Supporting Information

Supported Pd-Au bimetallic nanoparticles as efficient catalyst for hydrodeoxygenation of vanillin with formic acid at room temperature

Pengyu Wu,^a Danxia Zhao,^b Guoping Lu^a and Chun Cai^{*a}

^a School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology,
Xiaolingwei 200, Nanjing 210094, P. R. China.

^bDepartment of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000, China.

*Corresponding author e-mail: c.cai@ njust.edu.cn

Table of contents:

1.	General Information	2		
2.	Catalysts Preparation	2		
3.	Catalytic HDO of vanillin	3		
4.	Catalytic performance in recent studies	3		
5.	ICP-MS results of the catalysts	4		
6.	XPS spectra of catalysts	5		
7.	Time-course monitoring of c _{FA}	6		
8.	Results of the experiments with vanillin alcohol	6		
9.	TEM image of recovered PdAu/g-C ₃ N ₄	7		
References				

1. General Information

All chemical reagents are obtained from commercial suppliers and used without further purification. Inductively coupled plasma mass spectrometry (ICP-MS) was analyzed on Optima 7300 DV. The scanning electron microscopy (SEM) images were obtained using a Hitachi S-4800 apparatus on a sample powder previously dried and sputter-coated with a thin layer of gold. The transmission electron microscopy (TEM) images were taken using a Philips Tecnai 12 microscope operating at 120 kV. TEM samples were prepared by dispersed in methanol and placed on a carbon film covered copper grid. High resolution transmission electron microscopy (HRTEM) was performed on a FEI Tecnai G2 F20 S-TWIN. X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250Xi spectrometer, using an Al Ka X-ray source (1486.6 eV of photons) and calibrated by setting the C 1s peak to 284.80 eV. The crystal structures of the synthesized catalysts were recorded by a D8 ADVANCED X-ray diffractometer (XRD), employing a range from 5 ° to 80 °. The H₂-TPD data were obtained on a Micromeritics AutoChem II S3 2920 instrument. Products were analyzed by gas chromatography (GC) on an Agilent 7890A gas chromatograph with flame ionization detection, equipped with HP-5 capillary columns, and gas chromatography-mass spectroscopy (GC-MS) with a Thermo Scientific Trace 1300 GC/MS instrument equipped with TR-5MS columns.

2. Catalysts Preparation

The g-C₃N₄ support was synthesized according to a former report. ¹ The pyrolysis of melamine was carried out in a tubular furnace under air. The sample was heated from room temperature to 500 $^{\circ}$ C at a heating rate of 5 $^{\circ}$ C min⁻¹ and kept at this temperature for 2 h. After cooling to room temperature, g-C₃N₄ was obtained.

MIL-101(Fe) was synthesized in the following steps. Typically, 1350.0 mg (5.0 mmol) of $FeCl_3 \cdot 6H_2O$ were dissolved in 15.0 mL of DMF, and then the solution was mixed with a solution of 500.0 mg (3 mmol) of terephthalic acid in 15.0 mL of DMF. The mixed solution was stirred thoroughly for 30 min and transferred to a Teflon-lined autoclave and treated in an oven for 24 h at 110 °C. The resulting solid was then separated by centrifugation, washed with DMF and subsequently with methanol to remove un-reacted ligands. The product was dried under vacuum at 50 °C for 12 h.

Catalysts were prepared by impregnation-reduction method, and in the typical preparing

procedure of PdAu/g-C₃N₄, 500 mg of g-C₃N₄ was dispersed in 50 mL of deionized water, then 3 mL of Na₂PdCl₄ solution (5 mg Pd per mL), 64 mg AuCl₃ solution (15 mg Au) and 150 mg L-lysine were added. The mixture was then vigorously stirred for 30 min under argon atmosphere. After that, NaBH₄ solution (60 mg dissolved in 10 mL deionized water) was added drop by drop in an ice bath, the mixture was further stirred for 1 h. And then 15 mL acetone was added into the mixture, the catalyst was further aged for 24 h without stirring. Finally, the catalyst was collected by centrifugation, washed with deionized water three times and dried under vacuum at 50 °C for 12 h. Other catalysts used in this work were prepared in the same way except that metal precursors and catalyst support are different.

3. Catalytic HDO of vanillin

In a typical reaction procedure, 0.5 mmol of vanillin and corresponding catalyst were placed in a sealed tube, then 2 mL of deionized water and 200 μ L 88 wt% FA aqueous solution were added. After the vanillin was dissolved, 6 mL of EA was added, and the mixture was stirred at room temperature for 1 h. After reaction, the mixture was extracted with EA, and the catalyst could be separated by filter, dried under vacuum and reused. The products were analyzed by GC and GC-MS, and then isolated by column chromatography in isolated yields. In this work, all the experiments were carried out in triplicate.

