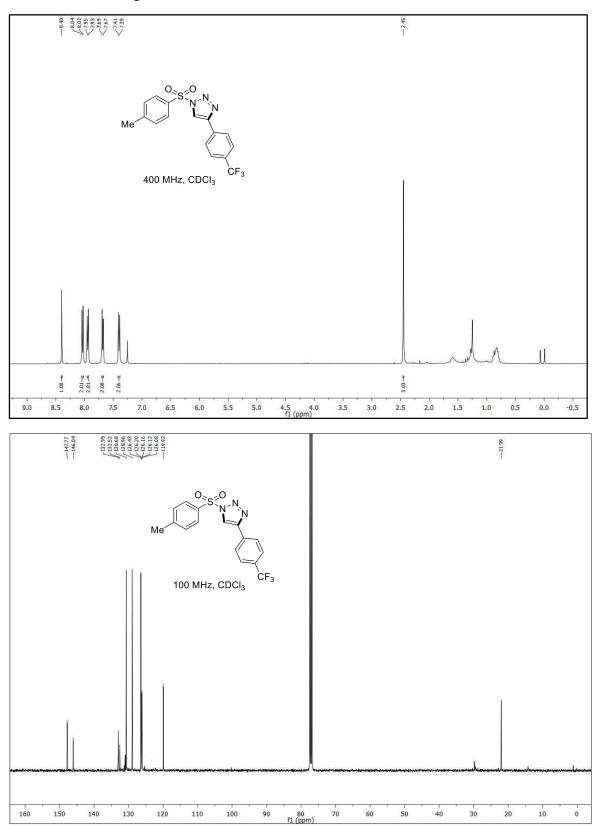

¹H and ¹³C NMR spectra of 3d:

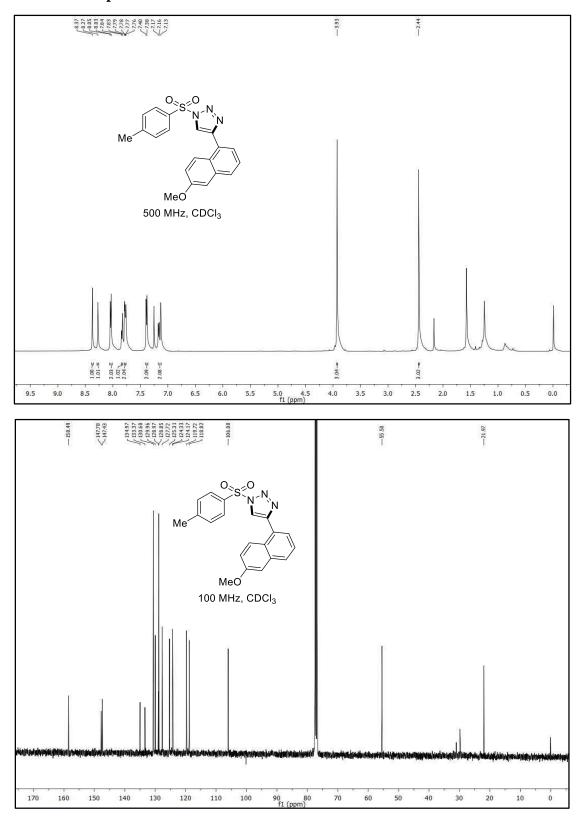


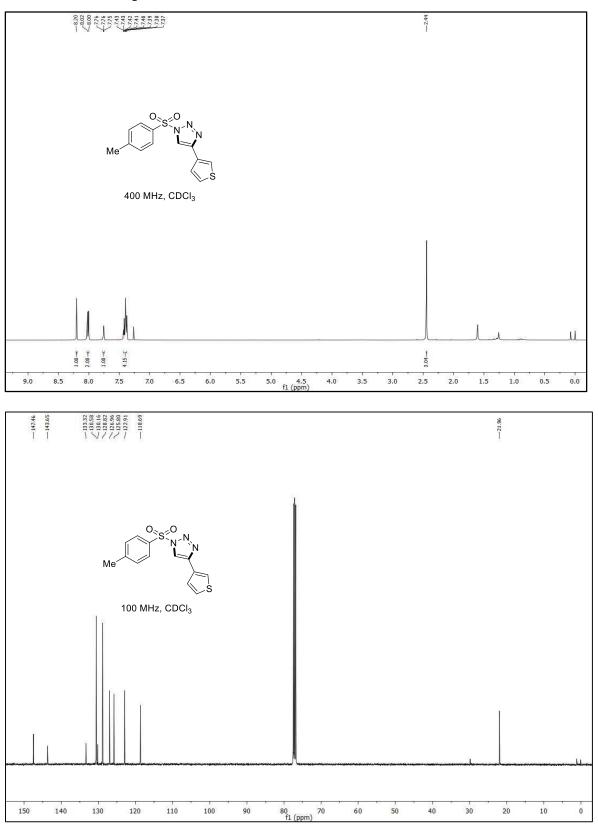

¹H and ¹³C NMR spectra of 3f:

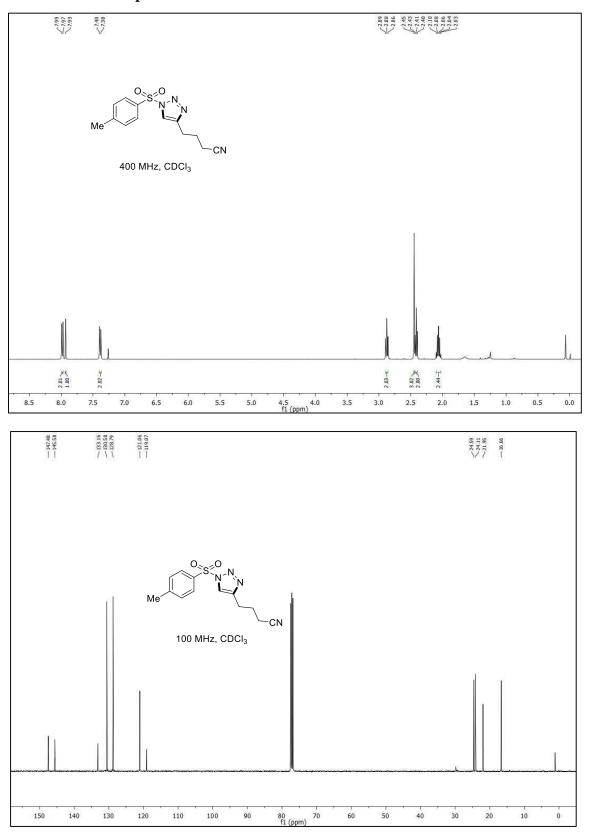

¹H and ¹³C NMR spectra of 3g:

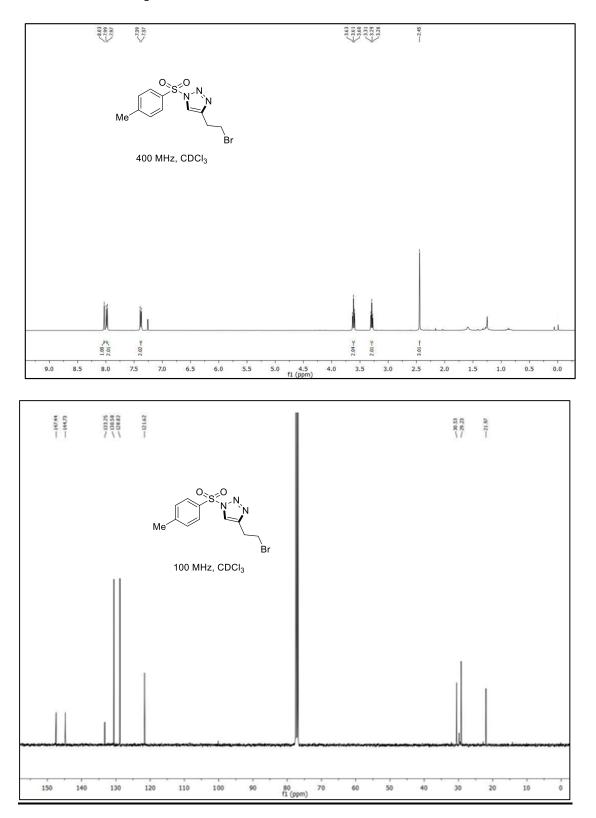

¹H and ¹³C NMR spectra of 3h:

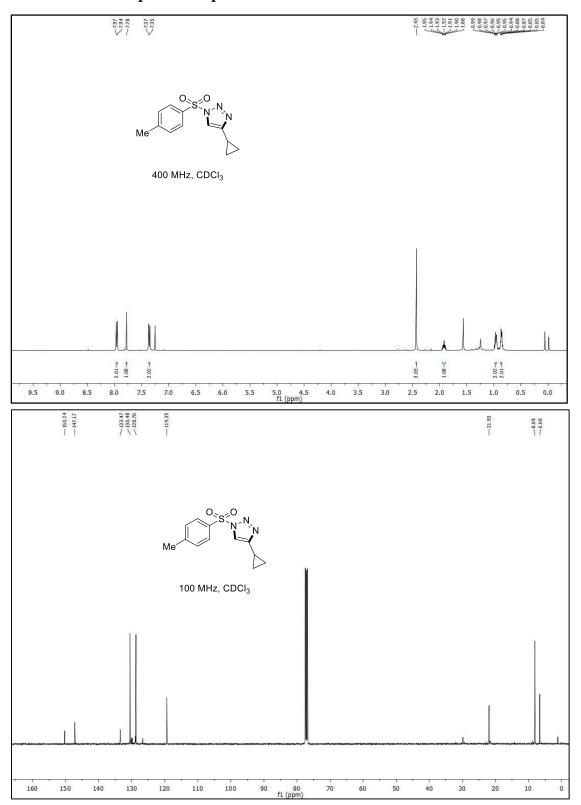

¹H and ¹³C NMR spectra of 3i:

