Supporting information

Metal-Free Visible-Light-Initiated Direct C3 Alkylation of Quinoxalin-2(1*H*)-ones and Coumarins with Unactivated Alkyl Iodides

Jun Sun, Hua Yang,* and Bo Zhang*

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China

E-mail: zb3981444@cpu.edu.cn; yanghuacpu@126.com

Table of contents

General	S 2
Optimization of reaction conditions	S 3
General procedure for direct C3 alkylation of quinoxalin-2(1 <i>H</i>)-ones with alkyl iodides (GP1)	S7
General procedure for direct C3 alkylation of coumarins with alkyl iodides (GP2)	S7
Physical data of the compounds	S 8
Evaluation of other substrates	S33
Lager scale experiments	S35
Mechanistic studies	S36
References	S49
NMR spectra	S50

General

All manipulations were conducted with a standard *Schlenk* tube under a nitrogen atmosphere. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Anhydrous cyclohexane, dimethyl sulfoxide and CH₂Cl₂ were purchased from J&K Chemical or Energy Chemical and used as received. These solvents were dried and degassed by commercial suppliers. Alkyl halides were purchased from commercial sources or prepared according to the reported method.^[1] Quinoxalinone substrates were prepared according to the reported method.^[3]

Flash column chromatography was carried out on silica gel (200-300 mesh). Thin layer chromatography (TLC) was performed using silica gel 60 F₂₅₄ plates.

¹H NMR spectra were recorded on a *Bruker AV-300, AV-400 or AV-500* spectrometer at room temperature. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ ($\delta = 77.00$ ppm). ¹⁹F NMR spectra were obtained by the same NMR spectrometer and using CFCl₃ as external standard. Data for ¹H NMR are reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, br s = broad singlet), coupling constant (Hz) and integration. Data for ¹³C NMR are reported in terms of chemical shift and multiplicity where appropriate. High-Resolution Mass Spectrometry (HRMS) were performed on an *Aglient 6545 Q-TOF* for HRMS. The yields were determined on a *METTLER TOLEDO ME 104* balance (accuracy: 0.1 mg). Melting points (Mp) were determined on an RY-1G and are uncorrected.

Optimization of reaction conditions

Table S1. Alkylation of 1: evaluation of bases^a

N N Me 1	$\frac{1}{2}$ + $\frac{1}{2}$	DMS 6 W bl	ase ⊃, rt, N ₂ ue LEDs	N N Me 3
			Me N N	Me Me ^{´N} N [.] Me Me
DABCO	DBU	TBD	MTBD	TMEDA
er	ntry	base		yield ^b (%)
1		DABCO		0
2		DBU		22
3		TBD		25
4		MTBD		55
5		Et ₃ N		0
6		TMEDA		trace
7		K ₂ CO ₃		0
8		Na ₂ CO ₃		0

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (0.6 mmol), and base (0.4 mmol) in DMSO (2.0 mL) were irradiated with 6 W blue LEDs at room temperature under N_2 . ^{*b*}Isolated yields.

N N Me 1	<pre>MTBD solvent, rt, N2 6 W blue LEDs 2</pre>	N N Me 3
entry	solvent	yield ^b (%)
1	CH ₃ CN	14
2	EtOAc	13
3	DMF	15
4	CH_2CI_2	22
5	THF	11
6	MeOH	0

Table S2. Alkylation of 1: evaluation of solvents^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (0.6 mmol), and MTBD (0.4 mmol) in solvent (2.0 mL) were irradiated with 6 W blue LEDs at room temperature under N_2 . ^{*b*}Isolated yields.

	$ \begin{array}{c} N \\ N \\ Me \\ 1 \\ 2 \end{array} $	MTBD DMSO, rt, N ₂ 6 W blue LEDs	→ N N Me 3	
entry	MTBD (equiv)	2 (equiv)	irradiation time (h)	yield ^b (%)
1	3.0	3.0	12	56
2	5.0	3.0	12	58
3	3.0	4.0	12	74
4	4.0	4.0	12	75
5	5.0	4.0	12	78
6	2.0	5.0	12	57
7	3.0	5.0	12	68
8	4.0	5.0	12	71
9	5.0	5.0	12	88
10	5.0	5.0	3	62
11	5.0	5.0	6	82
12	none	5.0	12	0
13 ^c	5.0	5.0	12	0
14 ^{<i>d</i>}	5.0	5.0	12	0

Table S3. Alkylation of 1: evaluation of other reaction parameters^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2**, and MTBD in solvent (2.0 mL) were irradiated with 6 W blue LEDs at room temperature under N₂. ^{*b*}Isolated yields. ^{*c*}The reaction was conducted in the dark. ^{*d*}The reaction was conducted under air.

C	59 +	2 base DMSO, rt, N ₂ 6 W blue LEDs	39
	entry	base	yield ^b (%)
	1	DABCO	0
	2	DBU	trace
	3	TBD	45
	4	MTBD	80

Table S4. Alkylation of 58: evaluation of bases^a

^{*a*}Reaction conditions: **59** (0.2 mmol), **2** (0.6 mmol), and base (0.4 mmol) in DMSO (2.0 mL) were irradiated with 6 W blue LEDs at room temperature under N_2 . ^{*b*}Isolated yields.

General procedure for direct C3 alkylation of quinoxalin-2(1H)-ones with alkyl iodides (GP1):

Quinoxalin-2(1*H*)-one (0.2 mmol, 1.0 equiv), alkyl iodide (1.0 mmol, 5.0 equiv), and MTBD (1.0 mmol, 5.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (2.0 mL) was added with a syringe, and the reaction mixture was irradiated with 6 W blue LEDs at room temperature under N_2 for 12 h. After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the product.

General procedure for direct C3 alkylation of coumarins with alkyl

iodides (GP2):

Coumarin (0.2 mmol, 1.0 equiv), alkyl halide (0.6 mmol, 3.0 equiv), and MTBD (0.4 mmol, 2.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (2.0 mL) was added with a syringe, and the reaction mixture was irradiated with 6 W blue LEDs at room temperature under N_2 for 12 h. After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the product.

Reaction setup (4x6 W blue LEDs)

Physical data of the compounds

3-Cyclohexyl-1-methylquinoxalin-2(1H)-one (3)^[4]

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.0 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **3** as white solid (42.4 mg, 88%). Mp: 98-100 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.9 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.36-7.26 (m, 2H), 3.70 (s, 3H), 3.38-3.31 (m, 1H), 1.95 (d, *J* = 12.0 Hz, 2H), 1.87 (d, *J* = 12.6 Hz, 2H) , 1.77 (d, *J* = 12.6 Hz, 1H), 1.63-1.42 (m, 4H), 1.37-1.23 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 154.5, 132.9, 132.8, 129.7, 129.3, 123.4, 113.4, 40.7, 30.5, 29.0, 26.3, 26.1; HRMS (ESI) calculated for C₁₅H₁₈N₂O [M+Na]⁺ m/z 265.1311, found 265.1314.

3-Cyclopentyl-1-methylquinoxalin-2(1H)-one (4)^[5]

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.4 mg, 0.2 mmol, 1.0 equiv), iodocyclopentane (196.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **4** as white solid (35.8 mg, 79%). Mp: 89-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.54-7.46 (m, 1H), 7.36-7.27 (m, 2H), 3.77-3.63 (m, 4H), 2.13-2.00 (m, 2H), 1.98-1.87 (m, 2H), 1.86-1.77 (m, 2H), 1.75-1.65 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.7, 155.0, 132.9, 132.7, 129.7, 129.3, 123.3, 113.4, 42.7, 30.8, 29.0, 25.9; HRMS (ESI) calculated for C₁₄H₁₆N₂O [M+H]⁺ m/z 229.1335, found 229.1340.

3-Cycloheptyl-1-methylquinoxalin-2(1*H*)-one (5)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.1 mg, 0.2 mmol, 1.0 equiv), iodocycloheptane (224.1 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **5** as white solid (48.2 mg, 94%). Mp: 81-83 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.54-7.46 (m, 1H), 7.35-7.27 (m, 2H), 3.70 (s, 3H), 3.53-3.43 (m, 1H), 2.02-1.92 (m, 2H), 1.89-1.76 (m, 4H), 1.75-1.67 (m, 2H) 1.66-1.55 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 165.3, 154.4, 132.8, 132.7, 129.7, 129.3, 123.4, 113.4, 42.4, 32.2, 29.0, 28.1, 27.1; HRMS (ESI) calculated for C₁₆H₂₀N₂O [M+H]⁺ m/z 257.1648, found 257.1644.

3-Cyclooctyl-1-methylquinoxalin-2(1H)-one (6)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.2 mg, 0.2 mmol, 1.0 equiv), iodocyclooctane (238.1 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **6** as white solid (49.2 mg, 91%). Mp: 56-58 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.54-7.46 (m, 1H), 7.35-7.27 (m, 2H), 3.70 (s, 3H), 3.50-3.51 (m, 1H),1.91-1.84 (m, 4H), 1.83-1.76 (m, 2H), 1.74-1.57 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 154.4, 132.8, 132.7, 129.7, 129.2, 123.4, 113.4, 40.4, 30.5, 29.0, 26.6, 26.5, 25.9; HRMS (ESI) calculated for C₁₇H₂₂N₂O [M+H]⁺ m/z 271.1805, found 271.1803.

1-Methyl-3-(oxetan-3-yl)quinoxalin-2(1H)-one (7)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.1 mg, 0.2 mmol, 1.0 equiv), 3-iodooxetane (184.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3:1) to afford the desired product **7** as yellow solid (31.1 mg, 72%). Mp: 105-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.86 (m, 1H), 7.60-7.53 (m, 1H), 7.41-7.30 (m, 2H), 5.11-5.00 (m, 4H), 4.72-4.61 (m, 1H), 3.68 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.0, 154.1, 132.8, 132.4, 130.1, 129.9, 123.7, 113.5, 74.3, 38.1, 28.8; **HRMS** (ESI) calculated for C₁₂H₁₂N₂O₂ [M+Na]⁺ m/z 239.0791, found 239.0788.

