Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3ba**

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3ca**

¹³C NMR (125 MHz, DMSO-d₆) spectrum of compound **3ea**

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3fa**

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3ga**

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3ha**

— 2.45

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3ia**

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3ja**

¹³C NMR (125 MHz, DMSO– d_6) spectrum of compound **3ka**

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3la**

¹³C NMR (125 MHz, DMSO– d_6) spectrum of compound **3ma**

 13 C NMR (125 MHz, DMSO– d_6) spectrum of compound **3bb**

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3bc**

¹³C NMR (125 MHz, DMSO– d_6) spectrum of compound **3bd**

¹³C NMR (125 MHz, DMSO– d_6) spectrum of compound **3be**

 13 C NMR (125 MHz, DMSO– d_6) spectrum of compound **3bf**

 ^{13}C NMR (125 MHz, DMSO–d₆) spectrum of compound **3g**

 13 C NMR (125 MHz, DMSO– d_6) spectrum of compound **3bh**

¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3bi**

¹³C NMR (125 MHz, DMSO– d_6) spectrum of compound **3bj**'

¹³C NMR (125 MHz, DMSO–*d*₆) spectrum of compound **5a**

¹³C NMR (125 MHz, DMSO–*d*₆) spectrum of compound **5b**

HR-MS of compound 6

¹³C NMR (125 MHz, DMSO–*d*₆) spectrum of compound **6**

Figure S1. A) Imidazopyridines, secondary amine, and CS_2 ; B) After addition of water-soluble copper(I) catalyst and O₂ purging; C) Reaction mixture after microwave-irradiation.

Figure S2. A-E suggests the change in the colour of organic layer of CH_2Cl_2 (below) and aqueous layer (above) due to decreased catalyst loading during recyclability of catalyst in each cycle.

Compound	Percentage Inhibition % (50 μ M)		
	HCT-116 ^[b]	MCF-7 ^[c]	
3aa	<50	<50	
3ba	<50	<50	
3ca	<50	<50	
3da	<50	<50	
3ea	<50	65.84	
3fa	<50	<50	
3ga	<50	<50	
3ha	<50	<50	
3ia	<50	>50	
3ja	<50	<50	
3ka	<50	<50	
3la	<50	<50	
3ma	<50	>50	
3na	<50	57.17	
3bb	<50	90.17	
3bc	<50	83.40	
3bd	<50	<50	

Table S1. Percentage inhibition of compounds 3aa-3na, 3bb-3bi and 5a-5e^[a]

3be	52.67	91.10	
3bf	<50	55.78	
3bg	<50	<50	
3bh	<50	80.42	
3bi	<50	<50	
5a	<50	50.42	
5b	<50	<50	
5d	<50	<50	
5 e	<50	<50	
5-FU ^[d]	75.82	70.35	

^[a]Percentage inhibition on HCT-116 and MCF-7 cancer cell lines at 50 µM concentration after 48 h. ^[b] Human colon cancer cell line. ^[c] Human breast cancer cell line. ^[d] Standard drug 5-fluorouracil.

Table S2. Cytotoxic activity $(IC_{50} \text{ in } \mu M)^{[a]}$ of most active analogues.

Compound	IC50 value (µM)			
Compound	HCT-116 ^[b]	MCF-7 ^[c]	BEAS-2B ^[d]	
3bb	_	10.20±2.10	>50	
3be	_	7.28±2.31	>50	
Standard ^[e]	16.58±2.23	24.78±0.08	—	

^[a] 50% inhibitory concentration after 48 h of compound treatment. ^[b] Human colon cancer cell line. ^[c] Human breast cancer cell line. ^[d] Normal human lung epithelial cells. ^[e] 5- Fluorouracil (5-FU).