Supplemental information

Enabling Sustainable recycling of LiFePO₄ from spent lithium-ion batteries

Xuejing Qiu^a, Baichao Zhang^a, Yunlong Xu^a, Jiugang Hu^a, Wentao Deng^a, Guoqiang Zou^a, Hongshuai Hou^a, Yue Yang^b, Wei Sun^b, Yuehua Hu^b, Xiaoyu Cao^c, Xiaobo Ji^a.*

^a College of Chemistry and Chemical Engineering Central South University Changsha 410083, China

^b School of Minerals Processing and Bioengineering Central South University Changsha 410083, China

^c School of Chemistry and Chemical engineering
 Henan University of Technology
 Zhengzhou 450001, China

E-mail: xji@csu.edu.cn

Fig. S1. The presentation of the oxidated leaching for the regeneration LFP cathode

material.

Fig. S2. Kinetics fitting data at different temperatures for (a) external diffusion model,(b) chemical reaction model.

Fig. S3 FT-IR spectra of the samples from the lithium enriched filtrate and that of the commercial Li_2CO_3 .

Fig. S4 XPS spectra of Fe 2p for the S-LFP and $\text{FePO}_{4.}$

Fig. S5 (a, b, c) SEM images and (d) elemental mapping of the spent LiFePO₄.

Fig. S6 (a, b, c) SEM images and (d) elemental mapping of FePO₄ by hydrogen peroxide leaching.

Element	Li	Fe	Р	Al
Content (wt. %)	3.61	36.34	20.15	0.01

Table S1. The main composition of the spent $LiFePO_4$ cathode materials

Temperature (°C)		Le	eaching effic	eiency (%)		
Time (min)	2.5	5	10	15	20	30
20	65.2	66.5	69.1	70.0	71.8	75.1
30	77.7	79.7	81.8	83.3	84.2	87.3
40	85.7	86.8	89.0	89.1	90.6	93.3
50	93.1	94.3	95.1	95.8	96.5	98.1

Table S2 Kinetics leaching results at different temperatures and different times

Temperature (°C)		Kinetics fitting data					
	Time (min)	2.5	5	10	15	20	30
	20	0.6528	0.6650	0.6911	0.7008	0.7189	0.7510
	30	0.7779	0.7975	0.9190	0.8334	0.8421	0.8730
	40	0.8577	0.8687	0.8907	0.8913	0.9061	0.9331
	50	0.9311	0.9432	0.9518	0.9586	0.965	0.9810

Table S3 Kinetics fitting data of x vs. time at different temperatures

Temperature (°C)				Kinetics fitt	ing data		
	Time (min)	2.5	5	10	15	20	30
	20	0.0708	0.0743	0.0823	0.0854	0.0916	0.1035
	30	0.1146	0.1235	0.1335	0.1416	0.1464	0.1653
	40	0.1556	0.1625	0.1776	0.1780	0.1894	0.2132
	50	0.2125	0.2234	0.2330	0.2413	0.2504	0.2749

Table S4 Kinetics fitting data of $1-2/3x-(1-x)^{2/3}$ vs. time at different temperatures

Temper	ature (°C)	/ Kinetics fitting data					
	Time (min)	2.5	5	10	15	20	30
	20	0.2971	0.3055	0.4340	0.3311	0.3449	0.3709
	30	0.3943	0.4128	0.4333	0.4497	0.4595	0.4974
	40	0.4779	0.4918	0.5219	0.5227	0.5455	0.5942
	50	0.5901	0.6156	0.6360	0.6543	0.6747	0.7334

Table S5 Kinetics fitting data of $1-(1-x)^{1/3}$ vs. time at different temperatures

	R-LFP	S-LFP
Equation	Y=a	a+bx
Intercept (a)	18.89367 ± 3.484	81.07694±12.63
Slope (b)	31.3281 ± 0.5568	78.76399±2.019
R-square	0.99811	0.99607
D_{Li}	4.66062×10 ⁻¹⁵	7.40184×10 ⁻¹⁶

Table S6 Results of average Li+ diffusion coefficient for R-LFP and S-LFP calculated by electrochemical impedance spectroscopy (EIS). Principles and model of leaching kinetics

In the light of the conventional hydrometallurgy process, the classical shrinking core model is generally employed to depict the leaching reaction when the solid granule reacts with the leaching agent, afterwards, the unreacted nucleus will gradually shrink and disappear during the dissolving procedure. The leaching reaction includes the following steps:

- The leaching agent firstly diffuses to the surface of the solid granule in the bulk solutions, referred to as external diffusion.
- (2) The leaching agent then diffuses to the solid-liquid interface of the solid granule through the fluid film, referred to as internal diffusion.
- (3) Finally, the leaching agent reacts with the solid granule, referred to as chemical reaction.

Consequently, the leaching agent diffused into the liquid phase in reverse order.

The reaction rete-controlling steps including external diffusion, internal diffusion and chemical reaction during leaching are shown in the following Eqns.

$$\mathbf{x} = \mathbf{k}_1 \mathbf{t} \tag{1}$$

$$1-2/3x-(1-x)^{2/3}=k_2t$$
 (2)

$$1-(1-x)^{1/3}=k_3t$$
 (3)

Where x is the leaching efficiency of lithium, k_1 , k_2 , k_3 is the reaction rate constants, and t is the retention time (min).

Ultimately, the Arrhenius equation (Eq. (4)) was employed to determine the apparent activation energy (Ea) for rate-controlling model¹:

$$k=Ae^{-Ea/RT}$$
 or $lnk=lnA-E_a/RT$ (4)

Where k is the rate constant, A is the frequency factor, Ea is the apparent activation energy, R is the gas constant of 8.314J/(mol K) and T is the thermodynamic temperature (K).