1-Methyl-3-(tetrahydrofuran-3-yl)quinoxalin-2(1*H*)-one (8)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.3 mg, 0.2 mmol, 1.0 equiv), 3-iodotetrahydrofuran (198.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3:1) to afford the desired product **8** as white solid (39.0 mg, 85%). Mp: 110-112 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.58-7.50 (m, 1H), 7.38-7.28 (m, 2H), 4.29-4.18 (m, 1H), 4.10-3.89 (m, 4H), 3.71 (s, 3H), 2.52-2.25 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 154.9, 133.0, 132.5, 130.0, 129.9, 123.6, 113.5, 71.3, 68.6, 42.3, 30.0, 29.1; HRMS (ESI) calculated for C₁₃H₁₄N₂O₂ [M+H]⁺ m/z 231.1128, found 231.1124.

1-Methyl-3-(tetrahydro-2H-pyran-4-yl)quinoxalin-2(1H)-one (9)^[6]

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.2 mg, 0.2 mmol, 1.0 equiv), 4-iodotetrahydro-2*H*-pyran (212.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 2:1) to afford the desired product **9** as white solid (47.6 mg, 98%). Mp: 174-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.7 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.39-7.28 (m, 2H), 4.09 (d, *J* = 10.9 Hz, 2H), 3.70 (s, 3H), 3.66-3.53 (m, 3H), 1.93 (dt, *J* = 24.2, 7.8 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8, 154.2, 132.7, 132.6, 129.8, 129.6, 123.4, 113.4, 67.7, 38.0, 29.9, 28.9; HRMS (ESI) calculated for C₁₄H₁₆N₂O₂ [M+H]⁺ m/z 245.1285, found 245.1280.

tert-Butyl 4-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)piperidine-1-carboxylate (10)^[7]

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.4 mg, 0.2 mmol, 1.0 equiv), *tert*-butyl 4-iodopiperidine-1-carboxylate (311.1 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 2:1) to afford the desired product **10** as white solid (65.7 mg, 96%). Mp: 180-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.58-7.49 (m, 1H), 7.37-7.29 (m, 2H), 4.43-4.09 (m, 2H), 3.71 (s, 3H), 3.52-3.42 (m, 1H), 2.92 (t, *J* = 11.2 Hz, 2H), 1.94 (d, *J* = 12.0 Hz, 2H), 1.83-1.70 (m, 2H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 154.7, 154.3, 132.8, 132.6, 129.8, 129.7, 123.5, 113.5, 79.2, 43.7, 38.8, 29.3, 29.0, 28.4; HRMS (ESI) calculated for C₁₉H₂₅N₃O₃ [M+Na]⁺ m/z 366.1788, found 366.1782.

1-Methyl-3-(4-phenylbutan-2-yl)quinoxalin-2(1H)-one (11)

According to GP1 with 1-methylquinoxalin-2(1H)-one (32.2 mg, 0.2 mmol, 1.0

equiv), (3-iodobutyl)benzene (260.1 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **11** as pale yellow oil (30.9 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.81 (m, 1H), 7.55-7.48 (m, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 8.3 Hz, 1H), 7.25-7.16 (m, 4H), 7.15-7.09 (m, 1H), 3.69 (s, 3H), 3.64-3.54 (m, 1H), 2.75-2.58 (m, 2H), 2.35-2.23 (m, 1H), 1.95-1.85 (m, 1H), 1.34 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.1, 154.6, 142.5, 132.9, 132.7, 129.8, 129.5, 128.4, 128.1, 125.5, 123.4, 113.4, 36.2, 36.1, 33.9, 29.0, 18.5; HRMS (ESI) calculated for C₁₉H₂₀N₂O [M+H]⁺ m/z 293.1648, found 293.1643.

1-Methyl-3-(octan-3-yl)quinoxalin-2(1H)-one (12)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.0 mg, 0.2 mmol, 1.0 equiv), 3-iodooctane (480.1 mg, 2.0 mmol, 10.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **12** as colorless oil (29.0 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.55-7.48 (m, 1H), 7.36-7.27 (m, 2H), 3.71 (s, 3H), 3.45-3.37 (m, 1H), 1.93-1.80 (m, 2H), 1.74-1.58 (m, 2H), 1.35-1.19 (m, 6H), 0.91-0.79 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 155.0, 132.8, 132.7, 129.7, 129.3, 123.3, 113.4, 43.1, 32.9, 32.0, 29.1, 27.2, 26.1, 22.5, 14.0, 12.0; HRMS (ESI) calculated for C₁₇H₂₄N₂O [M+H]⁺ m/z 273.1961, found 273.1957.

3-((3r,5r,7r)-Adamantan-1-yl)-1-methylquinoxalin-2(1H)-one (13)^[5]

According to **GP1** with 1-methylquinoxalin-2(1H)-one (32.2 mg, 0.2 mmol, 1.0 equiv), (3*s*,5*s*,7*s*)-1-iodoadamantane (262.1 mg, 1.0 mmol, 5.0 equiv), and MTBD

(144 μL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 20:1) to afford the desired product **13** as white solid (38.6 mg, 66%). Mp: 186-188 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.0, 1.3 Hz, 1H), 7.52-7.46 (m, 1H), 7.33-7.23 (m, 2H), 3.65 (s, 3H), 2.27-2.20 (m, 6H), 2.14-2.07 (m, 3H), 1.86-1.76 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 153.5, 132.9, 132.3, 130.0, 129.4, 123.1, 113.2, 41.9, 38.7, 37.0, 28.6, 28.5; **HRMS** (ESI) calculated for C₁₉H₂₂N₂O [M+H]⁺ m/z 295.1805, found 295.1800.

1-Methyl-3-(2-methyl-4-phenylbutan-2-yl)quinoxalin-2(1*H*)-one (14)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.0 mg, 0.2 mmol, 1.0 equiv), (3-iodo-3-methylbutyl)benzene (548.1 mg, 2.0 mmol, 10.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 8:1) to afford the desired product **14** as yellow oil (18.2 mg, 30%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.54-7.48 (m, 1H), 7.35-7.30 (m, 1H), 7.23 (dd, *J* = 8.4, 0.9 Hz, 1H), 7.16-7.02 (m, 5H), 3.60 (s, 3H), 2.53-2.46 (m, 2H), 2.39-2.32 (m, 2H), 1.53 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 164.2, 153.6, 142.8, 133.3, 132.2, 130.1, 129.5, 128.5, 127.9, 125.3, 123.1, 113.2, 42.8, 41.7, 31.7, 28.7, 26.4; C₂₀H₂₂N2O [M+H]⁺ m/z 307.1805, found 307.1802.

1-Methyl-3-pentylquinoxalin-2(1H)-one (15)^[8]

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.4 mg, 0.2 mmol, 1.0 equiv), 1-iodopentane (198.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **15** as yellow solid (39.9 mg, 87%). Mp: 75-77 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.0, 1.3 Hz, 1H), 7.55-7.48 (m, 1H), 7.37-7.27 (m, 2H), 3.70 (s, 3H), 2.94 (t, J = 7.6 Hz, 2H), 1.79 (p, J = 7.6 Hz, 2H), 1.48-1.35 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 161.3, 154.8, 133.0, 132.7, 129.5, 129.4, 123.4, 113.5, 34.3, 31.7, 28.9, 26.5, 22.5, 14.0; **HRMS** (ESI) calculated for C₁₄H₁₈N₂O [M+H]⁺ m/z 231.1492, found 231.1486.

3-Heptyl-1-methylquinoxalin-2(1H)-one (16)^[6]

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.3 mg, 0.2 mmol, 1.0 equiv), 1-iodoheptane (226.1 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **16** as pale yellow solid (44.9 mg, 87%). Mp: 73-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.54-7.48 (m, 1H), 7.37-7.25 (m, 2H), 3.69 (s, 3H), 2.93 (t, *J* = 7.6 Hz, 2H), 1.78 (p, *J* = 7.6 Hz, 2H), 1.49-1.26 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 154.8, 133.0, 132.6, 129.5, 129.4, 123.4, 113.4, 34.3, 31.7, 29.5, 29.1, 28.9, 26.8, 22.6, 14.0; **HRMS** (ESI) calculated for C₁₆H₂₂N₂O [M+H]⁺ m/z 259.1805, found 259.1799.

3-Isobutyl-1-methylquinoxalin-2(1H)-one (17)^[9]

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.1 mg, 0.2 mmol, 1.0 equiv), 1-iodo-2-methylpropane (184.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **17** as yellow oil (27.3 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.55-7.49 (m, 1H), 7.37-7.28 (m, 2H), 3.70 (s, 3H), 2.83 (d, *J* = 7.1 Hz, 2H), 2.40-2.27 (m, 1H), 1.01 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 155.0, 133.0, 132.6, 129.6, 129.5, 123.5, 113.5, 42.9, 29.0, 26.8, 22.7; HRMS (ESI) calculated for C₁₃H₁₆N₂O [M+H]⁺ m/z 217.1335, found 217.1331.