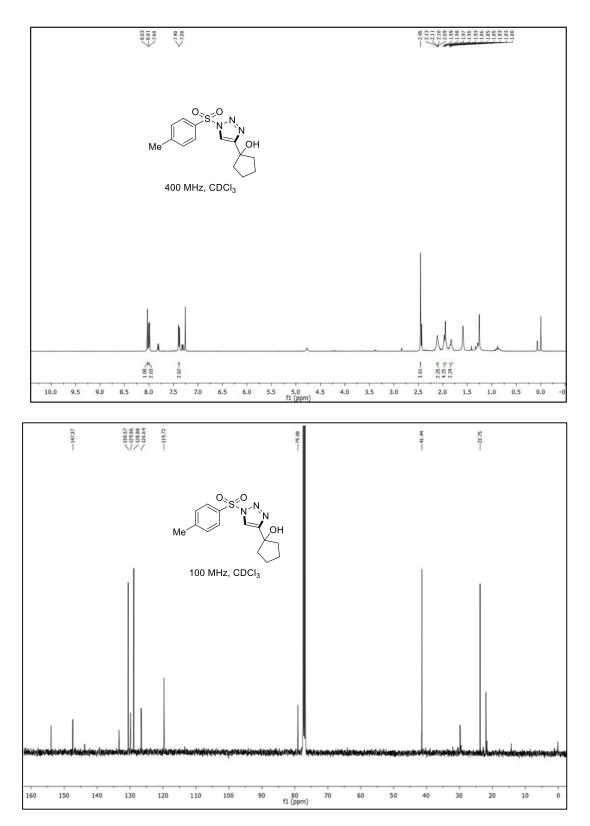


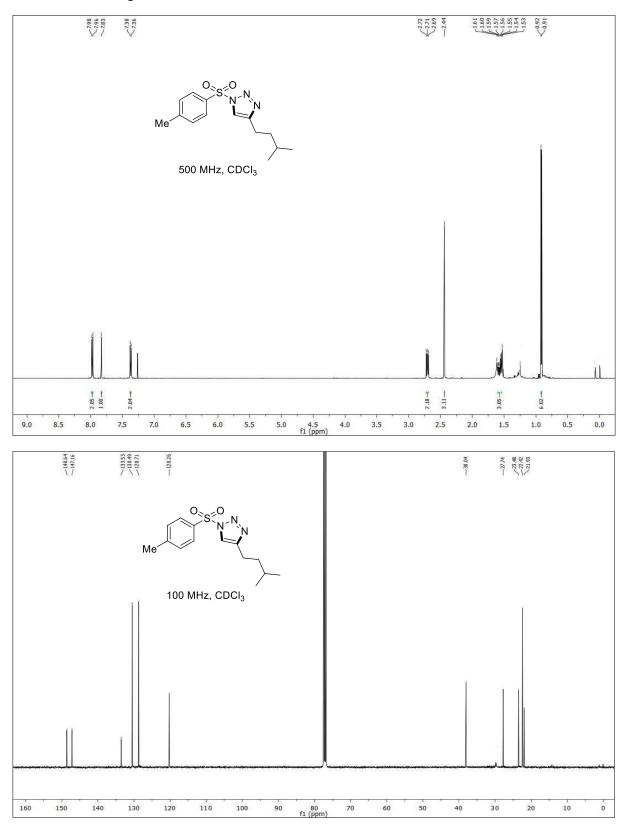

¹H and ¹³C NMR spectra of 3k:

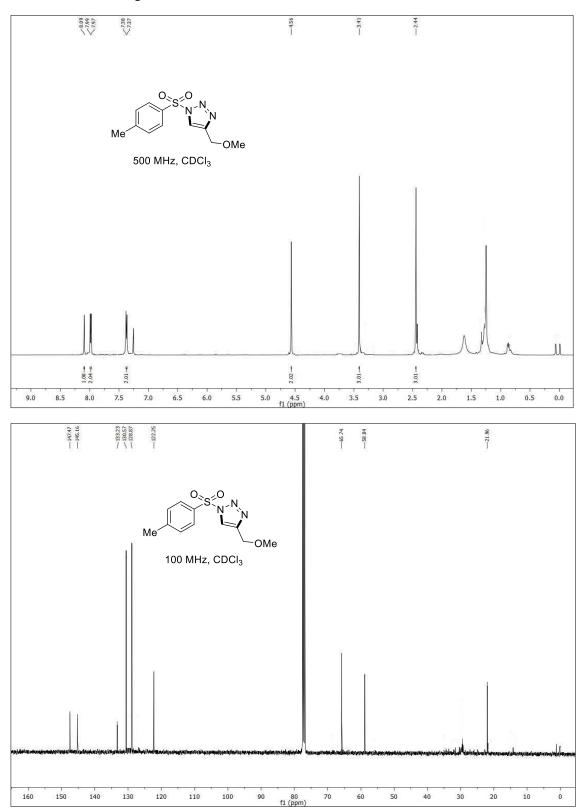

¹H and ¹³C NMR spectra of 31:

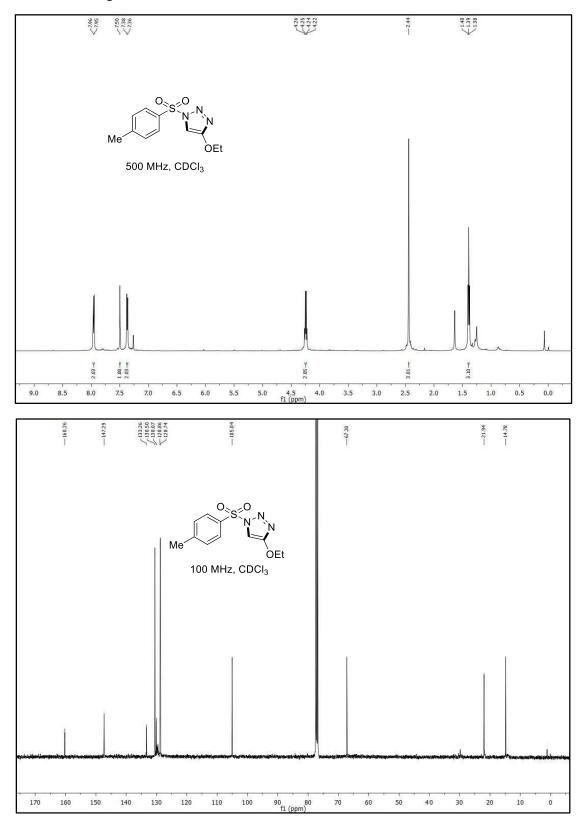


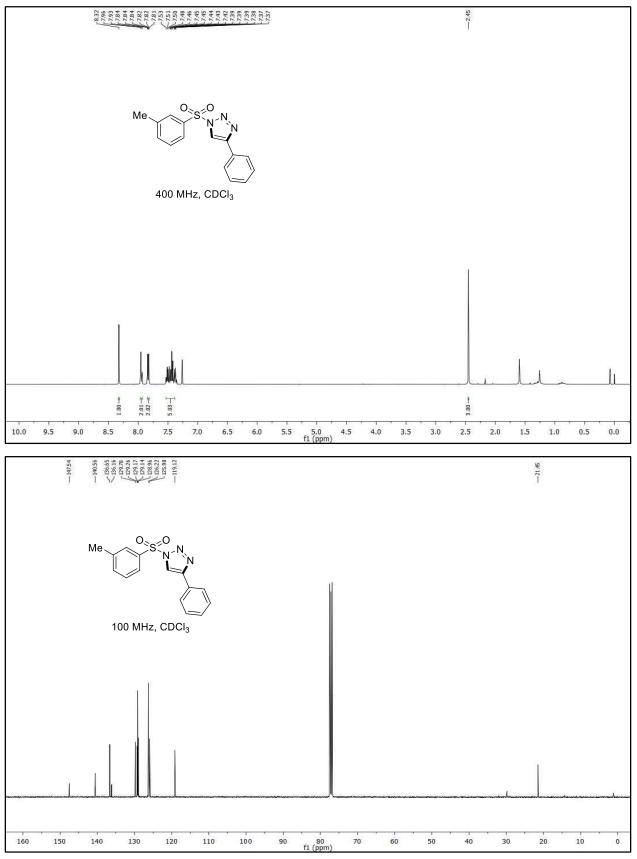

¹H and ¹³C NMR spectra of 3n:

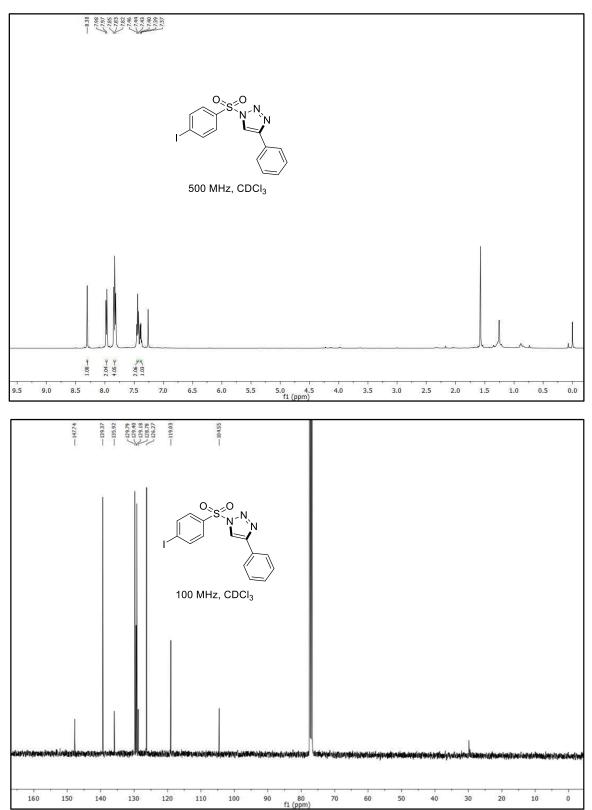

¹H and ¹³C NMR spectra of 30:

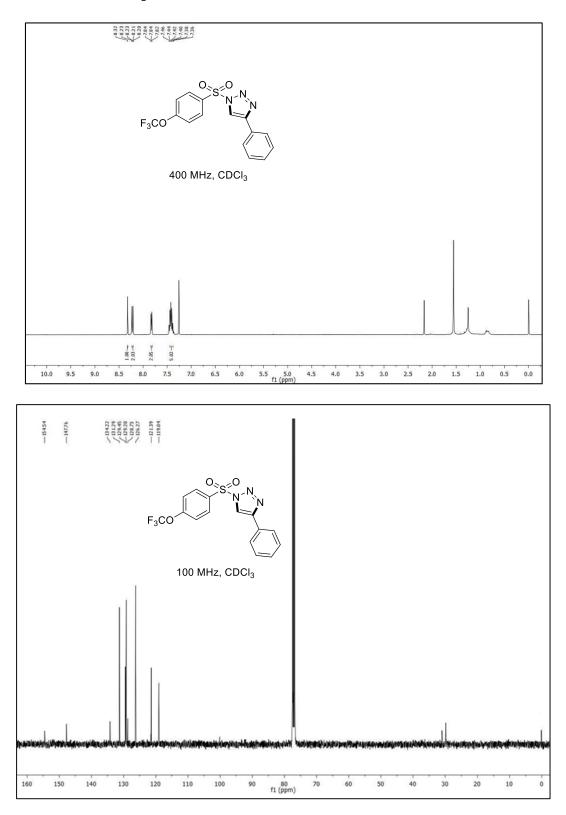

¹H and ¹³C NMR spectra of 3p:

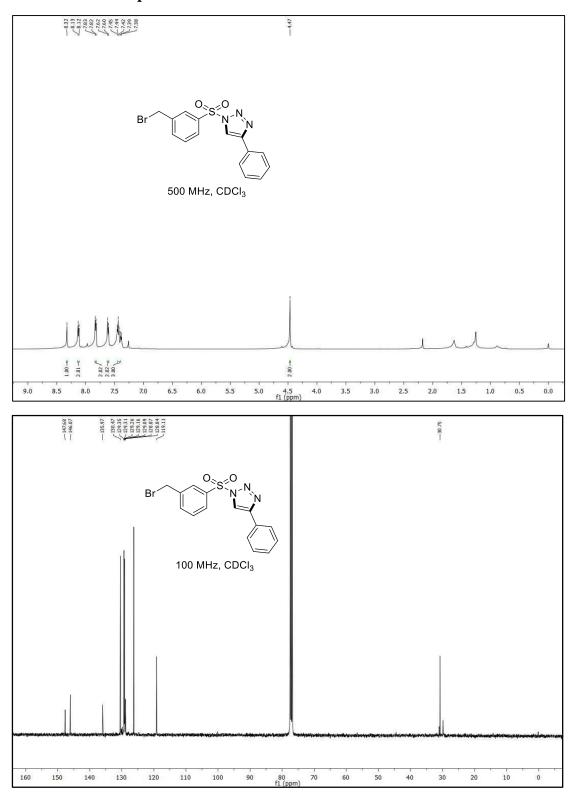

¹H and ¹³C NMR spectra of 3q:

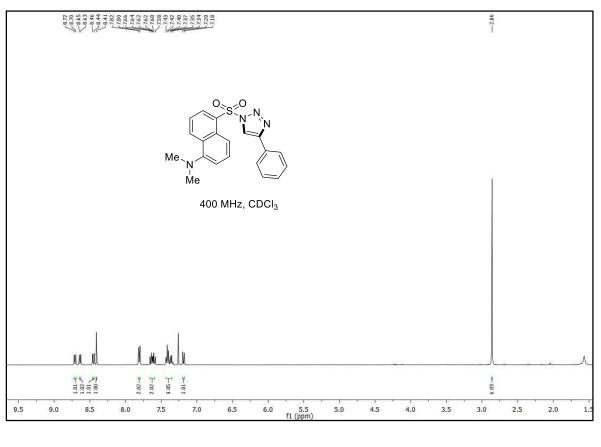

¹H and ¹³C NMR spectra of 3r:

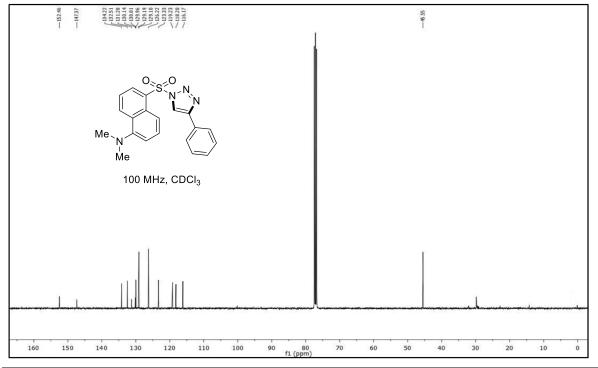

¹H and ¹³C NMR spectra of 3s:


¹H and ¹³C NMR spectra of 3t:

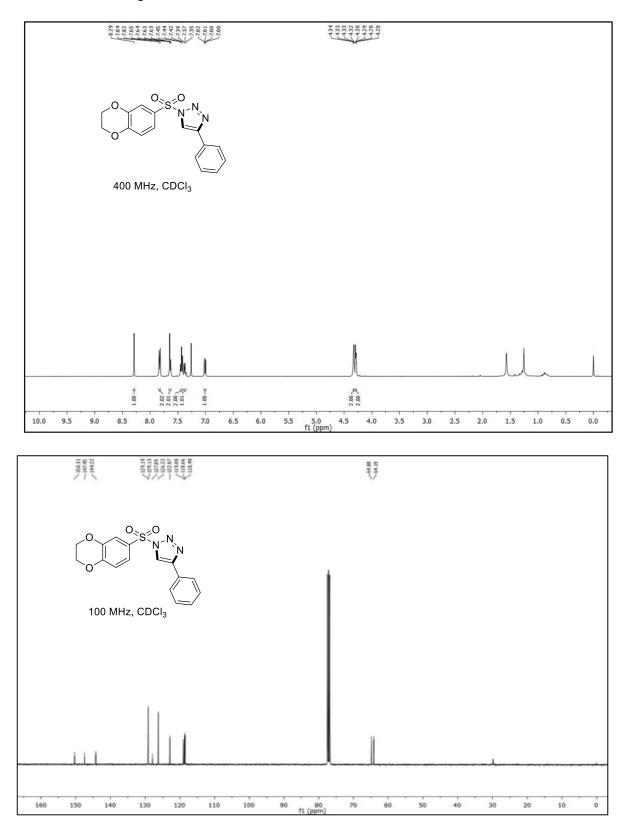

¹H and ¹³C NMR spectra of 3u:

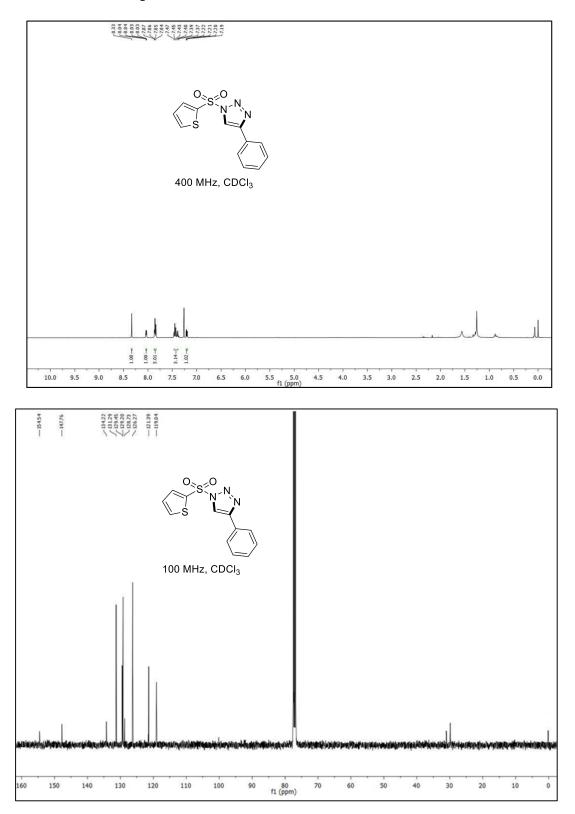


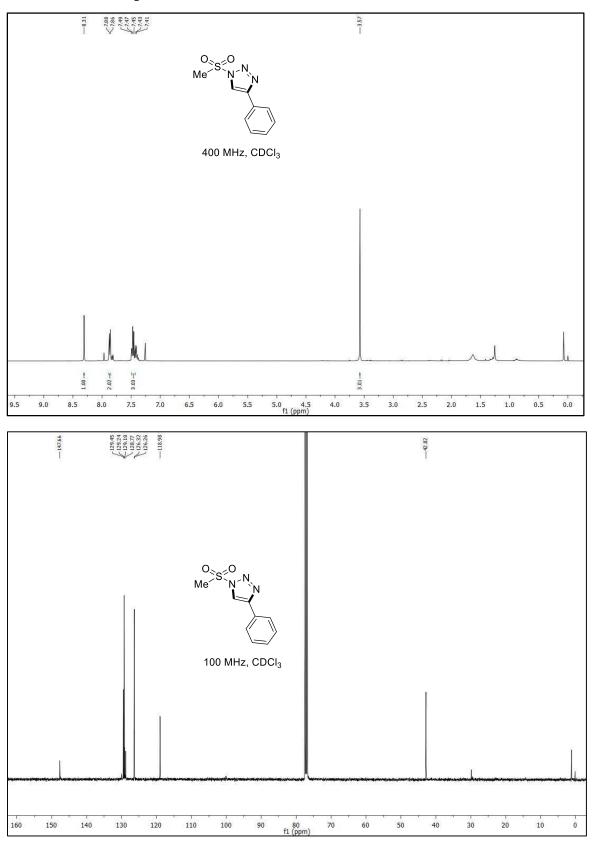

¹H and ¹³C NMR spectra of 3w:

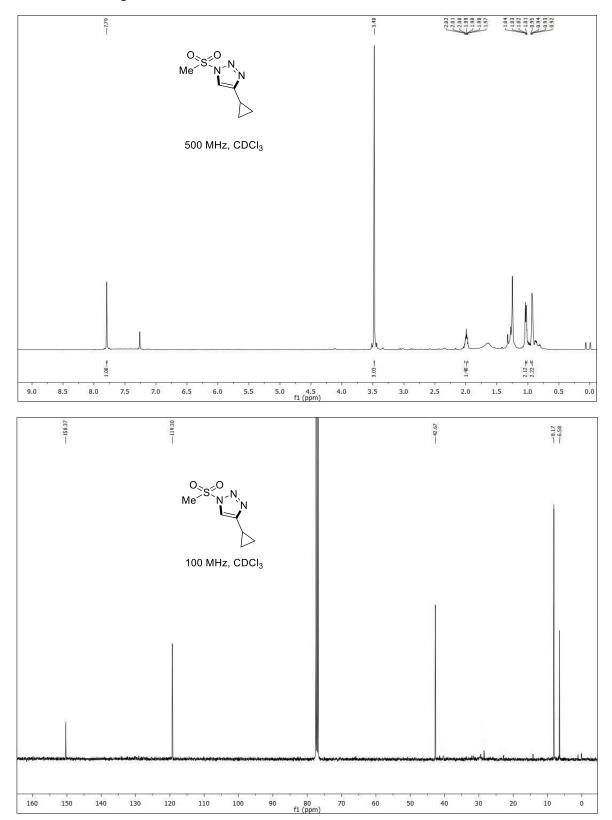


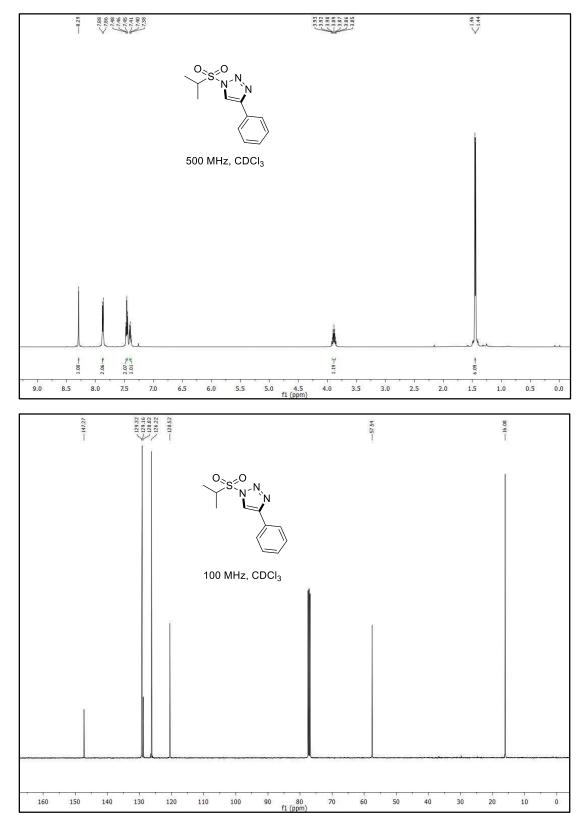
¹H and ¹³C NMR spectra of 3x:



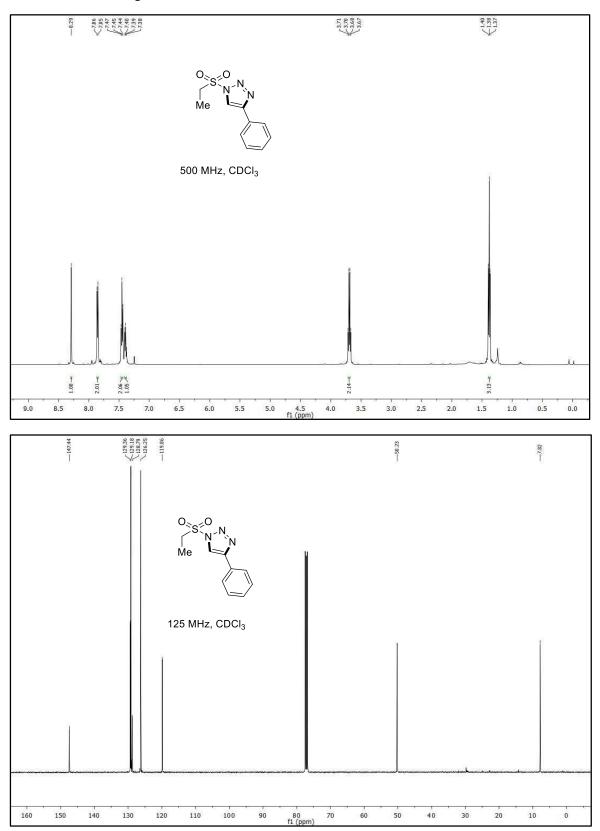


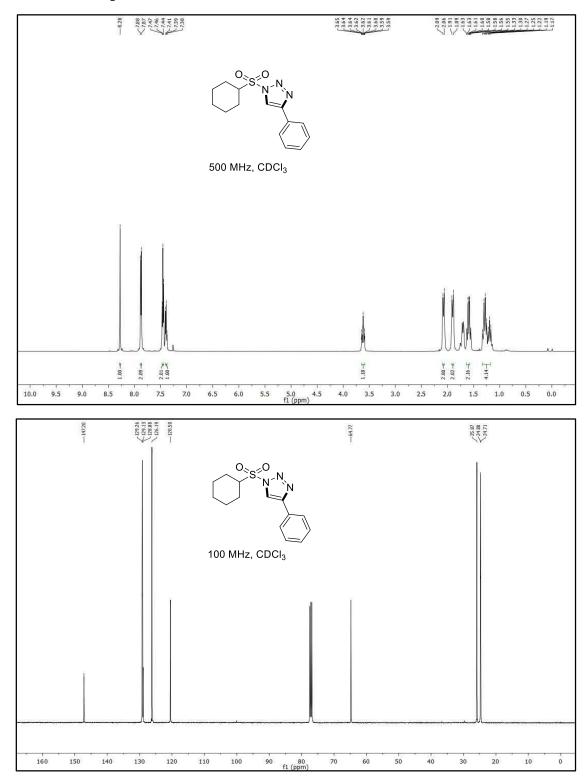

¹H and ¹³C NMR spectra of 3z:


¹H and ¹³C NMR spectra of 3aa:

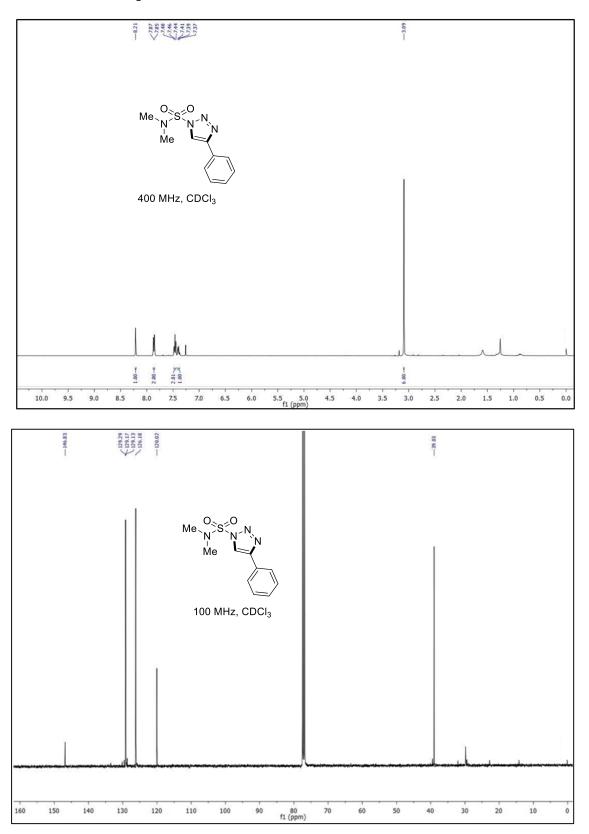


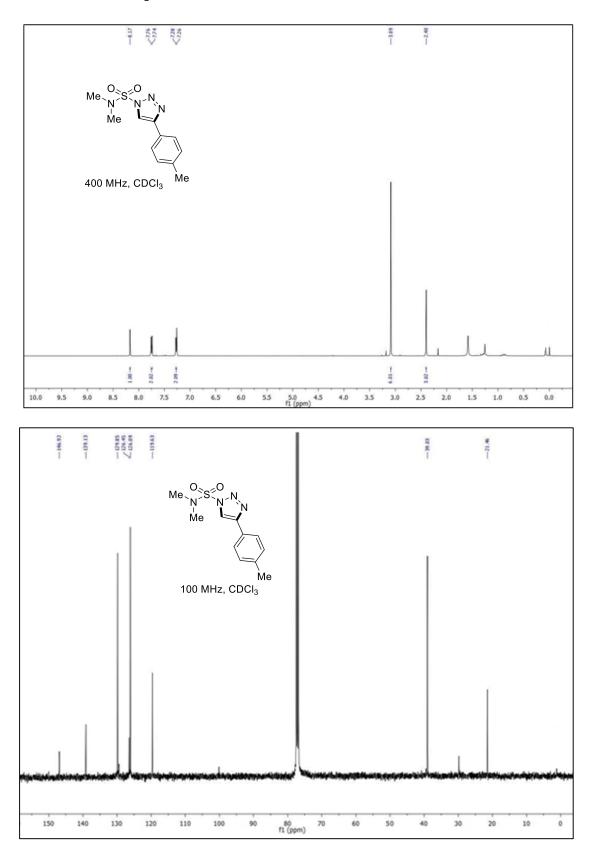
¹H and ¹³C NMR spectra of 3ab:

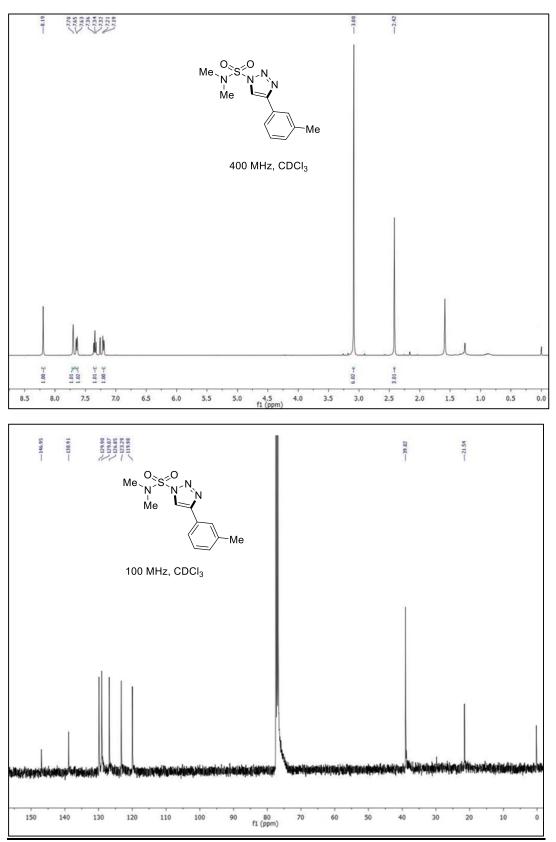

¹H and ¹³C NMR spectra of 3ac:

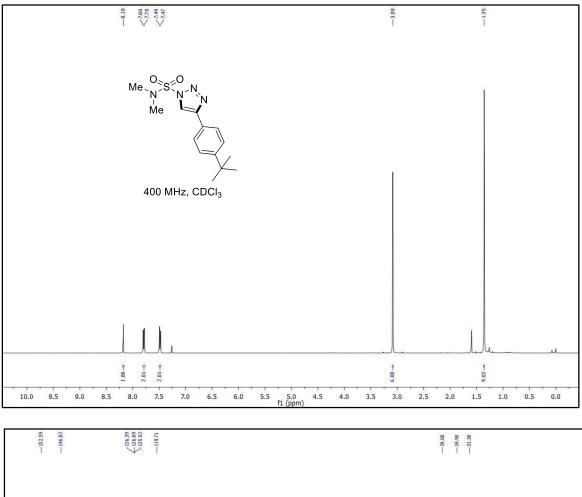


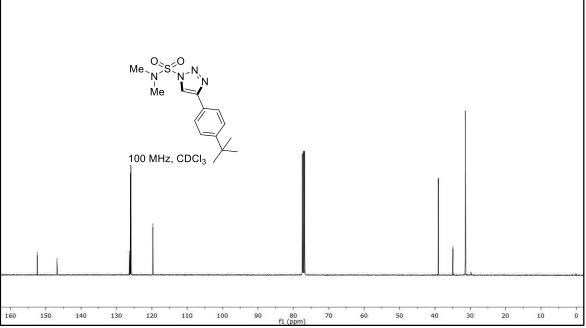
¹H and ¹³C NMR spectra of 3ad:


¹H and ¹³C NMR spectra of 3ae:

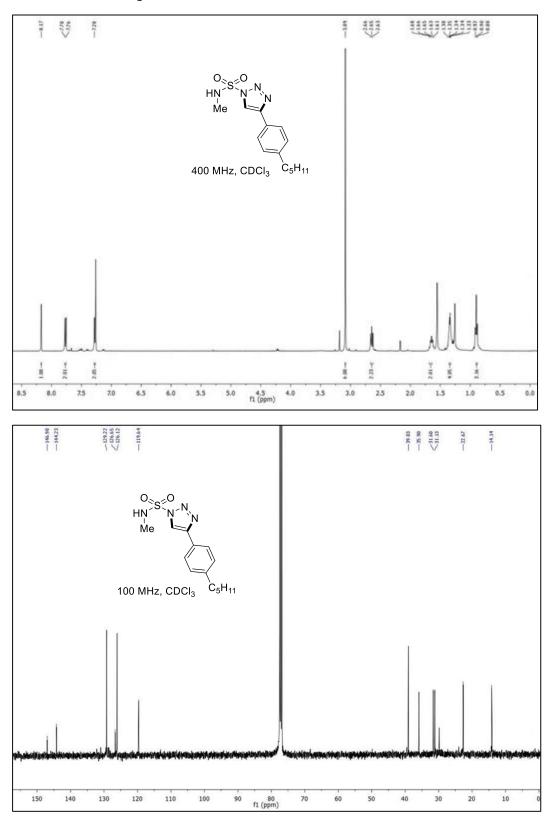

¹H and ¹³C NMR spectra of 3af:


¹H and ¹³C NMR spectra of 5a:

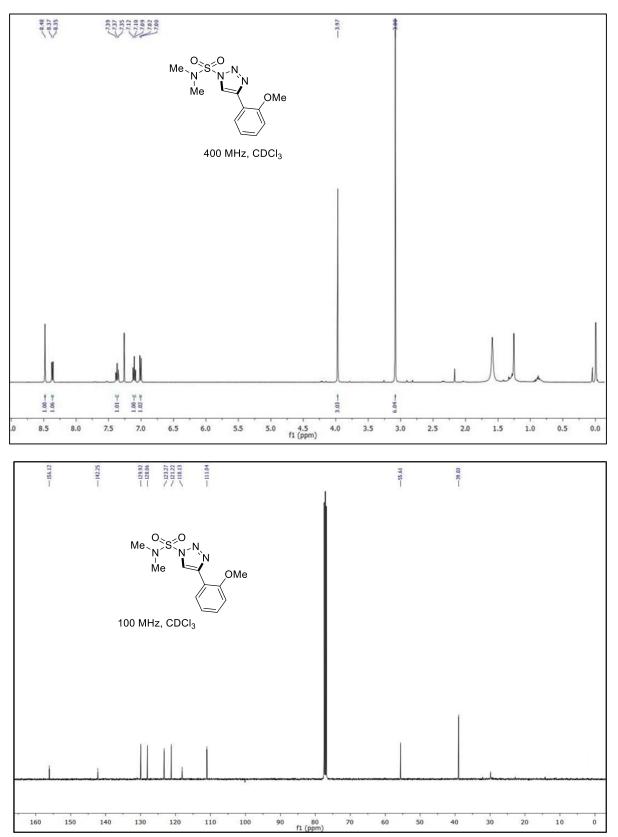

¹H and ¹³C NMR spectra of 5b:

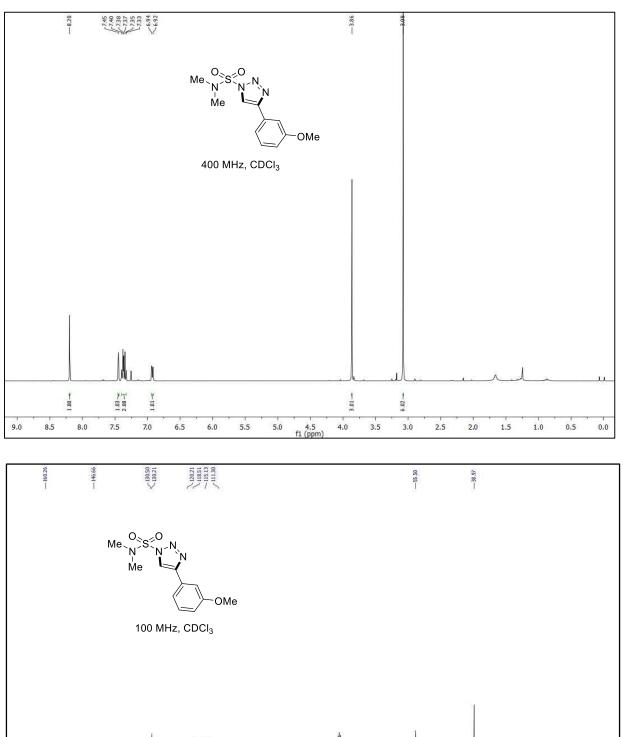


¹H and ¹³C NMR spectra of 5c:

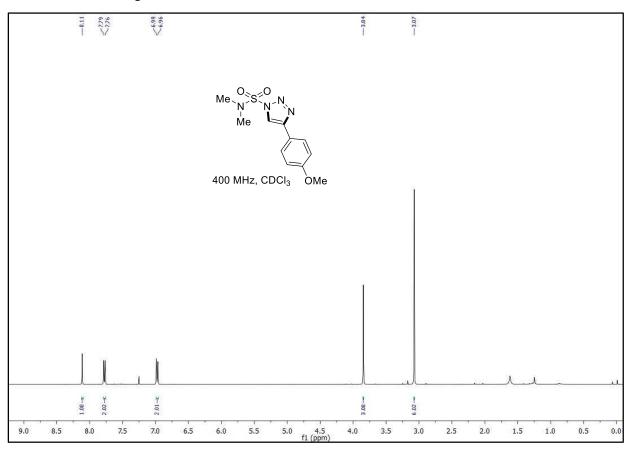


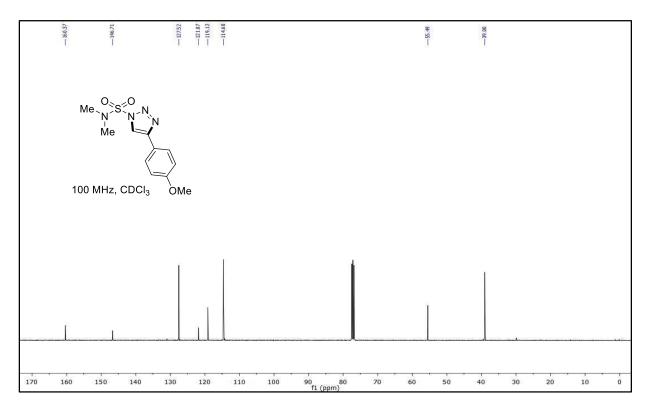
¹H and ¹³C NMR spectra of 5d:

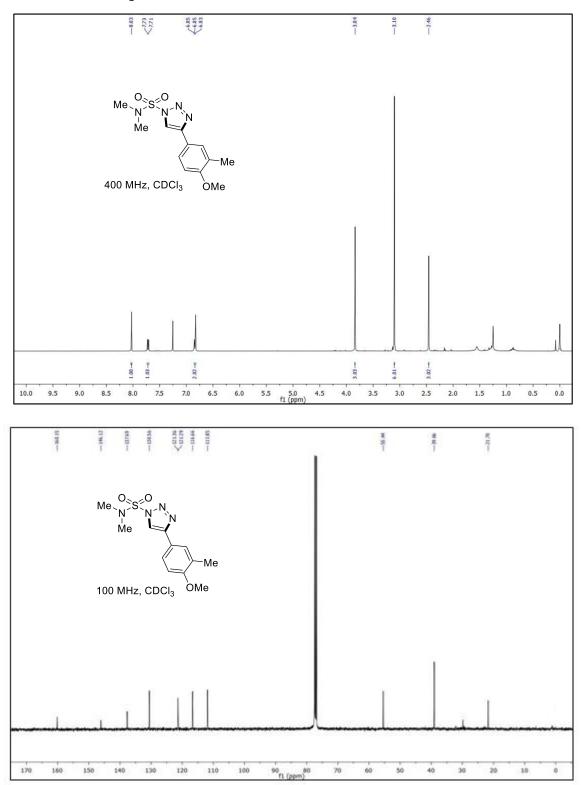



¹H and ¹³C NMR spectra of 5e:

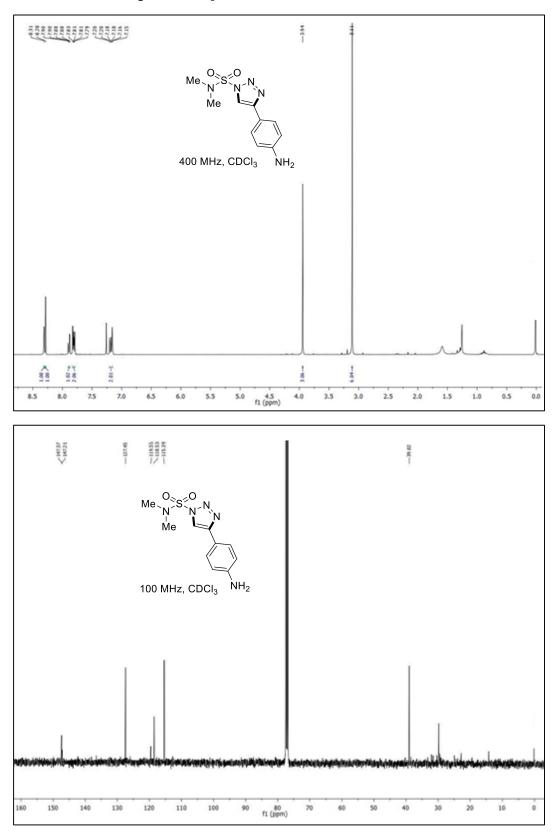
¹H and ¹³C NMR spectra of 5f:

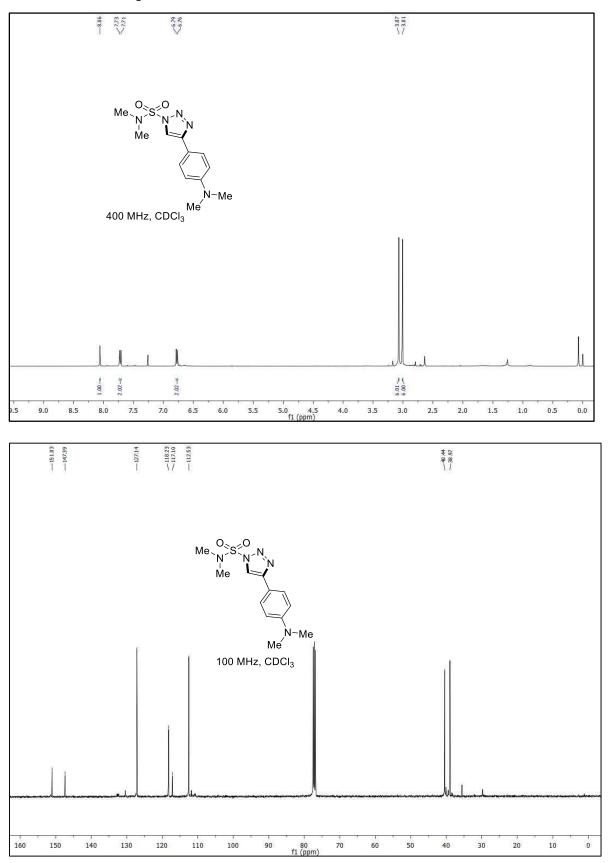


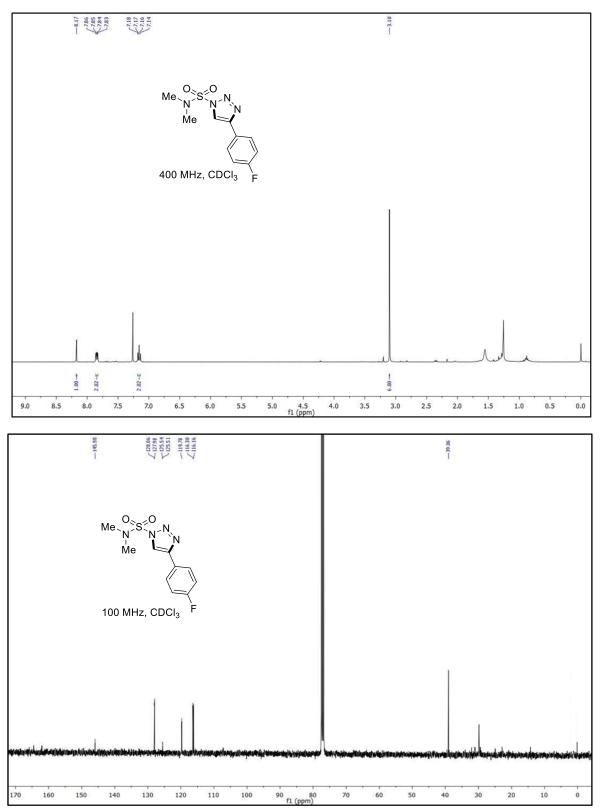

¹H and ¹³C NMR spectra of 5g:

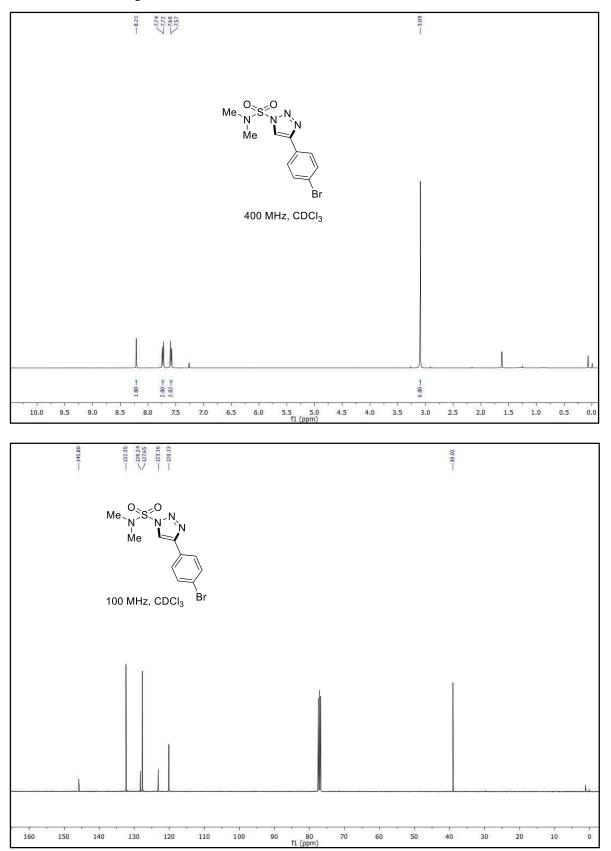

90 80 f1 (ppm)

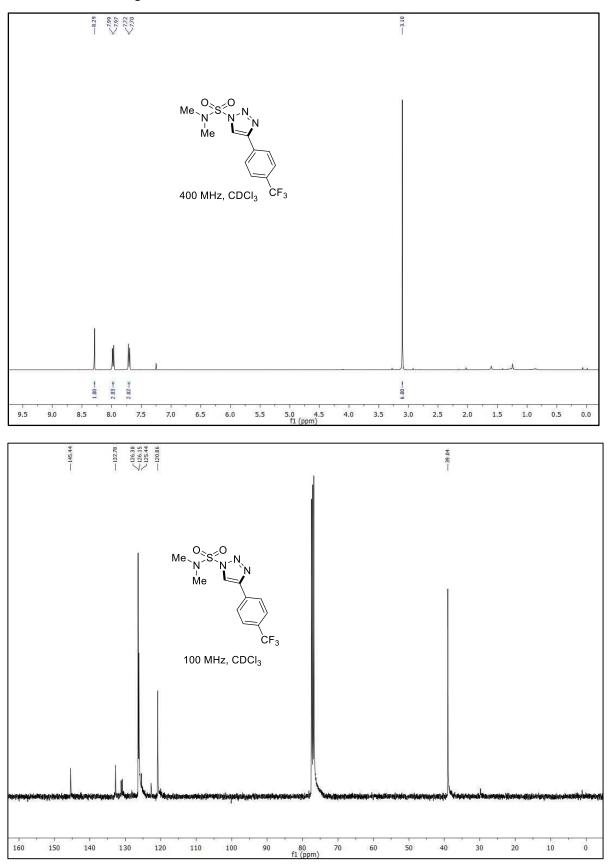
¹H and ¹³C NMR spectra of 5h:

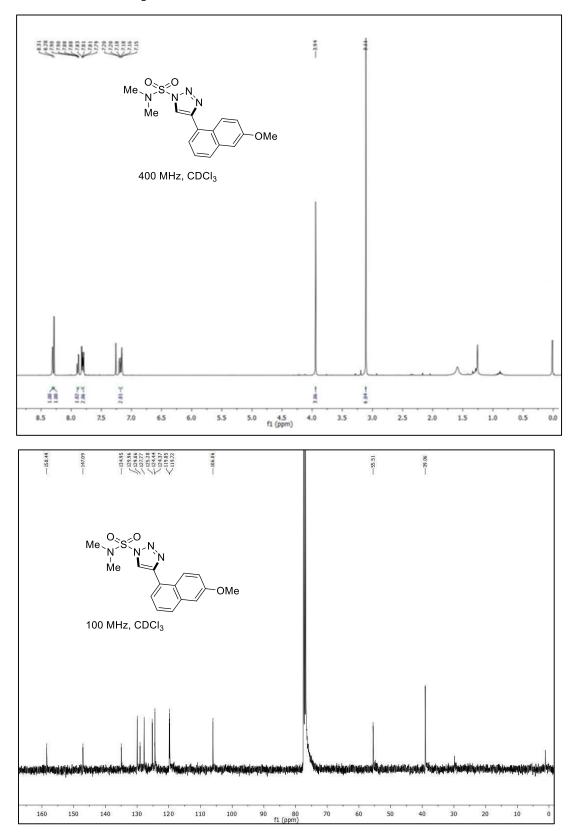


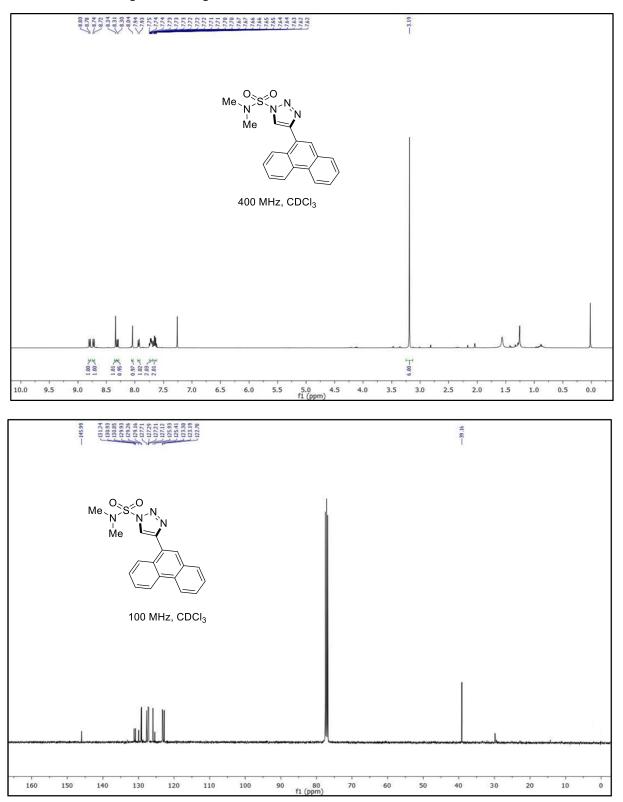

¹H and ¹³C NMR spectra of 5i:

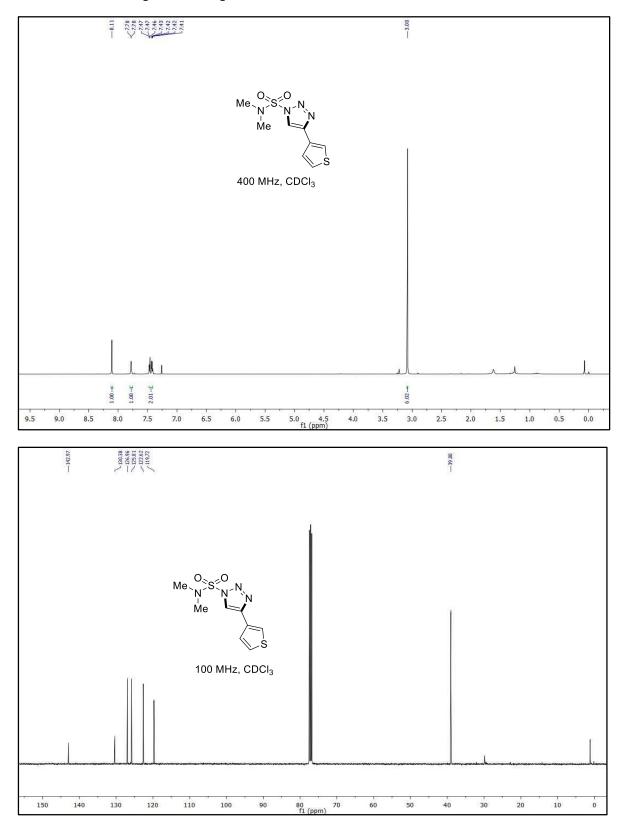

¹H and ¹³C NMR spectra of 5j:

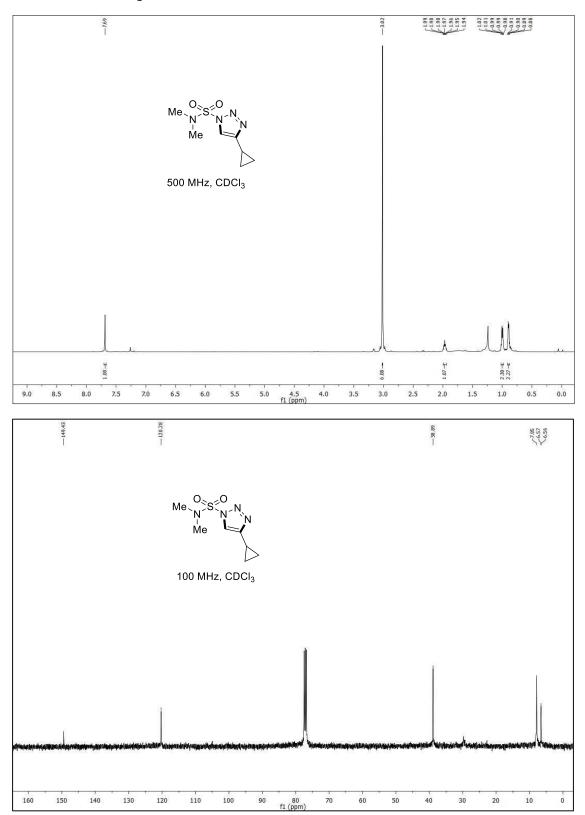

¹H and ¹³C NMR spectra of 5k:

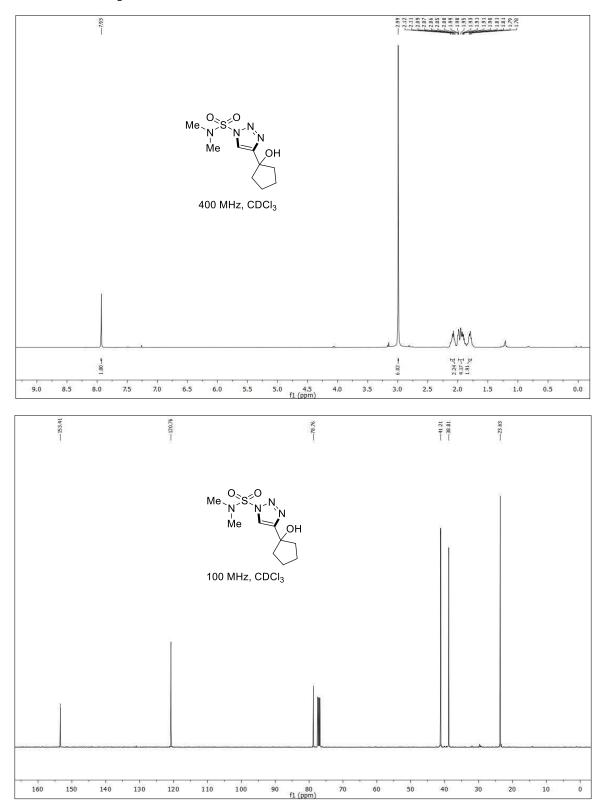


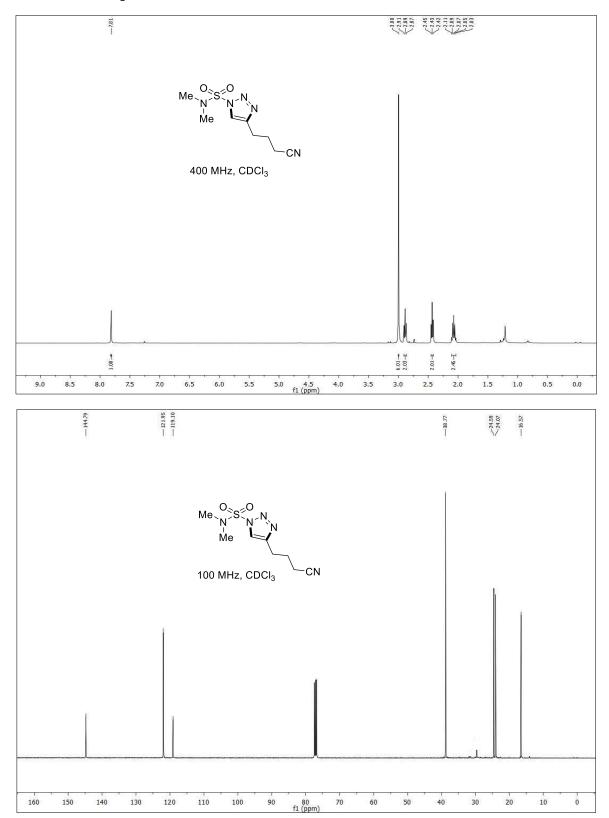

¹H and ¹³C NMR spectra of 5m:

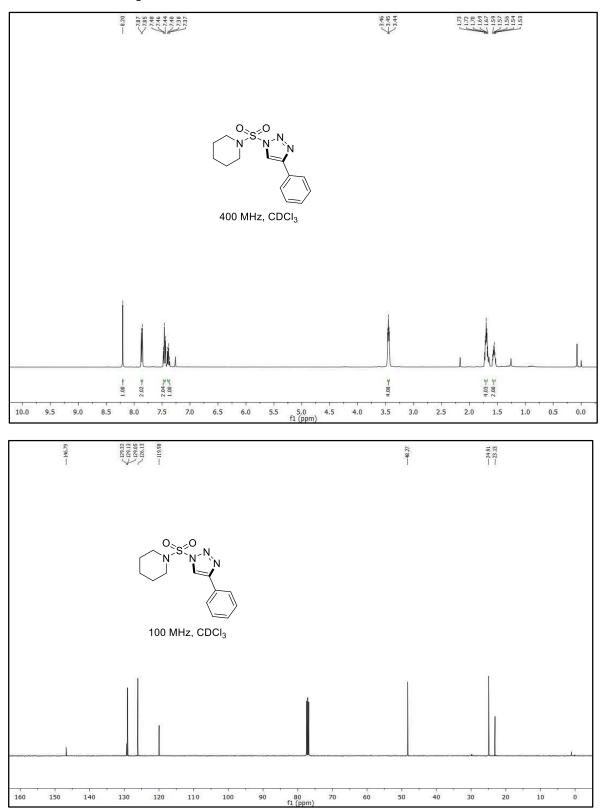

¹H and ¹³C NMR spectra of 5n:

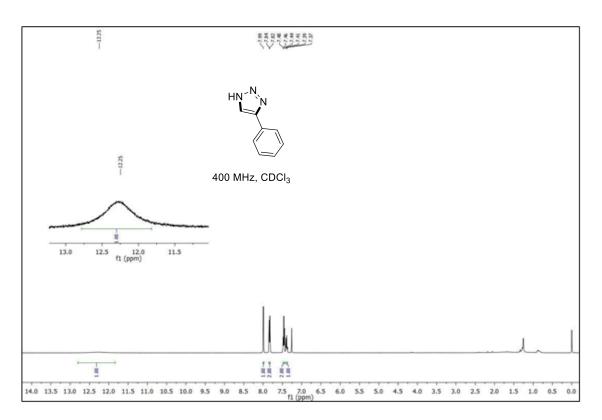

¹H and ¹³C NMR spectra of 50:

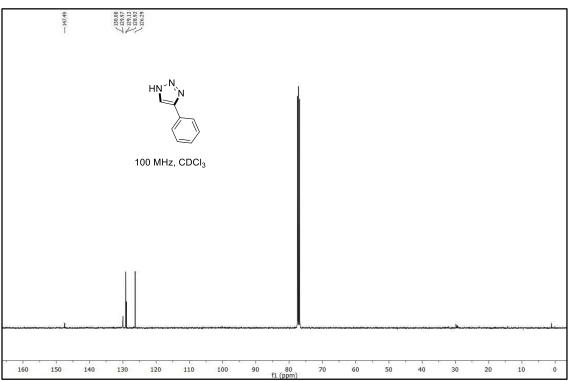

¹H and ¹³C NMR spectra of 5p:


¹H and ¹³C NMR spectra of 5q:

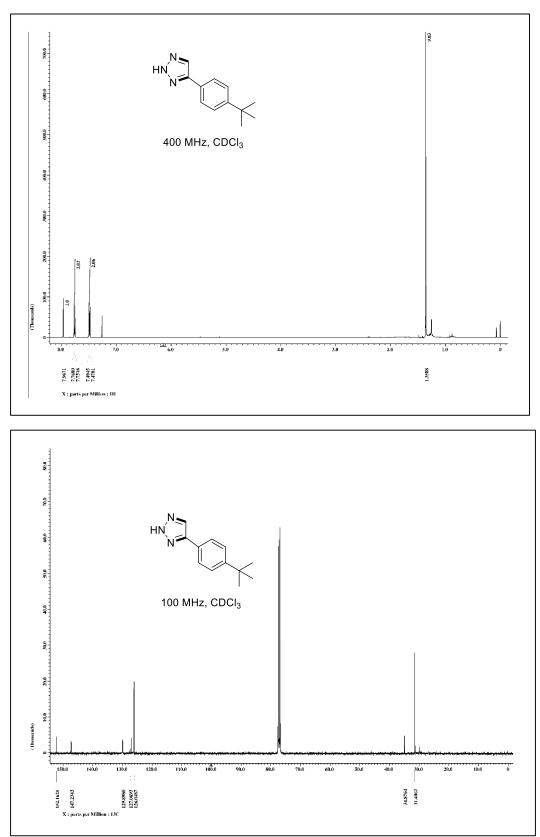

¹H and ¹³C NMR spectra of 5r:


¹H and ¹³C NMR spectra of 5s:

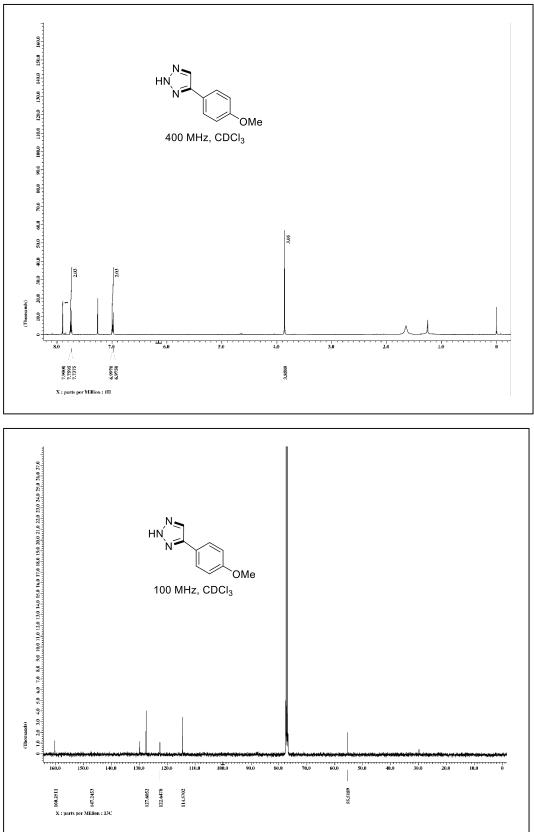

¹H and ¹³C NMR spectra of 5t:

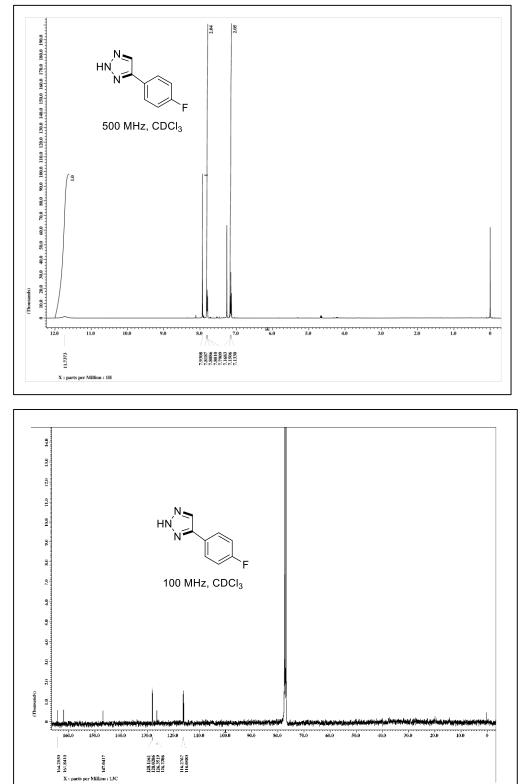


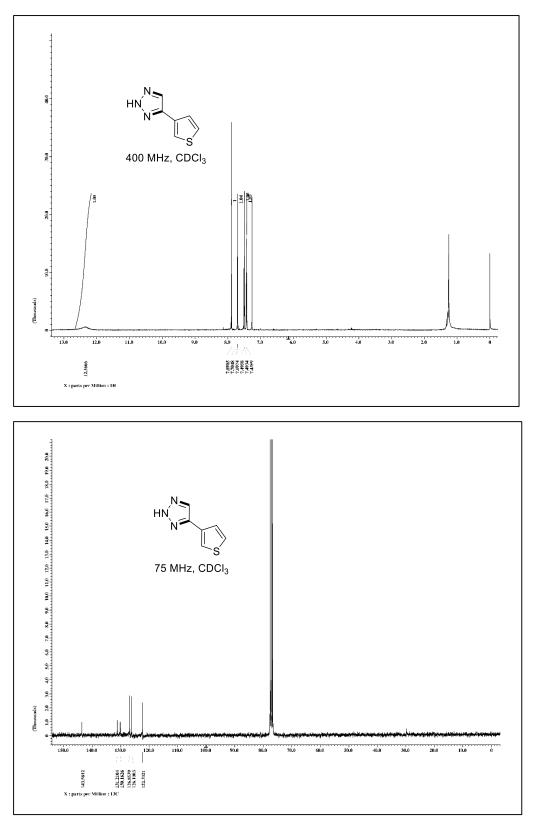
¹H and ¹³C NMR spectra of 5u:



¹H and ¹³C NMR spectra of 6a:






¹H and ¹³C NMR of 6c:

¹H and ¹³C NMR of 6d:

¹H and ¹³C NMR of 6e:

