Supporting Information

Prediction of Solubility Parameters of Lignin and Ionic Liquids Using Multi-resolution Simulation Approaches

Mood Mohan^{1,2}, Kaixuan Huang^{1,3,4,5}, Venkataramana Reddy Pidatala^{1,3}, Blake A. Simmons^{1,3}, Seema Singh^{1,2}, Kenneth Sale^{*,1,6}, and John Gladden^{*,1,2}

¹ Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States

² Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94551, United States

³ Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States

⁴ Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China

⁵ College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, People's Republic of China

⁶ Department of Computational Biology and Biophysics, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94551, United States

*Corresponding Author

E-mail: jmgladden@lbl.gov; jmgladd@sandia.gov (J. M. Gladden)

klsale@lbl.gov, klsale@sandia.gov (Kenneth Sale)

1. Prediction of Eutectic Point Composition of mDES

To confirm the prepared molar ratio of mDES (HBA (ZnCl₂) to HBD (ethylene glycol and glycerol)), a method has been formulated to predict the molar ratios using COSMO-RS model. The COSMO-RS model allows calculation of the activity coefficient of any compound in the mixture without any experimental data. The calculated activity coefficient value is then used in a simplified form of the solid-liquid equilibrium (SLE; solubility) equation (S1) to compute the DES curve and eutectic point:^{1,2}

$$x_{S}^{L} = \frac{\exp\left(\frac{-\Delta H_{fus,S}}{RT_{m}}\left(\frac{1}{T} - \frac{1}{T_{m}}\right)\right)}{\gamma_{S}^{L}}$$
(S1)

Where $\Delta H_{fus,S}$ and T_m is the enthalpy of fusion and melting temperature of pure solute, respectively, R is the real gas constant, T is the absolute temperature, Y_S^L is the activity coefficient of a solute in the liquid phase, and x_S^L is the mole fraction (solubility) of solute in the liquid phase. The pure component fusion properties of investigated molecules were taken from the literature and reported in Table S4. The DES curve is calculated as the mutual solubility of HBA in HBD and HBD in HBA as a function of temperature and concentration. Figure S4 shows the COSMO-RS predicted eutectic point composition of both mDESs studied. From Figure S4, it was clear that the predicted eutectic point compositions (ZnCl₂:EG (1:4) and ZnCl₂:Gly (1:3)) are in great agreement with the experimental observations, demonstrating the robustness of the COSMO-RS model for calculating the eutectic points of mDESs.³

Figure S1: Chemical structures of lignin (DP = 8). The lignin molecule composed of all possible linkages such as β -5, 5–5, and β -O–4 linkages.

Figure S2: Chemical structures of lignin (DP = 11). The lignin molecule composed of all possible linkages such as β - β , β -5, 5-5, β -O-4, and 4-O-5 linkages.

Figure S3: Predicted and experimental Hansen Solubility Parameters for Organic Solvents

Figure S4: COSMO-RS predicted eutectic point composition of mDESs composed of zinc chloride with ethylene glycol and glycerol

Ionic Liquid	$ ho_{ m exp}~(m g/cc)$	$ ho_{ m MD}(m g/cc)$	Error (%)
[Ch][For]	-	1.138	-
[Ch][Ace]	1.10	1.081	1.73
[Ch][But]	1.07	1.043	2.52
[Ch][Hex]	1.02	0.997	2.25
[Ch][Oct]	-	0.970	-
[Ch][Lys]	1.09	1.062	2.57
[Ch][Lac]	1.14	1.130	0.88
[Emim][Ace]	1.10	1.112	1.09
[Emim][Lys]	-	1.071	-
ZnCl ₂ -EG (1:4)	-	1.342	-
$ZnCl_2$ -Gly (1:3)	1.43	1.458	1.96

Table S1: Densities (ρ) of Ionic liquids and deep eutectic solvents obtained from MD Simulations and compared with experimental density.

Table S2: Predicted Hansen Solubility Parameters Ionic Liquids and compared with the experimental values

Ionia Liquid	COSMO-RS Predicted HSP (MPa ^{1/2})				Experimental ^a h	Emper $(9/)$	
	δ_d	δ_p	δ_h	δ_t		E1101 (70)	
[120HEMIM][TF ₂ N]	18.43	11.61	13.37	25.56	26.49	3.51	
[BMIM][HSO4]	18.10	11.21	12.79	24.84	23.10	7.52	
[BMIM][PF ₆]	18.60	11.33	9.34	23.70	23.20	2.16	
[BMIM][TF ₂ N]	18.41	13.41	14.56	27.03	26.70	1.24	
[EMIM][BF ₄]	18.61	12.74	12.05	25.57	24.40	4.80	
[EMIM][EtSO ₄]	17.78	11.00	13.83	25.02	24.00	4.45	
[BMIM][SCN]	18.09	10.80	12.65	24.58	24.64	0.25	
[BMIM][MeSO ₄]	18.20	11.12	12.57	24.76	23.3	6.25	
[BMPyr][DCN]	18.47	12.83	12.03	25.52	25.54	0.08	

^a Data taken from Weerachanchai et al. (2012)⁴; ^b Yoo et al. (2012)⁵

Lignin structure	COSMO-RS predicted HSP (MPa ^{1/2})			
	δ_d	δ_p	δ_h	δ_t
HO O O Sinanyl alcohol	18.45 19.2 ^a	10.92 7.3 ^a	14.56 16.1 ^a	25.92 26.1 ^a
HO HO DH D-Coumaryl alcohol	18.41 19.2 ^{<i>a</i>}	11.38 7 ^a	14.40 17.3 ^a	26.0 26.7 ^a
	18.58 19.6 ^a	12.83 10.7 ^a	13.81 12.5 ^a	26.47 25.6 ^a
Vanillin HO O O O H	18.41 19 ^a	12.15 7 ^a	14.43 16.3 ^a	26.36 26^a
Coniferyl alcohol O HO	18.41 19.8 ^a	13.09 7.6 ^a	14.95 15.8 ^a	27.08 26.4 ^{<i>a</i>}
Ferulic acid HO HO HO HO HO HO HO HO	18.39	12.63	23.35	32.29
HO HO HO HO HO HO HO HO HO HO HO HO HO H	18.38	12.45	21.90	31.18

Table S3: COSMO-RS-based predicted Hansen solubility parameters of lignin monomers, dimers

 and trimers

Lignin β –5 linkage Compound

Sinapylaldehyde

 \overline{a} Data taken from Hansen (2007)⁶

Name of the compound	$T_m(K)$	ΔH_f	Reference
ZnCl ₂	581.25	3.886	Trivedi et al. (2017) ⁷
Ethylene glycol	260.60	9.958	Nikolaev and Rabinovich, 1967 ⁸
Glycerol	293.15	18.285	Acree, 1991 ⁹

Table S4: Melting point and heat of fusion of HBA and HBD of mDESs investigated in this work

References

- 1. M. Mohan, V. V. Goud and T. Banerjee, *Fluid Phase Equilib.*, 2015, **395**, 33-43.
- 2. M. Mohan, T. Banerjee and V. V. Goud, J. Chem. Eng. Data, 2016, 61, 2923-2932.
- 3. P. Kalhor, K. Ghandi, H. Ashraf and Z. Yu, *Phy. Chem. Chem. Phy.*, 2021.
- 4. P. Weerachanchai, Z. Chen, S. S. J. Leong, M. W. Chang and J.-M. Lee, *Chemical engineering journal*, 2012, **213**, 356-362.
- 5. B. Yoo, W. Afzal and J. M. Prausnitz, *Ind. Eng. Chem. Res.*, 2012, **51**, 9913-9917.
- 6. C. M. Hansen, Hansen solubility parameters: a user's handbook, CRC press, 2007.
- 7. M. K. Trivedi, K. K. Sethi, P. Panda and S. Jana, *International Journal of Pharmaceutical Investigation*, 2017, **7**, 33.
- 8. P. Nikolaev and I. Rabinovich, *Zhur. Fiz. Khim*, 1967, **41**, 2191-2194.
- 9. W. E. Acree Jr, *Thermochimica acta*, 1991, **189**, 37-56.