3-(6-Chlorohexyl)-1-methylquinoxalin-2(1*H*)-one (18)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.3 mg, 0.2 mmol, 1.0 equiv), 1-chloro-6-iodohexane (246.5 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **18** as pale yellow oil (45.1 mg, 81%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.54-7.48 (m, 1H), 7.37-7.26 (m, 2H), 3.69 (s, 3H), 3.54 (t, *J* = 6.8 Hz, 2H), 2.94 (t, *J* = 7.6 Hz, 2H), 1.86-1.75 (m, 4H), 1.55-1.44 (m, 4H); ¹³**C NMR** (75 MHz, CDCl₃) δ 160.9, 154.8, 133.0, 132.6, 129.5, 129.5, 123.5, 113.5, 45.1, 34.1, 32.4, 29.0, 28.7, 26.6, 26.5; **HRMS** (ESI) calculated for C₁₅H₁₉ClN₂O [M+H]⁺ m/z 279.1259, found 279.1256.

3-(Hex-5-yn-1-yl)-1-methylquinoxalin-2(1H)-one (19)^[10]

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.1 mg, 0.2 mmol, 1.0 equiv), 6-iodohex-1-yne (208.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **19** as white solid (38.8 mg, 81%). Mp: 82-84 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.56-7.48 (m, 1H), 7.38-7.27 (m, 2H), 3.70 (s, 3H), 2.96 (t, *J* = 7.8 Hz, 2H), 2.27 (td, *J* = 7.1, 2.6 Hz, 2H), 1.99-1.86 (m, 3H), 1.69 (p, *J* = 7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 160.6, 154.8, 133.0, 132.6, 129.6, 129.5, 123.5, 113.5, 84.3, 68.3, 33.6, 29.0, 28.3, 25.7, 18.3; **HRMS** (ESI) calculated for C₁₅H₁₆N₂O [M+H]⁺ m/z 241.1335, found 241.1330.

Ethyl 4-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanoate (20)^[11]

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.0 mg, 0.2 mmol, 1.0 equiv), ethyl 4-iodobutanoate (242.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **20** as yellow solid (30.2 mg, 55%). Mp: 101-103 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.56-7.49 (m, 1H), 7.37-7.28 (m, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.70 (s, 3H), 2.99 (t, *J* = 7.4 Hz, 2H), 2.47 (t, *J* = 7.6 Hz, 2H), 2.17 (p, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 160.0, 154.8, 133.0, 132.6, 129.7, 129.7, 123.5, 113.5, 60.3, 33.8, 33.2, 29.0, 21.6, 14.2; HRMS (ESI) calculated for C₁₅H₁₈N₂O₃ [M+H]⁺ m/z 275.1390, found 275.1393.

1-Methyl-3-(pent-4-en-1-yl)quinoxalin-2(1*H*)-one (21)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.2 mg, 0.2 mmol, 1.0 equiv), 5-iodopent-1-ene (196.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **21** as white solid (31.5 mg, 69%). Mp: 57-59 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.53-7.47 (m, 1H), 7.34-7.25 (m, 2H), 5.92-5.82 (m, 1H), 5.10-5.02 (m, 1H), 5.00-4.95 (m, 1H), 3.68 (s, 3H), 2.95 (t, *J* = 7.5 Hz, 2H), 2.21 (q, *J* = 7.2 Hz, 2H), 1.91 (p, *J* = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 154.7, 138.2, 132.9, 132.6, 129.5, 129.4, 123.4, 114.8, 113.4, 33.6, 33.5, 28.9, 25.8; HRMS (ESI) calculated for C₁₄H₁₆N₂O [M+H]⁺ m/z 229.1335, found 229.1334.

1-Methyl-3-(4,4,4-trifluorobutyl)quinoxalin-2(1*H*)-one (22)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.0 mg, 0.2 mmol, 1.0 equiv), 1,1,1-trifluoro-4-iodobutane (238.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **22** as white solid (42.6 mg, 79%). Mp: 79-81 °C; ¹H NMR (400 MHz, CDCl₃)

δ 7.82 (dd, J = 8.0, 1.2 Hz, 1H), 7.57-7.50 (m, 1H), 7.38-7.28 (m, 2H), 3.69 (s, 3H), 3.01 (t, J = 7.4 Hz, 2H), 2.33-2.20 (m, 2H), 2.15-2.05 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 154.7, 133.0, 132.6, 129.8, 129.7, 127.1 (q, J = 275.0 Hz), 123.6, 113.6, 33.3 (q, J = 28.4 Hz), 32.5, 29.0, 18.6 (q, J = 3.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -66.31; HRMS (ESI) calculated for C₁₃H₁₃F₃N₂O [M+H]⁺ m/z 271.1053, found 271.1048.

1-Methyl-3-(4-(trimethylsilyl)butyl)quinoxalin-2(1H)-one (23)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.1 mg, 0.2 mmol, 1.0 equiv), (4-iodobutyl)trimethylsilane (256.2 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **23** as white solid (54.6 mg, 95%). Mp: 102-104 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.57-7.50 (m, 1H), 7.39-7.28 (m, 2H), 3.72 (s, 3H), 2.97 (t, *J* = 7.8 Hz, 2H), 1.83 (p, *J* = 7.5 Hz, 2H), 1.56-1.44 (m, 2H), 0.65-0.57 (m, 2H), 0.01 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 154.9, 133.1, 132.7, 129.6, 129.4, 123.5, 113.5, 34.2, 30.7, 29.0, 24.0, 16.5, -1.7; HRMS (ESI) calculated for C₁₆H₂₄N₂OSi [M+H]⁺ m/z 289.1731, found 289.1725.

3-(3,7-Dimethyloct-6-en-1-yl)-1-methylquinoxalin-2(1H)-one (24)

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.1 mg, 0.2 mmol, 1.0 equiv), 8-iodo-2,6-dimethyloct-2-ene (266.2 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **24** as pale yellow oil (37.0 mg, 62%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.82 (dd, J = 8.0, 1.4 Hz, 1H), 7.54-7.46 (m, 1H), 7.36-7.24 (m, 2H), 5.16-5.06 (m, 1H), 3.69 (s, 3H), 3.04-2.85 (m, 2H), 2.10-1.92 (m, 2H), 1.87-1.76 (m, 1H), 1.67 (s, 3H), 1.63-1.54 (m, 5H), 1.49-1.38 (m, 1H), 1.28-1.21 (m, 1H), 0.99 (d, J = 6.2 Hz, 3H); ¹³**C NMR**

(101 MHz, CDCl₃) δ 161.6, 154.8, 133.0, 132.7, 131.0, 129.5, 129.4, 124.9, 123.5, 113.5, 36.9, 33.7, 32.5, 32.0, 29.0, 25.7, 25.5, 19.4, 17.6; **HRMS** (ESI) calculated for C₁₉H₂₆N₂O [M+H]⁺ m/z 299.2118, found 299.2112.

3-(4-(Bis(2-chloroethyl)amino)phenyl)butyl)-1-methylquinoxalin-2(1*H***)-one (25)**

According to **GP1** with 1-methylquinoxalin-2(1*H*)-one (32.2 mg, 0.2 mmol, 1.0 equiv), *N*,*N*-bis(2-chloroethyl)-4-(4-iodobutyl)aniline (400.1 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **25** as white solid (34.5 mg, 40%). Mp: 142-144 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.55-7.48 (m, 1H), 7.36-7.27 (m, 2H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.61 (d, *J* = 8.6 Hz, 2H), 3.74-3.65 (m, 7H), 3.64-3.56 (m, 4H), 2.98 (t, *J* = 8.0 Hz, 2H), 2.60 (t, *J* = 8.0 Hz, 2H), 1.89-1.79 (m, 2H), 1.78-1.68 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.0, 154.8, 144.0, 133.0, 132.7, 131.8, 129.6, 129.5, 123.5, 113.5, 112.0, 53.6, 40.5, 34.6, 34.1, 31.6, 29.0, 26.5; **HRMS** (ESI) calculated for C₂₃H₂₇Cl₂N₃O [M+H]⁺ m/z 432.1604, found 432.1595.

3-Cyclohexyl-6-methoxy-1-methylquinoxalin-2(1H)-one (26)^[8]

According to **GP1** with 6-methoxy-1-methylquinoxalin-2(1*H*)-one (38.2 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (129.3 μ L, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **26** as white solid (39.1 mg, 72%). Mp: 104-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 2.7 Hz, 1H), 7.19 (d, *J* = 9.1 Hz, 1H), 7.11(dd, *J* = 9.1, 2.7 Hz, 1H), 3.88

(s, 3H), 3.67 (s, 3H), 3.38-3.31 (m, 1H), 1.96 (d, J = 12.0 Hz, 2H), 1.87 (d, J = 12.6 Hz, 2H) , 1.77 (d, J = 12.6 Hz, 1H), 1.62-1.41 (m, 4H), 1.37-1.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 164.8, 155.7, 154.1, 133.5, 127.0, 118.4, 114.3, 111.1, 55.7, 40.7, 30.5, 29.1, 26.2, 26.1; **HRMS** (ESI) calculated for C₁₆H₂₀N₂O₂ [M+H]⁺ m/z 273.1598, found 273.1597.

3-Cyclohexyl-6-fluoro-1-methylquinoxalin-2(1H)-one (27)^[8]

According to **GP1** with 6-fluoro-1-methylquinoxalin-2(1*H*)-one (35.6 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **27** as pale yellow solid (37.0 mg, 71%). Mp: 110-112 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.49 (m, 1H), 7.28-7.22 (m, 2H), 3.69 (s, 3H), 3.38-3.32 (m, 1H), 1.94 (d, *J* = 11.4 Hz, 2H), 1.86 (d, *J* = 12.3 Hz, 2H) , 1.77 (d, *J* = 12.3 Hz, 1H), 1.63-1.41 (m, 4H), 1.37-1.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 160.2, 156.9, 154.1, 133.5 (d, *J* = 11.3Hz), 129.5 (d, *J* = 2.2Hz), 117.0 (d, *J* = 24.0Hz), 115.2 (d, *J* = 21.7Hz), 114.5 (d, *J* = 8.2Hz), 40.8, 30.4, 29.2, 26.2, 26.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -119.51; **HRMS** (ESI) calculated for C₁₅H₁₇FN₂O [M+H]⁺ m/z 261.1398, found 261.1407.