4. Catalytic performance in recent studies

nyurogen source						
Catalyst	Temperature (°C)	Time (h)	Atmosphere	Yield (%)	Ref.	
Pd/TiO2@NC	150	4	$0.5 \text{ MPa of } N_2$	99	2	
Ag-Pd@g-C ₃ N ₄	40 W bulb	4	-	99	3	
Pd/NMC	150	3	$0.5 \text{ MPa of } N_2$	99	4	
Au-Pt/CeO ₂	150	4.5	$1.5 \text{ MPa of } N_2$	99	5	
Co@NC-700	180	4	$0.5 \text{ MPa of } N_2$	96	6	
Co@NG-6	160	6	-	99	7	
Pd@HPC-DCD	140	12	$0.5 \text{ MPa of } N_2$	100	8	
PdAu/g-C ₃ N ₄	Room temperature	1	Atmosphere air	99	This work	

Table S1 Catalytic performance in recent studies on the HDO of vanillin with formic acid as the hydrogen source

5. ICP-MS results of the catalysts

Catalyst	Element	Metal Content (mg/kg)
	Pd	15818
PdAu/g-C ₃ N ₄	Au	14426
Pd/g-C ₃ N ₄	Pd	15167
Au/g-C ₃ N ₄	Au	15321
DJN:/- C N	Pd	14213
Pdini/g-C ₃ in ₄	Ni	15502
DJC:/- C N	Pd	16718
Pacu/g-C ₃ N ₄	Cu	13507
$\mathbf{P}_{\mathbf{r}} \mathbf{A}_{\mathbf{r}} \mathbf{c} \mathbf{C} \mathbf{N}$	Ru	14024
KuAu/g-C ₃ N ₄	Au	13827
D14/41-0	Pd	13287
PdAu/Al ₂ O ₃	Au	13131
	Pd	16385
PdAu/SIO ₂	Au	14805
	Pd	14715
PdAu/AC	Au	13601
	Pd	19239
raAu/MIL-101(Fe)	Au	15188
DJA/- C N *	Pd	14949
PaAu/g-C3N4ª	Au	13744

Table S2. ICP-MS analysis of prepared catalysts

^a Catalyst after 5 runs.

6. XPS spectra of catalysts

Fig. S1 XPS survey spectra of PdAu/g-C₃N₄.

Fig. S2 XPS spectra of PdNi/g- C_3N_4 (a) survey, (b) Pd 3d region, (c) Ni 2p region.

Fig. S3 XPS spectra of PdCu/g-C₃N₄ (a) survey, (b) Pd 3d region, (c) Cu 2p region.

Fig. S4 XPS spectra of RuAu/g-C $_3N_4$ (a) survey, (b) Ru 3p region, (c) Au 4f region.

7. Time-course monitoring of c_{FA}

Fig. S5 Time-course monitoring of c_{FA} in reaction system without PdAu/g-C₃N₄.

8. Results of the experiments with vanillin alcohol

	HO CH ₂ OH OCH ₃ Cat., HCOO RT., air VA	H HO OCH ₃ MMP
Entry	Catalyst	Yield ^b
1	None	No reaction
2	g-C ₃ N ₄	No reaction
3	PdAu/g-C ₃ N ₄	99
4	Pd/g-C ₃ N ₄	99
5	Au/g-C ₃ N ₄	21

Table S3. Hydrogenolysis of vanillin alcohol with FA^a

^a Reaction conditions: vanillin alcohol (0.5 mmol), 2 mL H₂O and 6 mL EA, 25 mg catalyst, 200 μ L 88 wt% FA aqueous solution, room temperature, air atmosphere, 1 h. ^b Yields of MMP were determined by GC with hexadecane as an internal standard.

9. TEM image of recovered PdAu/g-C₃N₄

Fig. S6 TEM image of PdAu/g-C₃N₄ after 5 runs.

References

- 1. S. C. Yan, Z. S. Li and Z. G. Zou, *Langmuir*, 2009, 25, 10397-10401.
- 2. L. Wang, B. Zhang, X. Meng, D. S. Su and F.-S. Xiao, ChemSusChem, 2014, 7, 1537-1541.
- 3. S. Verma, R. B. Nasir Baig, M. N. Nadagouda and R. S. Varma, Green Chem., 2016, 18, 1327-1331.
- R. Nie, X. Peng, H. Zhang, X. Yu, X. Lu, D. Zhou and Q. Xia, *Catal. Sci. Technol.*, 2017, 7, 627-634.
- L. Wang, J. Zhang, G. Wang, W. Zhang, C. Wang, C. Bian and F.-S. Xiao, *Chem. Commun.*, 2017, 53, 2681-2684.
- H. Yang, R. Nie, W. Xia, X. Yu, D. Jin, X. Lu, D. Zhou and Q. Xia, *Green Chem.*, 2017, 19, 5714-5722.
- 7. S. Zhou, F. Dai, C. Dang, M. Wang, D. Liu, F. Lu and H. Qi, Green Chem., 2019, 21, 4732-4747.
- C. Pu, J. Zhang, G. Chang, Y. Xiao, X. Ma, J. Wu, T. Luo, K. Huang, S. Ke, J. Li and X. Yang, *Carbon*, 2020, 159, 451-460.