Electronic Supplementary Information

Combined bioderivatization and engineering approach to improve the

efficiency of geraniol production

Xun Wang ^{a,b,c}, Longjie Xiao ^{a,b,c}, Xinyi Zhang ^{a,b,c}, Jia Zhang ^{a,b,c}, Yu Zhang ^{a,b,c}, Fei

Wang ^{a,b,c} and Xun Li ^{a,b,c,*}

^a Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing 210037, China

^b Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China

^c International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China

*Corresponding author E-mail: xunli@njfu.edu.cn; Tel: (+86)-025-85427635; Fax number: (+86)-025-85427635

Fig. S1 Toxicity of different concentrations of geranyl acetate (0 to 5 g/L) to *E. coli* DH5 α .

Fig. S2 Estimation of AES expression strength at three different induction temperatures (25, 30, and 35 °C) using densitometric analysis in ImageJ.

Fig. S3 SDS-PAGE analysis of the recombinant strain E2PG expressing pelB*AES fusion protein at different temperatures (25, 30, and 35 °C). M, protein marker; Numbers 1, 3, and 5 represent the supernatant of strain E2PG at temperatures of 25, 30, and 35 °C, respectively; Numbers 2, 4, and 6 represent the precipitation of strain E2PG at temperatures of 25, 30, and 35 °C, respectively.

Fig. S4 Agarose electrophoresis gel of colony PCR from 4 transformants of *lpp* knockout (1 to 4) and wild type (C).

Fig. S5 Adsorption curves of geranyl acetate using the IRA410 Cl resin.

Fig. S6 Effects of adding different proportion of isopropyl myristate on the yield of geranyl acetate and cell density. The colors from dark to light represent 10%, 20% and 40% organic overlay, respectively.

Name	Sequence 5' \rightarrow 3'
AAT-F	cctaggctgcatgcgtccggcgtagaggat
AAT-R	attcggatccttaatccataccaacactacttgc
fadL-F	catgccatgggcatgagccagaaaaccctgtttacaa
fadL-R	ggaattctcagaacgcgtagttaaagttagtaccg
ompW-F	catgccatgggcatgaaaaagttaacagtggcggct
ompW-R	ggaattcttaaaaacgatatcctgctgagaacataa
AES-F	catgccatgggcaaaccggaaaataaactgcc
AES-R	tcataactgggcggtaaaaaactgggcac
pelB-F	catatgaaatacctgctgccgaccgc
pelB-R	ttccggtttgcccatggccatcgccggctg
N20-F	aaccagcgtcgttttagagctagaaatagcaagttaaaataa
N20-R	agcacgagctactagtattatacctaggactgagctagct
X1-∆lpp-F	tcggtgctttttttgaattcgatgaacagccgtctcgagttca
X1-∆lpp-R	ttttcacttcacaggtactattacaggacgtgaacagatgcgg
X2-Δlpp-F	aaaatcgatctagtacctgtgaagtgaaaaatggcg
X2-Δlpp-R	atagatctaagcttctgcaggcagaagaacagcagaacgttcag

Table S1 Primers used in this study