6-Chloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one (28)^[8]

According to **GP1** with 6-chloro-1-methylquinoxalin-2(1*H*)-one (38.9 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **28** as white solid (35.4 mg, 64%). Mp: 124-126 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, J = 2.4 Hz, 1H), 7.45 (dd, J = 8.9, 2.4 Hz, 1H), 7.20 (d, J = 8.9 Hz, 1H), 3.68 (s, 3H), 3.37-3.28 (m, 1H), 1.94 (d, J = 10.7 Hz, 2H), 1.86 (d, J = 12.1 Hz, 2H), 1.77 (d, J =

12.1 Hz, 1H), 1.62-1.41 (m, 4H), 1.37-1.23 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 154.1, 133.4, 131.5, 129.3, 129.1, 128.6, 114.5, 40.8, 30.4, 29.2, 26.2, 26.1; **HRMS** (ESI) calculated for C₁₅H₁₇ClN₂O [M+H]⁺ m/z 277.1102, found 277.1099.

6-Bromo-3-cyclohexyl-1-methylquinoxalin-2(1H)-one (29)^[5]

According to **GP1** with 6-bromo-1-methylquinoxalin-2(1*H*)-one (47.8 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **29** as white solid (30.1 mg, 47%). Mp: 118-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.65 (m, 1H), 7.49-7.38 (m, 2H), 3.65 (s, 3H), 3.34-3.27 (m, 1H), 1.94 (d, *J* = 12.3 Hz, 2H), 1.86 (d, *J* = 12.6 Hz, 2H) , 1.76 (d, *J* = 12.6 Hz, 1H), 1.60-1.42 (m, 4H), 1.35-1.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 164.6, 154.1, 133.9, 131.7, 131.0, 126.6, 123.2, 116.5, 40.8, 30.4, 29.2, 26.2, 26.1; HRMS (ESI) calculated for C₁₅H₁₇BrN₂O [M+H]⁺ m/z 321.0597, found 321.0599.

3-Cyclohexyl-7-fluoro-1-methylquinoxalin-2(1H)-one (30)^[5]

According to **GP1** with 7-fluoro-1-methylquinoxalin-2(1*H*)-one (35.6 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **30** as white solid (26.5 mg, 51%). Mp: 113-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.8, 6.0 Hz, 1H), 7.02 (td, J = 8.8, 2.6 Hz, 1H), 6.96 (dd, J = 10.1, 2.6 Hz, 1H), 3.65 (s, 3H), 3.33-3.26 (m, 1H), 1.94 (d, J = 12.5 Hz, 2H), 1.86 (d, J = 12.6 Hz, 2H) , 1.76 (d, J = 12.6 Hz, 1H), 1.61-1.41 (m, 4H), 1.37-1.23 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 163.1 (d, J = 4.0 Hz), 161.5, 154.3, 134.2 (d, J = 12.1 Hz), 131.5 (d, J = 2.2 Hz), 129.6 (d, J = 2.0 Hz), 111.1 (d, J = 23.2 Hz), 100.4 (d, J = 27.2 Hz), 40.6,

30.4, 29.2, 26.2, 26.1; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -108.73; **HRMS** (ESI) calculated for C₁₅H₁₇FN₂O [M+H]⁺ m/z 261.1398, found 261.1399.

7-Bromo-3-cyclohexyl-1-methylquinoxalin-2(1H)-one (31)^[5]

According to **GP1** with 7-bromo-1-methylquinoxalin-2(1*H*)-one (47.8 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **31** as white solid (57.7 mg, 90%). Mp: 120-122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 2.0 Hz, 1H), 7.57 (dd, J = 8.8, 2.0 Hz, 1H), 7.14 (d, J = 8.8 Hz, 1H), 3.66 (s, 3H), 3.35-3.29 (m, 1H), 1.93 (d, J = 11.5 Hz, 2H), 1.85 (d, J = 12.6 Hz, 2H) , 1.76 (d, J = 12.6 Hz, 1H), 1.61-1.41 (m, 4H), 1.37-1.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 154.1, 133.6, 132.1, 132.0, 131.9, 115.9, 114.8, 40.7, 30.4, 29.1, 26.2, 26.0; **HRMS** (ESI) calculated for C₁₅H₁₇BrN₂O [M+H]⁺ m/z 321.0597, found 321.0589.

5-Chloro-3-cyclohexyl-1-methylquinoxalin-2(1*H*)-one (32)

According to **GP1** with 5-chloro-1-methylquinoxalin-2(1*H*)-one (38.9 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **32** as white solid (45.9 mg, 83%). Mp: 126-128 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.35 (m, 2H), 7.21-7.15 (m, 1H), 3.69 (s, 3H), 3.36-3.30 (m, 1H), 1.98 (d, *J* = 12.9 Hz, 2H), 1.88 (d, *J* = 12.9 Hz, 2H) , 1.76 (d, *J* = 12.5 Hz, 1H), 1.67-1.58 (m, 2H), 1.54-1.42 (m, 2H) 1.38-1.23 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 154.1, 134.7, 134.3, 129.4, 129.2, 124.3, 112.3, 41.2, 30.4, 29.4, 26.2, 26.1; HRMS (ESI) calculated for C₁₅H₁₇ClN₂O [M+H]⁺ m/z 277.1102, found 277.1093.

6,7-Dichloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one (33)^[8]

According to **GP1** with 6,7-dichloro-1-methylquinoxalin-2(1*H*)-one (45.8 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **33** as white solid (31.7 mg, 51%). Mp: 127-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.36 (s, 1H), 3.65 (s, 3H), 3.34-3.27 (m, 1H), 1.93 (d, *J* = 11.1 Hz, 2H), 1.86 (d, *J* = 12.6 Hz, 2H) , 1.77 (d, *J* = 12.6 Hz, 1H), 1.57-1.40 (m, 4H), 1.35-1.23 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 153.9, 133.3, 132.3, 131.9, 130.6, 127.1, 114.9, 40.8, 30.4, 29.3, 26.2, 26.1; HRMS (ESI) calculated for C₁₅H₁₆Cl₂N₂O [M+H]⁺ m/z 311.0712, found 311.0718.

3-Cyclohexyl-1-propylquinoxalin-2(1H)-one (34)^[5]

According to **GP1** with 1-propylquinoxalin-2(1*H*)-one (37.8 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **34** as pale yellow oil (41.1 mg, 76%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.9 Hz, 1H), 7.49 (t, *J* = 7.9 Hz, 1H), 7.35-7.27 (m, 2H), 4.25-4.17 (m, 2H), 3.37-3.30 (m, 1H), 1.96 (d, *J* = 11.7 Hz, 2H), 1.87 (d, *J* = 12.6 Hz, 2H) , 1.83-1.73 (m, 3H), 1.62-1.43 (m, 4H), 1.35-1.25 (m, 1H), 1.05 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 164.2, 154.2, 133.1, 132.0, 129.9, 129.2, 123.1, 113.4, 43.7, 40.7, 30.5, 26.3, 26.1, 20.6, 11.4; **HRMS** (ESI) calculated for C₁₇H₂₂N₂O [M+Na]⁺ m/z 271.1805, found 271.1802.

1-Benzyl-3-cyclohexylquinoxalin-2(1H)-one (35)^[12]

According to **GP1** with 1-benzylquinoxalin-2(1*H*)-one (47.5 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **35** as whitw solid (61.1 mg, 96%). Mp: 134-136 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.41-7.20 (m, 8H), 5.48 (s, 2H), 3.46-3.34 (m, 1H), 2.01 (d, *J* = 12.0 Hz, 2H), 1.88 (d, *J* = 12.4 Hz, 2H) , 1.82-1.73 (m, 1H), 1.68-1.43 (m, 4H), 1.40-1.28 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 164.3, 154.5, 135.4, 133.1, 132.1, 129.8, 129.3, 128.8, 127.6, 126.9, 123.4, 114.2, 45.9, 40.8, 30.5, 26.3, 26.1; **HRMS** (ESI) calculated for C₂₁H₂₂N₂O [M+H]⁺ m/z 319.1805, found 319.1803.

3-Cyclohexylquinoxalin-2(1H)-one (36)^[12]

According to **GP1** with quinoxalin-2(1*H*)-one (29.2 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3:1) to afford the desired product **36** as white solid (21.1 mg, 46%). Mp: 175-177 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ 12.32 (s, 1H), 7.70 (d, *J* = 9.3 Hz, 1H), 7.46 (t, *J* = 8.2 Hz, 1H), 7.30-7.22 (m, 2H), 3.21-3.11 (m, 1H), 1.91-1.75 (m, 4H), 1.71 (d, *J* = 12.5 Hz, 1H) , 1.50-1.29 (m, 4H), 1.29-1.20 (m, 1H); ¹³C NMR (75 MHz, *d*₆-DMSO) δ 165.3, 154.6, 132.1, 132.0, 129.8, 128.6, 123.5, 115.6, 39.9, 30.5, 26.3, 26.2; HRMS (ESI) calculated for C₁₄H₁₆N₂O [M+H]⁺ m/z 229.1335, found 229.1334.