Electrochemical impedance spectroscopy (EIS)

The oblique line in the low frequency region is equivalent to the lithium-ion diffusion rate on behalf of the Warburg impedance, which can be calculated according to the following formula:

$$Z' = K + \sigma \omega^{-1/2}$$
(5)

$$D_{Li} = 1/2 (RT/n^2 F^2 A C \sigma)^2$$
(6)

Where Z' is the real part of impedance, ω is the angular frequency, σ is the Warburg factor based on the linearly fitting slope between Z' and $\omega^{-1/2}$ in the low frequency region. In Eqn. (5), D_{Li} is the lithium-ion diffusion coefficient (cm s⁻¹), R is the gas constant (8.314 J K⁻¹ mol⁻¹), T is the absolute temperature (298 K), n is the quantity of charge transfer per mol in the reaction, F is Faraday constant (96485 C mol⁻¹), A is the electrode surface area (1.54 cm²), C is the concentration of lithium ion in LFP (2.28×10⁻² mol cm⁻³, estimated by the number of lithium ion in a unit cell).

Economic analysis

batteries^{2, 3}

	Items	Price	Dosage	Total
	H_2O_2	\$/L	L	\$
T 1'		0.162	4.1	0.66
Leaching –	Energy cost	\$/kW h	kW h	\$
		0.07	0.38	0.026
Regeneration –		\$/kg	g	\$
	LiOH	14.01	4	0.056
	Energy cost	\$/kW h	kW h	\$
		0.07	0.49	0.034
Cost				0.776

(1) As listed in Table S7, the cost of reagents for the regeneration process is calculated

Table S7 The materials and energy consumption to dispose of 1 kg spent LiFePO₄

0.162\$/L×4.1 L=0.66\$

as follow.

Hydrogen peroxide

Additional LiOH₂

14.01\$/kg×4 g=0.056\$

(2) The energy consumption for the regeneration process is calculated as follow.

0.07\$/kW h×0.38 kW h=0.026\$

0.07\$/kW h×0.49 kW h=0.034\$

Calculation of benefits and profits: Approximate 1.0 kg spent LiFePO₄ batteries is taken as sample, economic assessment in laboratory-scale for spent LIBs recycling is performed based on proposed process. The benefits for the whole process can be obtained from the regeneration of 269g LiFePO₄, the ultimate profits are calculated as follows.

Profits: 269g×7.7\$/kg-1\$-0.66\$-0.056\$-0.026\$-0.034\$=0.295\$

Table S8 The comparison of different recycling processes from spent LiFePO₄ cathode

materials.

Recycling Process	Experimental Conditions	Waste Production	Significance	Ref.
Repair with solid phase annealing	Annealing: 600- 800°C for 1 h according to the absence of lithium, NaOH solution	Aluminum- containing alkaline waste liquid	Environmentally friendly recycling process, satisfactory electrochemical performance	4
Healing with relithiation and short annealing	Relithiation: 80 °C for 5 h Annealing: 600 °C for 2 h	Salt-containing wastewater	Safe and low-cost regenerative process, excellent electrochemical performance	5
Acid leaching and hydrothermal synthesis	Leaching: 70 °C for 2 h Hydrothermal synthesis: 200 °C for 6 h Calcination: 200 °C for 6 h	Salt-containing wastewater Graphite residue	Short and efficient recycling approach good electrochemical performance	2
Organic acid leaching	Leaching: 60 °C for 0.5 h Li ₂ CO ₃ recovery: concentration by evaporation	Sodium acetate solution Ferric hydroxide precipitation	Selective leaching with a high recovery rate	6
Redox targeting- based process	Electrolysis: react in the [Fe(CN) ₆] ³⁻ electrolyte LiOH recovery: concentration by evaporation	[Fe(CN) ₆] ³⁻ toxic wastewater	No corrosive chemicals and minimal chemical consumption	7
Oxidation leaching	1.4 times amount of theoretical (NH ₄) ₂ S ₂ O ₈ Li ₂ CO ₃ recovery: adding NaCO ₃	(NH ₄) ₂ SO ₄ solution	One-step oxidation leaching with separating three materials	3
Oxidation leaching	H ₂ O ₂ dosage of Vol. %15 Li ₂ CO ₃ recovery: inletting CO ₂ gas	/	Green and efficient process, excellent electrochemical performance	This work

References

 X. Chen; D. Kang; L. Cao; J. Li; T. Zhou; H. Ma. Sep. Purif. Technol. 2019, 210,690-697.

2. Y. Song; B. Xie; S. Song; S. Lei; W. Sun; R. Xu; Y. Yang. Green Chemistry 2021, 23,3963-3971.

3. D. Peng; J. Zhang; J. Zou; G. Ji; L. Ye; D. Li; B. Zhang; X. Ou. *Journal of Cleaner Production* 2021, 316,128098.

4. J. Chen; Q. Li; J. Song; D. Song; L. Zhang; X. Shi. *Green Chemistry* 2016, 18,2500-2506.

5. P. Xu; Q. Dai; H. Gao; H. Liu; M. Zhang; M. Li; Y. Chen; K. An; Y.

S. Meng; P. Liu; Y. Li; J. S. Spangenberger; L. Gaines; J. Lu; Z. Chen. Joule 2020, 4,2609-2626.

 Y. Yang; X. Meng; H. Cao; X. Lin; C. Liu; Y. Sun; Y. Zhang; Z. Sun. Green Chemistry 2018, 20,3121-3133.

7. J. Yu; X. Wang; M. Zhou; Q. Wang. *Energy & Environmental Science* 2019, 12,2672-2677.