1-Methyl-3-pentyl-5,6-diphenylpyrazin-2(1H)-one (37)

According to **GP1** with 1-methyl-5,6-diphenylpyrazin-2(1*H*)-one (52.4 mg, 0.2 mmol, 1.0 equiv), 1-iodopentane (132 µL, 1.0 mmol, 5.0 equiv), and MTBD (144 µL, 1.0 mmol, 5.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **37** as white solid (13.9 mg, 21%). Mp: 55-57 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.33 (m, 3H), 7.23-7.17 (m, 2H), 7.17-7.03 (m, 5H), 3.31 (s, 3H), 2.94 (t, *J* = 8 Hz, 2H), 1.88-1.76 (m, 2H), 1.50-1.36 (m, 4H), 0.93 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.1, 155.6, 137.9, 136.1, 132.6, 132.1, 130.0, 129.2, 128.9, 127.6, 126.7, 33.8, 33.7, 31.7, 26.4, 22.5, 14.0; HRMS (ESI) calculated for C₂₂H₂₄N₂O [M+H]⁺ m/z 333.1961, found 333.1960.

3-Cyclopentyl-2*H*-chromen-2-one (38)^[13]

According to **GP2** with 2*H*-chromen-2-one (29.1 mg, 0.2 mmol, 1.0 equiv), iodocyclopentane (117.7 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **38** as white solid (29.8 mg, 70%). Mp: 68-70 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.40 (m, 3H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 3.20-3.09 (m, 1H), 2.15-2.03 (m, 2H), 1.85-1.68 (m, 4H), 1.64-1.52 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 152.8, 136.0, 133.4, 130.4, 127.2, 124.1, 119.5, 116.3, 40.7, 31.7, 25.0; **HRMS** (ESI) calculated for C₁₄H₁₄O₂ [M+H]⁺ m/z 215.1067, found 215.1065.

3-Cyclohexyl-2H-chromen-2-one (39)^[5]

According to GP2 with 2H-chromen-2-one (29.2 mg, 0.2 mmol, 1.0 equiv),

iodocyclohexane (78 µL, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **39** as white solid (36.5 mg, 80%). Mp: 93-95 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.40 (m, 3H), 7.29 (d, *J* = 9.6 Hz, 1H), 7.27-7.20 (m, 1H), 2.82-2.70 (m, 1H), 1.98 (d, *J* = 11.5Hz, 2H), 1.90-1.81 (m, 2H), 1.81-1.72 (m, 1H), 1.51-1.37 (m, 2H), 1.36-1.18 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.5, 152.6, 136.3, 134.7, 130.3, 127.2, 124.1, 119.6, 116.2, 38.1, 32.0, 26.4, 26.1; **HRMS** (ESI) calculated for C₁₅H₁₆O₂ [M+H]⁺ m/z 229.1223, found 229.1217.

3-Cycloheptyl-2H-chromen-2-one (40)^[13]

According to **GP2** with 2*H*-chromen-2-one (29.4 mg, 0.2 mmol, 1.0 equiv), iodocycloheptane (134.5 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **40** as white solid (25.7 mg, 53%). Mp: 82-84 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.39 (m, 3H), 7.28 (d, *J* = 8.7 Hz, 1H), 7.26-7.20 (m, 1H), 2.99-2.87 (m, 1H), 2.00-1.89 (m, 2H), 1.85-1.75 (m, 2H), 1.74-1.65 (m, 2H), 1.64-1.51 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 152.5, 136.2, 136.1, 130.2, 127.1, 124.0, 119.5, 116.1, 40.0, 34.1, 27.6, 26.8; **HRMS** (ESI) calculated for C₁₆H₁₈O₂ [M+H]⁺ m/z 243.1380, found 243.1373.

3-(Oxetan-3-yl)-2*H*-chromen-2-one (41)

According to **GP2** with 2*H*-chromen-2-one (29.6 mg, 0.2 mmol, 1.0 equiv), 3-iodooxetane (110.4 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 μ L, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 8:1) to afford the desired product **41** as white solid (22.1 mg, 55%). Mp: 98-100 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.52 (t, *J* = 7.0 Hz, 2H), 7.32 (dd, *J* = 13.9, 7.6 Hz, 2H), 5.12-5.01 (m, 2H), 4.79

(t, J = 6.5 Hz, 2H), 4.37 (p, J = 7.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 152.9, 137.4, 131.1, 128.5, 127.5, 124.5, 118.8, 116.4, 75.6, 35.3; HRMS (ESI) calculated for C₁₂H₁₀O₃ [M+H]⁺ m/z 203.0703, found 203.0697.

3-(Tetrahydrofuran-3-yl)-2H-chromen-2-one (42)^[13]

According to **GP2** with 2*H*-chromen-2-one (29.3 mg, 0.2 mmol, 1.0 equiv), 3-iodotetrahydrofuran (118.8 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 8:1) to afford the desired product **42** as white solid (25.8 mg, 60%). Mp: 106-108 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.52-7.45 (m, 2H), 7.34-7.30 (m, 1H), 7.29-7.25 (m, 1H), 4.14-4.07 (m, 1H), 4.06-3.99 (m, 1H), 3.97-3.90 (m, 1H), 3.88-3.82 (m, 1H), 3.64-3.56 (m, 1H), 2.42-2.31 (m, 1H), 2.09-1.99 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 152.8, 137.2, 130.9, 130.2, 127.4, 124.3, 119.1, 116.2, 72.0, 67.6, 39.3, 31.4; HRMS (ESI) calculated for C₁₃H₁₂O₃ [M+Na]⁺ m/z 239.0679, found 239.0674.

3-(Tetrahydro-2H-pyran-4-yl)-2H-chromen-2-one (43)^[13]

According to **GP2** with 2*H*-chromen-2-one (29.3 mg, 0.2 mmol, 1.0 equiv), 4-iodotetrahydro-2*H*-pyran (127.2 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 8:1) to afford the desired product **43** as white solid (27.5 mg, 60%). Mp: 114-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.45 (m, 3H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.30-7.26 (m, 1H), 4.09 (dd, *J* = 11.4, 4.2 Hz, 2H), 3.58 (td, *J* = 11.9, 1.7 Hz, 2H), 3.04 (tt, *J* = 12.0, 3.2 Hz, 1H), 1.94-1.87 (m, 2H), 1.74-1.66 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 152.8, 136.8, 132.8, 130.8, 127.5, 124.3, 119.4, 116.4, 68.0, 35.5, 31.6; **HRMS** (ESI) calculated for C₁₄H₁₄O₃ [M+Na]⁺ m/z 253.0835, found 253.0826. tert-Butyl 4-(2-oxo-2H-chromen-3-yl)piperidine-1-carboxylate (44)^[13]

According to **GP2** with 2*H*-chromen-2-one (29.6 mg, 0.2 mmol, 1.0 equiv), *tert*-butyl 4-iodopiperidine-1-carboxylate (186.7 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 μ L, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 8:1) to afford the desired product **44** as white solid (30.3 mg, 46%). Mp: 142-144 °C; ¹**H** NMR (300 MHz, CDCl₃) δ 7.53-7.43 (m, 3H), 7.35-7.30 (m, 1H), 7.28-7.23 (m, 1H), 4.27 (s, 2H), 3.01-2.75 (m, 3H), 2.00-1.91 (m, 2H), 1.61-1.51 (m, 2H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 154.7, 152.7, 136.9, 132.8, 130.8, 127.4, 124.3, 119.3, 116.3, 79.5, 44.2, 36.5, 30.7, 28.4; **HRMS** (ESI) calculated for C₁₉H₂₃NO₄ [M+Na]⁺ m/z 352.1519, found 352.1520.

3-(Octan-3-yl)-2H-chromen-2-one (45)

According to **GP2** with 2*H*-chromen-2-one (29.5 mg, 0.2 mmol, 1.0 equiv), 3-iodooctane (115.9 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **45** as colorless oil (32.6 mg, 63%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.50-7.41 (m, 3H), 7.31 (d, *J* = 8.9 Hz, 1H), 7.28-7.23 (m, 1H), 2.81 (p, *J* = 7.0 Hz, 1H), 1.74-1.59 (m, 4H), 1.33-1.19 (m, 6H), 0.91-0.82 (m, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.6, 152.8, 137.9, 132.9, 130.4, 127.2, 124.1, 119.5, 116.3, 41.6, 33.4, 31.9, 26.9, 26.6, 22.5, 14.0, 11.6; **HRMS** (ESI) calculated for C₁₇H₂₂O₂ [M+H]⁺ m/z 259.1693, found 259.1686.

3-((*3r*,*5r*,*7r*)-Adamantan-1-yl)-2*H*-chromen-2-one (46)

According to **GP2** with 2*H*-chromen-2-one (29.3 mg, 0.2 mmol, 1.0 equiv), (3s,5s,7s)-1-iodoadamantane (157.3 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **46** as white solid (26.1 mg, 47%). Mp: 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.41 (m, 3H), 7.30-7.20 (m, 2H), 2.17-2.04 (m, 9H), 1.82-1.76 (m, 5H), 1.70-1.59 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 152.9, 137.1, 136.9, 130.4, 127.6, 123.9, 119.5, 115.9, 39.8, 37.1, 36.7, 28.5; **HRMS** (ESI) calculated for C₁₉H₂₀O₂ [M+Na]⁺ m/z 303.1356, found 303.1339.

3-Pentyl-2H-chromen-2-one (47)^[14]

According to **GP2** with 2*H*-chromen-2-one (29.3 mg, 0.2 mmol, 1.0 equiv), 1-iodopentane (118.8 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **47** as colorless oil (25.8 mg, 60%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.52-7.42 (m, 3H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.27-7.22 (m, 1H), 2.56 (t, *J* = 7.6 Hz, 2H), 1.65 (p, *J* = 7.4 Hz, 2H), 1.41-1.32 (m, 4H), 0.96-0.88 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 153.0, 138.3, 130.4, 130.0, 127.0, 124.2, 119.5, 116.3, 31.4, 30.8, 27.6, 22.4, 14.0; **HRMS** (ESI) calculated for C₁₄H₁₆O₂ [M+Na]⁺ m/z 239.1043, found 239.1038.

3-(6-Chlorohexyl)-2H-chromen-2-one (48)

According to **GP2** with 2*H*-chromen-2-one (29.2 mg, 0.2 mmol, 1.0 equiv), 1-chloro-6-iodohexane (147.9 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 μ L, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **48** as pale yellow solid (27.6 mg, 52%). Mp: 49-51 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.42 (m, 3H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.29-7.23 (m, 1H), 3.54 (t, *J* = 6.7 Hz, 2H), 2.58 (t, *J* = 7.6 Hz, 2H), 1.79 (p, *J* = 6.7 Hz, 2H), 1.67 (p, *J* = 7.6 Hz, 2H), 1.55-1.38 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 153.0, 138.5, 130.5, 129.7,

127.1, 124.2, 119.5, 116.3, 45.0, 32.4, 30.7, 28.4, 27.8, 26.5; **HRMS** (ESI) calculated for C₁₅H₁₇ClO₂ [M+H]⁺ m/z 265.0990, found 265.0990.

3-(Hex-5-yn-1-yl)-2H-chromen-2-one (49)

According to **GP2** with 2*H*-chromen-2-one (29.6 mg, 0.2 mmol, 1.0 equiv), 6-iodohex-1-yne (124.8 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **49** as white solid (20.4 mg, 45%). Mp: 70-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.49-7.42 (m, 2H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.26 (t, *J* = 7.3 Hz, 1H), 2.60 (t, *J* = 7.6 Hz, 2H), 2.26 (td, *J* = 6.9, 2.5 Hz, 2H), 1.97 (t, *J* = 2.4 Hz, 1H), 1.79 (p, *J* = 7.5 Hz, 2H), 1.64 (q, *J* = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 153.1, 138.5, 130.5, 129.4, 127.1, 124.2, 119.4, 116.4, 84.1, 68.5, 30.3, 27.9, 27.0, 18.2; **HRMS** (ESI) calculated for C₁₅H₁₄O₂ [M+Na]⁺ m/z 249.0886, found 249.0870.

3-(Pent-4-en-1-yl)-2H-chromen-2-one (50)^[15]

According to **GP2** with 2*H*-chromen-2-one (29.1 mg, 0.2 mmol, 1.0 equiv), 5-iodopent-1-ene (117.6 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **50** as white solid (17.1 mg, 40%). Mp: 46-48 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.41 (m, 3H), 7.31 (d, *J* = 8.3 Hz, 1H), 7.28-7.22 (m, 1H), 5.90-5.78 (m, 1H), 5.09-5.03 (m, 1H), 5.02-4.98 (m, 1H), 2.62-2.55 (m, 2H), 2.16 (q, *J* = 7.3 Hz, 2H), 1.76 (p, *J* = 7.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 153.1, 138.6, 138.0, 130.5, 129.6, 127.1, 124.2, 119.5, 116.4, 115.1, 33.2, 30.3, 27.1; HRMS (ESI) calculated for C₁₄H₁₄O₂ [M+H]⁺ m/z 215.1067, found 215.1066.

3-(4,4,4-Trifluorobutyl)-2*H*-chromen-2-one (51)

According to **GP2** with 2*H*-chromen-2-one (29.4 mg, 0.2 mmol, 1.0 equiv), 1,1,1-trifluoro-4-iodobutane (142.8 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **51** as white solid (27.2 mg, 53%). Mp: 64-66 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.52-7.43 (m, 2H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.27 (t, *J* = 7.5 Hz, 1H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.19 (dt, *J* = 16.3, 9.0 Hz, 2H), 1.95 (p, *J* = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 153.2, 139.3, 130.9, 128.1, 127.3, 127.0 (q, *J* = 275.0 Hz), 124.4, 119.2, 116.4, 33.2 (q, *J* = 28.6 Hz), 29.8, 20.5 (q, *J* = 2.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -66.07; HRMS (ESI) calculated for C₁₃H₁₁F₃O₂ [M+Na]⁺ m/z 279.0603, found 279.0612.

3-(4-(Trimethylsilyl)butyl)-2*H*-chromen-2-one (52)

According to **GP2** with 2*H*-chromen-2-one (29.4 mg, 0.2 mmol, 1.0 equiv), (4-iodobutyl)trimethylsilane (153.7 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **52** as white solid (36.8 mg, 67%). Mp: 88-90 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.40 (m, 3H), 7.30 (d, *J* = 8.3 Hz, 1H), 7.25 (t, *J* = 7.4 Hz, 1H), 2.62-2.52 (m, 2H), 1.67 (p, *J* = 7.5 Hz, 2H), 1.41 (dt, *J* = 15.7, 7.6 Hz, 2H), 0.60-0.51 (m, 2H), -0.01 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8, 153.0, 138.2, 130.3, 130.0, 127.0, 124.1, 119.5, 116.3, 31.8, 30.5, 23.6, 16.4, -1.7; HRMS (ESI) calculated for C₁₆H₂₂O₂Si [M+Na]⁺ m/z 297.1281, found 229.1265.

3-Cyclohexyl-7-methyl-2*H*-chromen-2-one (53)^[16]

According to **GP2** with 7-methyl-2*H*-chromen-2-one (32.0 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (78 µL, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **53** as pale yellow solid (21.3 mg, 44%). Mp: 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.13-7.01 (m, 2H), 2.80-2.70 (m, 1H), 2.43 (s, 3H), 1.97 (d, *J* = 11.8 Hz, 2H), 1.89-1.73 (m, 3H), 1.51-1.38 (m, 2H), 1.36-1.18 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8, 152.8, 141.4, 136.3, 133.6, 126.9, 125.3, 117.2, 116.4, 38.1, 32.1, 26.5, 26.2, 21.6; HRMS (ESI) calculated for C₁₆H₁₈O₂ [M+H]⁺ m/z 243.1380, found 243.1379.

3-Cyclohexyl-7-methoxy-2H-chromen-2-one (54)^[13]

According to **GP2** with 7-methoxy-2*H*-chromen-2-one (35.2 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (78 µL, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **54** as white solid (33.5 mg, 65%). Mp: 103-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 7.33 (d, *J* = 8.5 Hz, 1H), 6.84-6.77 (m, 2H), 3.85 (s, 3H), 2.78-2.68 (m, 1H), 1.96 (d, *J* = 11.5 Hz, 2H), 1.88-1.72 (m, 3H), 1.50-1.37 (m, 2H), 1.34-1.20 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8, 161.7, 154.3, 136.4, 131.3, 128.1, 113.3, 112.2, 100.3, 55.6, 38.0, 32.1, 26.5, 26.1; HRMS (ESI) calculated for C₁₆H₁₈O₃ [M+H]⁺ m/z 259.1329, found 259.1321.

3-Cyclohexyl-7-fluoro-2*H*-chromen-2-one (55)

According to **GP2** with 7-fluoro-2*H*-chromen-2-one (32.9 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (78 μ L, 0.6 mmol, 3.0 equiv), and MTBD (58 μ L, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **55** as white solid (36.8 mg, 75%). Mp: 132-134 °C; ¹H NMR (400 MHz, CDCl₃) δ

7.46-7.38 (m, 2H), 7.05-6.95 (m, 2H), 2.80-2.70 (m, 1H), 1.97 (d, J = 12.8 Hz, 2H), 1.90-1.73 (m, 3H), 1.51-1.38 (m, 2H), 1.36-1.18 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 164.8, 162.3, 161.1, 153.7 (d, J = 12.9 Hz), 135.79 (d, J = 1.1 Hz), 133.6 (d, J = 3.1 Hz), 128.7 (d, J = 10.2 Hz), 116.3 (d, J = 2.8 Hz), 112.2 (d, J = 22.9 Hz), 103.9 (d, J = 25.6 Hz), 38.1, 32.0, 26.5, 26.1; ¹⁹**F NMR** (282 MHz, CDCl₃) δ -107.34; **HRMS** (ESI) calculated for C₁₅H₁₅FO₂ [M+H]⁺ m/z 247.1129, found 247.1128.

7-Chloro-3-cyclohexyl-2H-chromen-2-one (56)^[13]

According to **GP2** with 7-chloro-2*H*-chromen-2-one (36.3 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (78 µL, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **56** as white solid (28.8 mg, 55%). Mp: 142-144 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.35 (m, 2H), 7.29 (d, *J* = 2 Hz, 1H), 7.22 (dd, *J* = 8.3, 2.0 Hz, 1H), 2.80-2.69 (m, 1H), 1.97 (d, *J* = 11.8 Hz, 2H), 1.90-1.73 (m, 3H), 1.51-1.38 (m, 2H), 1.36-1.18 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 152.9, 136.1, 135.5, 134.9, 128.1, 124.7, 118.2, 116.5, 38.2, 32.0, 26.4, 26.0; **HRMS** (ESI) calculated for C₁₅H₁₅ClO₂ [M+H]⁺ m/z 263.0833, found 263.0826.

3-Cyclohexyl-6-methoxy-2H-chromen-2-one (57)

According to **GP2** with 6-methoxy-2*H*-chromen-2-one (35.2 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (78 µL, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **57** as white solid (22.5 mg, 44%). Mp: 87-89 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 7.23 (d, *J* = 9.0 Hz, 1H), 7.03 (dd, *J* = 9.0, 2.9 Hz, 1H), 6.89 (d, *J* = 2.9 Hz, 1H), 3.84 (s, 3H), 2.80-2.69 (m, 1H), 2.04-1.92 (m, 2H), 1.90-1.73 (m, 3H), 1.54-1.21 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 155.9, 147.1, 136.1, 135.2, 120.0, 118.0, 117.3, 109.6, 55.8, 38.2, 32.1, 26.5, 26.2; **HRMS** (ESI) calculated for C₁₆H₁₈O₃

[M+H]⁺ m/z 259.1329, found 259.1323.

3-Cyclohexyl-7-(diethylamino)-4-methyl-2H-chromen-2-one (58)^[13]

According to **GP2** with 7-(diethylamino)-4-methyl-2*H*-chromen-2-one (46.3 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (78 µL, 0.6 mmol, 3.0 equiv), and MTBD (58 µL, 0.4 mmol, 2.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **58** as yellow solid (23.2 mg, 37%). Mp: 95-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 9.0 Hz, 1H), 6.57 (dd, *J* = 9.0, 2.6 Hz, 1H), 6.47 (d, *J* = 2.6 Hz, 1H), 3.39 (q, *J* = 7.1 Hz, 4H), 2.82 (s, 1H), 2.36 (s, 3H), 2.17 (q, *J* = 11.4, 10.6 Hz, 2H), 1.82 (d, *J* = 9.2 Hz, 2H), 1.77-1.61 (m, 2H), 1.54 (d, *J* = 12.5 Hz, 2H), 1.34 (d, *J* = 7.2 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 154.5, 149.3, 146.1, 125.6, 124.1, 109.8, 108.2, 97.3, 44.6, 39.4, 29.4, 27.1, 25.8, 14.6, 12.4; HRMS (ESI) calculated for C₂₀H₂₇NO₂ [M+Na]⁺ m/z 336.1934, found 336.1950.

Evaluation of other substrates:

1-Methylquinoxalin-2(1*H*)-one (32.5 mg, 0.2 mmol, 1.0 equiv), iodobenzene (112 μ L, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated with 6 W blue LEDs at room temperature for 12 h. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **67** (11.0 mg, 23%).

1-Methyl-3-phenylquinoxalin-2(1*H***)-one (67)** ^[17]: white solid; Mp: 90-92 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (s, 2H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.55 (t, *J* = 7.6 Hz,

1H), 7.48 (s, 3H), 7.40-7.29 (m, 2H), 3.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 154.1, 136.0, 133.3, 133.0, 130.4, 130.3, 129.5, 128.0, 123.7, 113.5, 29.3; **HRMS** (ESI) calculated for C₁₅H₁₂N₂O [M+H]⁺ m/z 237.1022, found 237.1032.

2*H*-Chromen-2-one (29.4 mg, 0.2 mmol, 1.0 equiv), iodobenzene (68 μ L, 0.6 mmol, 3.0 equiv), and MTBD (58 μ L, 0.4 mmol, 2.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated with 6 W blue LEDs at room temperature for 12 h. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **68** (4.5 mg, 10%).

3-Phenyl-2*H***-chromen-2-one** (**68**)^[18]: white solid; Mp: 134-136 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.71 (d, J = 6.9 Hz, 2H), 7.53 (t, J = 8.1 Hz, 2H), 7.49-7.40 (m, 3H), 7.37 (d, J = 8.2 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 153.5, 139.8, 134.7, 131.4, 128.8, 128.5, 128.5, 128.4, 127.9, 124.5, 119.7, 116.4; **HRMS** (ESI) calculated for C₁₅H₁₀O₂ [M+H]⁺ m/z 223.0754, found 223.0759.

1-Methylquinoxalin-2(1*H*)-one (32.3 mg, 0.2 mmol, 1.0 equiv), (iodomethyl)benzene (124 μ L, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated with 6 W blue LEDs at room temperature for 12 h. This reaction did not afford any targeted product, and the starting heterocycles were completely recovered.

1-Methylquinoxalin-2(1*H*)-one (32.5 mg, 0.2 mmol, 1.0 equiv), (bromomethyl)benzene (118 μ L, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated with 6 W blue LEDs at room temperature for 12 h. This reaction did not afford any targeted product, and the starting heterocycles were completely recovered.

2*H*-Chromen-2-one (29.5 mg, 0.2 mmol, 1.0 equiv), (bromomethyl)benzene (72 μ L, 0.6 mmol, 3.0 equiv), and MTBD (58 μ L, 0.4 mmol, 2.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated with 6 W blue LEDs at room temperature for 12 h. This reaction did not afford any targeted product, and the starting heterocycles were completely recovered.

Lager scale experiments:

1-Methylquinoxalin-2(1*H*)-one (480.5 mg, 3.0 mmol, 1.0 equiv), iodocyclohexane (1940 μ L, 15.0 mmol, 5.0 equiv), and MTBD (2154 μ L, 15.0 mmol, 5.0 equiv) were placed in a dry 25 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (5.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated with 6 W blue LEDs at room temperature for 12 h. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **3** (0.58 g, 80%).

2*H*-Chromen-2-one (438.4 mg, 3.0 mmol, 1.0 equiv), iodocyclohexane (1164 μ L, 9.0 mmol, 3.0 equiv), and MTBD (862 μ L, 6.0 mmol, 2.0 equiv) were placed in a dry 25 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (5.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated with 6 W blue LEDs at room temperature for 12 h. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30:1) to afford the desired product **39** (0.52 g, 75%).

Mechanistic studies

1) Radical inhibition and trapping experiments:

1-Methylquinoxalin-2(1*H*)-one (32.5 mg, 0.2 mmol, 1.0 equiv), *tert*-butyl 4-iodopiperidine-1-carboxylate (311.1 mg, 1.0 mmol, 5.0 equiv), MTBD (144 μ L, 1.0 mmol, 5.0 equiv), and 2,6-di-*tert*-butyl-4-methylphenol (BHT) (88.1 mg, 0.4 mmol, 2.0 equiv) were placed in a 10 mL Schlenk tube under N₂. Then DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated by using 6 W blue LEDs at room temperature for 12 h. In this reaction, the formation of **10** was completely suppressed.

2*H*-Chromen-2-one (29.4 mg, 0.2 mmol, 1.0 equiv), *tert*-butyl 4-iodopiperidine-1-carboxylate (186.7 mg, 0.6 mmol, 3.0 equiv), MTBD (58 μ L, 0.4 mmol, 2.0 equiv), and 2,6-di-*tert*-butyl-4-methylphenol (BHT) (88.4 mg, 0.4 mmol,
2.0 equiv) were placed in a 10 mL Schlenk tube under N_2 . Then DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated by using 6 W blue LEDs at room temperature for 12 h. In this reaction, the formation of **44** was completely suppressed.

1-Methylquinoxalin-2(1*H*)-one (32.2 mg, 0.2 mmol, 1.0 equiv), *tert*-butyl 4-iodopiperidine-1-carboxylate (311.1 mg, 1.0 mmol, 5.0 equiv), MTBD (144 μ L, 1.0 mmol, 5.0 equiv), and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (62.5 mg, 0.4 mmol, 2.0 equiv) were placed in a 10 mL Schlenk tube under N₂. Then DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated by using 6 W blue LEDs at room temperature for 12 h. In this reaction, the formation of **10** was completely suppressed.

2*H*-Chromen-2-one (29.5 mg, 0.2 mmol, 1.0 equiv), *tert*-butyl 4-iodopiperidine-1-carboxylate (186.7 mg, 0.6 mmol, 3.0 equiv), MTBD (58 μ L, 0.4 mmol, 2.0 equiv), and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (62.5 mg, 0.4 mmol, 2.0 equiv) were placed in a 10 mL Schlenk tube under N₂. Then DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated by using 6 W blue LEDs at room temperature for 12 h. In this reaction, the formation of **44** was completely suppressed.

Moreover, high-resolution mass spectra analysis of these two reaction mixtures showed that the TEMPO-trapped product **61** was formed. This result indicated that C-radicals are generated in the current reaction conditions.

2) Radical clock experiments:

1-Methylquinoxalin-2(1*H*)-one (32.5 mg, 0.2 mmol, 1.0 equiv), (iodomethyl)cyclopropane (182.0 mg, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv) were placed in a 10 mL Schlenk tube under N₂. Then DMSO (2.0 mL) was added with a syringe. The reaction mixture was irradiated with 6 W blue LEDs at room temperature under N₂ for 12 h. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford a mixture of **63** and **64** (17.0 mg, 40%, **63:64** = 5:1).

3-(But-3-en-1-yl)-1-methylquinoxalin-2(1*H***)-one (63): ¹H NMR (300 MHz, CDCl₃) \delta 7.83 (dd, J = 7.9, 1.2 Hz, 1H), 7.57-7.47 (m, 1H), 7.38-7.26 (m, 2H), 6.04-5.88 (m, 1H), 5.11 (dd, J = 17.1, 1.6 Hz, 1H), 5.00 (d, J = 10.2 Hz, 1H), 3.69 (s, 3H), 3.05 (dd, J = 8.7, 6.7 Hz, 2H), 2.64-2.52 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) \delta 160.2, 154.7, 137.6, 133.1, 132.7, 129.6, 129.6, 123.4, 115.1, 113.5, 33.4, 30.5, 28.9; HRMS (ESI) calculated for C₁₃H₁₄N₂O [M+H]⁺ m/z 215.1179, found 215.1180.**

2*H*-Chromen-2-one (29.5 mg, 0.2 mmol, 1.0 equiv), (iodomethyl)cyclopropane (109.3 mg, 0.6 mmol, 3.0 equiv), and MTBD (58 μ L, 0.4 mmol, 2.0 equiv) were placed in a

10 mL Schlenk tube under N₂. Then DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated by using 6 W blue LEDs at room temperature for 12 h. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30/1) to afford the ring-opening product **65** as white solid (12.8 mg, 32%).

3-(But-3-en-1-yl)-2*H***-chromen-2-one (65)**: white solid; Mp: 52-54 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.42 (m, 3H), 7.31 (d, J = 8.2 Hz, 1H), 7.27-7.22 (m, 1H), 5.92-5.77 (m, 1H), 5.12-4.99 (m, 2H), 2.68 (t, J = 7.4 Hz, 2H), 2.47-2.39 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 153.1, 138.9, 137.1, 130.6, 129.0, 127.2, 124.2, 119.4, 116.4, 115.8, 31.9, 30.2; HRMS (ESI) calculated for C₁₃H₁₂O₂ [M+H]⁺ m/z 201.0910, found 201.0901.

3) UV-vis spectroscopic measurements:

We investigated whether the EDA complexes could be formed in the current reaction. The UV-vis experiments were performed on Agilent Cary 100 UV-visible spectrophotometer with a quartz cuvette (10 mm path length). We observed that after mixing of 1-methylquinoxalin-2(1H)-one 1, 2*H*-chromen-2-one 59, iodocyclohexane 2, and MTBD in DMSO, the optical absorption spectrum did not show a red-shift. On the basis of these observations, we supposed that EDA complex was unlikely responsible for generating radical intermediates in the current reaction system.

4) Stern-Volmer fluorescence quenching experiments

Emission intensities were recorded using a spectrofluorimeter. All solutions were excited at 414 nm and the emission intensity at 478 nm was observed. DMSO was degassed with a stream of argon for 15 min. In a typical experiment, 2.0 mL of solution of 1 (1.0 mM) in DMSO was added to the appropriate amount of iodocyclohexane and MTBD respectively in a screw-top 1.0 cm quartz cuvette and the emission spectra of the sample was collected.

The fluorescence emission spectra of **1** with different concentration of iodocyclohexane **2** excited at 414 nm

The fluorescence emission spectra of **1** with different concentration of MTBD excited at 414 nm

All solutions were excited at 360 nm and the emission intensity at 420 nm was observed. DMSO was degassed with a stream of argon for 15 min. In a typical experiment, 2.0 mL of solution of **59** (1.0 mM) in DMSO was added to the appropriate amount of iodocyclohexane and MTBD respectively in a screw-top 1.0 cm quartz cuvette and the emission spectra of the sample was collected.

The fluorescence emission spectra of **59** with different concentration of iodocyclohexane **2** excited at 360 nm

The fluorescence emission spectra of **59** with different concentration of

MTBD excited at 360 nm

Stern-Volmer fluorescence quenching plot

All solutions were excited at 375 nm and the emission intensity at 418 nm was observed. DMSO was degassed with a stream of argon for 15 min. In a typical experiment, 2.0 mL of solution of lepidine (1.0 mM) in DMSO was added to the appropriate amount of MTBD in a screw-top 1.0 cm quartz cuvette and the emission spectra of the sample was collected. These results show that the fluorescence of lepidine could not be gradually quenched with the increase of the concentration of MTBD, which are consistent with our experimental observations that lepidine did not participate in the current alkylation reaction.

The fluorescence emission spectra of lepidine with different concentration of MTBD excited at 375 nm

All solutions were excited at 414 nm and the emission intensity at 478 nm was observed. DMSO was degassed with a stream of argon for 15 min. In a typical experiment, 2.0 mL of solution of $\mathbf{1}$ (1.0 mM) in DMSO was added to the appropriate amount of Et₃N in a screw-top 1.0 cm quartz cuvette and the emission spectra of the sample was collected. These results show that the fluorescence of $\mathbf{1}$ could not be gradually quenched with the increase of the concentration of Et₃N, which are consistent with our experimental observations that the alkylation reaction did not work in the presence of Et₃N.

The fluorescence emission spectra of 1 with different concentration of Et_3N excited at 414 nm

5) Conducting the reaction in the presence of $K_2S_2O_8$ in the dark:

1-Methylquinoxalin-2(1*H*)-one (32.3 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 μ L, 1.0 mmol, 5.0 equiv), MTBD (144 μ L, 1.0 mmol, 5.0 equiv), and K₂S₂O₈ (108.2 mg, 0.4 mmol, 2.0 equiv) were placed in a 10 mL Schlenk tube under N₂. Then DMSO (2.0 mL) and H₂O (0.4 mL) were added with a syringe. The reaction mixture was stirred in the dark at 80°C under N₂ for 12 h. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **3** (7.3 mg, 15%).

2*H*-Chromen-2-one (29.6 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (78 μ L, 0.6 mmol, 3.0 equiv), MTBD (58 μ L, 0.4 mmol, 2.0 equiv), and K₂S₂O₈ (108.3 mg, 0.4 mmol, 2.0 equiv) were placed in a 10 mL Schlenk tube under N₂. Then DMSO (2.0 mL) and H₂O (0.4 mL) were added with a syringe. The reaction mixture was stirred in the dark at 80°C under N₂ for 12 h. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 30/1) to afford the desired product **39** (6.4 mg, 14%).

6) Visible light on/off experiments:

1-Methylquinoxalin-2(1*H*)-one (32.3 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 μ L, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then anhydrous DMSO (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated by using 6 W blue LEDs at room temperature. The process of photocatalytic reaction with and without light was monitored by ¹H NMR using dibromomethane as internal

standard. The results suggest that the formation of 3 requires continuous visible light irradiation.

7) The emission spectra for the light source:

The emission spectra for 6 W blue LEDs

8) Determination of quantum yield:

1-Methylquinoxalin-2(1*H*)-one (32.6 mg, 0.2 mmol, 1.0 equiv), iodocyclohexane (130 μ L, 1.0 mmol, 5.0 equiv), and MTBD (144 μ L, 1.0 mmol, 5.0 equiv) were placed in a quartz cuvette (10 mm path length). Anhydrous DMSO (2.0 mL) was added with a syringe. Then the solution was degassed with a stream of nitrogen for 10 min. The reaction mixture was stirred and irradiated by using a 30 W blue LED ($\lambda = 420$ nm, PLS-LED100B) at room temperature for 600 s. After completion of the reaction, the solution was measured the unit area photon flux (photosynthetic active radiation meter, Apogee MQ-200). The yield of product **3** formed was determined by ¹H NMR spectroscopic analysis using dibromomethane as an internal standard. The quantum yield is calculated using the following equation:

$$\Phi = \frac{\text{mol of product formed}}{\text{flux} \cdot \text{S} \cdot \text{t}}$$

Where Φ is quantum yield, S (m²) is the irradiation area and t (s) is the reaction time.

Experiment: 1-methylquinoxalin-2(1*H*)-one **1** (32.6 mg), iodocyclohexane (130 μ L), and MTBD (144 μ L) after 600s, the unite area photon flux was 604 μ mol·s⁻¹·m⁻² (average of three experiments), the irradiation area was 3.0×10^{-4} m², and the yield of product **3** was 78%.

Sample quantum yield calculation:

$$\Phi = \frac{0.156 \times 10^3}{604 \times 3.0 \times 10^{-4} \times 600} = 1.43$$

Experimental setup for determining quantum yield

References:

- [1] a) C. W. Cheung, F. E. Zhurkin, X. Hu, J. Am. Chem. Soc. 2015, 137, 4932; b) M. Murai, C. Mizuta, R. Taniguchi, K. Takai, Org. Lett. 2017, 19, 6104.
- [2] J. Wang, B. Sun, L. Zhang, T. Xu, Y. Xie, C. Jin, Asian Journal of Organic Chemistry 2019, 8, 1942.
- [3] C. Jin, Z. Yan, B. Sun, J. Yang, Org. Lett. 2019, 21, 2064.
- [4] C. Huang, J. Li, C. Li, Nat. Commun. 2021, 12, 4010.
- [5] M. Tian, Y. Wang, X. Bu, Y. Wang, X. Yang, Catal. Sci. Technol. 2021, 11, 4272.
- [6] K. Niu, L. Song, Y. Hao, Y. Liu, Q. Wang, Chem. Commun. 2020, 56, 11673.
- [7] Z. Yan, B. Sun, X. Zhang, X. Zhuang, J. Yang, W. Su, C. Jin, Chem. Asian J. 2019, 14, 3344.
- [8] K. Niu, Y. Hao, L. Song, Y. Liu, Q. Wang, Green Chem. 2021, 23, 302.
- [9] B. Wang, H. Yao, X. Zhong, Z. Yan, S. Lin, Tetrahedron Lett. 2021, 64, 152720.
- [10] L. Xie, L. Jiang, J. Tan, Y. Wang, X. Xu, B. Zhang, Z. Cao, W. He. ACS Sustainable Chem. Eng. 2019, 7, 14153.
- [11] W. Zhang, Y. Pan, C. Yang, L. Chen, X. Li, J. Cheng, J. Org. Chem. 2019, 84, 7786.
- [12] S. Singh, N. Dagar, S. R. Roy, Org. Biomol. Chem. 2021, 19, 5383.
- [13] L. Liu, N. Pang, W. Sheng, L. Su, L. Liu, J. Dong, Y. Zhou, S. Yin, Adv. Synth. Catal. 2019, 361, 4126.
- [14] D. Villemin, D. Goussu, Heterocycles 1989, 29, 1255.
- [15] D. D. P. Kranz, A. G. Griesbeck, R. Alle, R. Perez-Ruiz, J. M. Neudörfl, K. Meerholz, H. Schmalz, Angew. Chem. Int. Ed. 2012, 51, 6000.
- [16] A. Ling, L. Zhang, R. X. Tan, Z. Liu, J. Org. Chem. 2018, 83, 14489.
- [17] Y. Wu, X. Chu, D. Yang, C. Ma, SynOpen 2021, 5, 114.
- [18] V. N. Shinde, K. Rangan, D. Kumar, A. Kumar, J. Org. Chem. 2021, 86, 9755.

S58

S74

S131

S147

0.000 —

S171

